536 research outputs found

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    Security techniques for intelligent spam sensing and anomaly detection in online social platforms

    Get PDF
    Copyright © 2020 Institute of Advanced Engineering and Science. All rights reserved. The recent advances in communication and mobile technologies made it easier to access and share information for most people worldwide. Among the most powerful information spreading platforms are the Online Social Networks (OSN)s that allow Internet-connected users to share different information such as instant messages, tweets, photos, and videos. Adding to that many governmental and private institutions use the OSNs such as Twitter for official announcements. Consequently, there is a tremendous need to provide the required level of security for OSN users. However, there are many challenges due to the different protocols and variety of mobile apps used to access OSNs. Therefore, traditional security techniques fail to provide the needed security and privacy, and more intelligence is required. Computational intelligence adds high-speed computation, fault tolerance, adaptability, and error resilience when used to ensure security in OSN apps. This research provides a comprehensive related work survey and investigates the application of artificial neural networks for intrusion detection systems and spam filtering for OSNs. In addition, we use the concept of social graphs and weighted cliques in the detection of suspicious behavior of certain online groups and to prevent further planned actions such as cyber/terrorist attacks before they happen

    Mining Twitter for crisis management: realtime floods detection in the Arabian Peninsula

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of doctor of Philosophy.In recent years, large amounts of data have been made available on microblog platforms such as Twitter, however, it is difficult to filter and extract information and knowledge from such data because of the high volume, including noisy data. On Twitter, the general public are able to report real-world events such as floods in real time, and act as social sensors. Consequently, it is beneficial to have a method that can detect flood events automatically in real time to help governmental authorities, such as crisis management authorities, to detect the event and make decisions during the early stages of the event. This thesis proposes a real time flood detection system by mining Arabic Tweets using machine learning and data mining techniques. The proposed system comprises five main components: data collection, pre-processing, flooding event extract, location inferring, location named entity link, and flooding event visualisation. An effective method of flood detection from Arabic tweets is presented and evaluated by using supervised learning techniques. Furthermore, this work presents a location named entity inferring method based on the Learning to Search method, the results show that the proposed method outperformed the existing systems with significantly higher accuracy in tasks of inferring flood locations from tweets which are written in colloquial Arabic. For the location named entity link, a method has been designed by utilising Google API services as a knowledge base to extract accurate geocode coordinates that are associated with location named entities mentioned in tweets. The results show that the proposed location link method locate 56.8% of tweets with a distance range of 0 – 10 km from the actual location. Further analysis has shown that the accuracy in locating tweets in an actual city and region are 78.9% and 84.2% respectively

    AN ENHANCEMENT ON TARGETED PHISHING ATTACKS IN THE STATE OF QATAR

    Get PDF
    The latest report by Kaspersky on Spam and Phishing, listed Qatar as one of the top 10 countries by percentage of email phishing and targeted phishing attacks. Since the Qatari economy has grown exponentially and become increasingly global in nature, email phishing and targeted phishing attacks have the capacity to be devastating to the Qatari economy, yet there are no adequate measures put in place such as awareness training programmes to minimise these threats to the state of Qatar. Therefore, this research aims to explore targeted attacks in specific organisations in the state of Qatar by presenting a new technique to prevent targeted attacks. This novel enterprise-wide email phishing detection system has been used by organisations and individuals not only in the state of Qatar but also in organisations in the UK. This detection system is based on domain names by which attackers carefully register domain names which victims trust. The results show that this detection system has proven its ability to reduce email phishing attacks. Moreover, it aims to develop email phishing awareness training techniques specifically designed for the state of Qatar to complement the presented technique in order to increase email phishing awareness, focused on targeted attacks and the content, and reduce the impact of phishing email attacks. This research was carried out by developing an interactive email phishing awareness training website that has been tested by organisations in the state of Qatar. The results of this training programme proved to get effective results by training users on how to spot email phishing and targeted attacks

    Artificial Intelligence and Machine Learning in Cybersecurity: Applications, Challenges, and Opportunities for MIS Academics

