3 research outputs found

    A QSAR classification model of skin sensitization potential based on improving binary crow search algorithm

    Get PDF
    Classifying of skin sensitization using the quantitative structure-activityrelationship (QSAR) model is important. Applying descriptor selection isessential to improve the performance of the classification task. Recently, abinary crow search algorithm (BCSA) was proposed, which has been successfully applied to solve variable selection. In this work, a new time-varyingtransfer function is proposed to improve the exploration and exploitation capability of the BCSA in selecting the most relevant descriptors in QSAR classification model with high classification accuracy and short computing time.The results demonstrated that the proposed method is reliable and can reasonably separate the compounds according to sensitizers or non-sensitizerswith high classification accuracy

    A crow search algorithm for aircraft maintenance check problem and continuous airworthiness maintenance program

    Get PDF
    This research discusses the maintenance problem of a small commer­cial aircraft with propeller engine, typed ATR-72. Based on the main­­tenance records, the aircraft has average 294 routine activities that have to be monitored and done based on determined threshold interval. This research focuses on developing a meta­heuristic model to optimize the aircraft’s utility, called Crow Search Algorithm (CSA) to solve the Aircraft Maintenance Problem (AMP). The algorithm is developed and tested  whether a younger meta­heuristic method, CSA, is able to give better performance compar­ed to the older methods, Particle Swarm Optimization (PSO) and other hybri­dized method PSO with Greedy Randomized Adaptive Search Optimization (PSO-GRASP). Several experiments are performed by using parameters: 1000 maximum iteration and 600 maximum computa­tion time by using four dataset combinations. The results show that CSA can give better performance than PSO but worse than PSO-GRASP

    Recent meta-heuristic algorithms with a novel premature covergence method for determining the parameters of pv cells and modules

    Get PDF
    Currently, the incorporation of solar panels in many applications is a booming trend, which necessitates accurate simulations and analysis of their performance under different operating conditions for further decision making. In this paper, various optimization algorithms are addressed comprehensively through a comparative study and further discussions for extracting the unknown parameters. Efficient use of the iterations within the optimization process may help meta-heuristic algorithms in accelerating convergence plus attaining better accuracy for the final outcome. In this paper, a method, namely, the premature convergence method (PCM), is proposed to boost the convergence of meta-heuristic algorithms with significant improvement in their accuracies. PCM is based on updating the current position around the best-so-far solution with two-step sizes: the first is based on the distance between two individuals selected randomly from the population to encourage the exploration capability, and the second is based on the distance between the current position and the best-so-far solution to promote exploitation. In addition, PCM uses a weight variable, known also as a controlling factor, as a trade-off between the two-step sizes. The proposed method is integrated with three well-known meta-heuristic algorithms to observe its efficacy for estimating efficiently and effectively the unknown parameters of the single diode model (SDM). In addition, an RTC France Si solar cell, and three PV modules, namely, Photowatt-PWP201, Ultra 85-P, and STM6-40/36, are investigated with the improved algorithms and selected standard approaches to compare their performances in estimating the unknown parameters for those different types of PV cells and modules. The experimental results point out the efficacy of the PCM in accelerating the convergence speed with improved final outcomes
    corecore