    Get PDF
    The availability of massive amounts of data, fast computers, and superior machine learning (ML) algorithms has spurred interest in artificial intelligence (AI). It is no surprise, then, that we observe an increase in the application of AI in cybersecurity. Our survey of AI applications in cybersecurity shows most of the present applications are in the areas of malware identification and classification, intrusion detection, and cybercrime prevention. We should, however, be aware that AI-enabled cybersecurity is not without its drawbacks. Challenges to AI solutions include a shortage of good quality data to train machine learning models, the potential for exploits via adversarial AI/ML, and limited human expertise in AI. However, the rewards in terms of increased accuracy of cyberattack predictions, faster response to cyberattacks, and improved cybersecurity make it worthwhile to overcome these challenges. We present a summary of the current research on the application of AI and ML to improve cybersecurity, challenges that need to be overcome, and research opportunities for academics in management information systems

    Cloud Computing Security, An Intrusion Detection System for Cloud Computing Systems

    Get PDF
    Cloud computing is widely considered as an attractive service model because it minimizes investment since its costs are in direct relation to usage and demand. However, the distributed nature of cloud computing environments, their massive resource aggregation, wide user access and efficient and automated sharing of resources enable intruders to exploit clouds for their advantage. To combat intruders, several security solutions for cloud environments adopt Intrusion Detection Systems. However, most IDS solutions are not suitable for cloud environments, because of problems such as single point of failure, centralized load, high false positive alarms, insufficient coverage for attacks, and inflexible design. The thesis defines a framework for a cloud based IDS to face the deficiencies of current IDS technology. This framework deals with threats that exploit vulnerabilities to attack the various service models of a cloud system. The framework integrates behaviour based and knowledge based techniques to detect masquerade, host, and network attacks and provides efficient deployments to detect DDoS attacks. This thesis has three main contributions. The first is a Cloud Intrusion Detection Dataset (CIDD) to train and test an IDS. The second is the Data-Driven Semi-Global Alignment, DDSGA, approach and three behavior based strategies to detect masquerades in cloud systems. The third and final contribution is signature based detection. We introduce two deployments, a distributed and a centralized one to detect host, network, and DDoS attacks. Furthermore, we discuss the integration and correlation of alerts from any component to build a summarized attack report. The thesis describes in details and experimentally evaluates the proposed IDS and alternative deployments. Acknowledgment: =============== • This PH.D. is achieved through an international joint program with a collaboration between University of Pisa in Italy (Department of Computer Science, Galileo Galilei PH.D. School) and University of Arizona in USA (College of Electrical and Computer Engineering). • The PHD topic is categorized in both Computer Engineering and Information Engineering topics. • The thesis author is also known as "Hisham A. Kholidy"

    Design of a Controlled Language for Critical Infrastructures Protection

    Get PDF
    We describe a project for the construction of controlled language for critical infrastructures protection (CIP). This project originates from the need to coordinate and categorize the communications on CIP at the European level. These communications can be physically represented by official documents, reports on incidents, informal communications and plain e-mail. We explore the application of traditional library science tools for the construction of controlled languages in order to achieve our goal. Our starting point is an analogous work done during the sixties in the field of nuclear science known as the Euratom Thesaurus.JRC.G.6-Security technology assessmen

    Social informatics

    Get PDF
    5th International Conference, SocInfo 2013, Kyoto, Japan, November 25-27, 2013, Proceedings</p

    Examining the Impact of Emojis on Disaster Communication: A Perspective from the Uncertainty Reduction Theory

    Get PDF
    Communication is a purposeful process, especially during disasters, when emergency management officials and citizen journalists attempt to disseminate relevant information to as many affected people as possible. X (previously Twitter), a popular computer-mediated communication (CMC) platform, has become an essential resource for disaster information given its ability to facilitate real-time communication. Past studies on disasters have mainly concentrated on the verbal-linguistic conventions of words and hashtags as the means to convey disaster-related information. Little attention has been given to non-verbal linguistic cues, such as emojis. In this study, we investigate the use of emojis in disaster communication on X by using uncertainty reduction theory as the theoretical framework. We measured information uncertainty in individual tweets and assessed whether information conveyed in external URLs mitigated such uncertainty. We also examined how emojis affect information uncertainty and information dissemination. The statistical results from analyzing tweets related to the 2018 California Camp Fire disaster show that information uncertainty has a negative impact on information dissemination, and the negative impact was amplified when emojis depicted items and objects instead of facial expressions. Conversely, external URLs reduced the negative impact. This study sheds light on the influence of emojis on the dissemination of disaster information on X and provides insights for both academia and emergency management practitioners in using CMC platforms
    • …
    corecore