3,590 research outputs found

    Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models

    Get PDF
    This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi-Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components

    Advanced Design for Additive Manufacturing: 3D Slicing and 2D Path Planning

    Get PDF
    Commercial 3D printers have been increasingly implemented in a variety of fields due to their quick production, simplicity of use, and cheap manufacturing. Software installed in these machines allows automatic production of components from computer-aided design (CAD) models with minimal human intervention. However, there are fewer options provided, with a limited range of materials, limited path patterns, and layer thicknesses. For fabricating metal functional parts, such as laser-based, electron beam-based, and arc-welding-based additive manufacturing (AM) machines, usually more careful process design requires in order to obtain components with the desired mechanical and material properties. Therefore, advanced design for additive manufacturing, particularly slicing and path planning, is necessary for AM experts. This chapter introduces recent achievements in slicing and path planning for AM process

    Interactions of an Additive Manufacturing Program with Society

    Get PDF
    Additive Manufacturing (AM) has shown considerable promise for the future but also proposes some challenges. Many AM barriers tend to be non-technical and instead are human-centric issues such as lack of education of practitioners in AM capabilities, cultural differences, vested interests, and potentially lack of imagination. It is highly desirable for all research and educational institutions to help address these issues. This paper summarizes the additive manufacturing research and education program at the Missouri University of Science and Technology (Missouri S&T) and its interactions with various constituents, including K-12 students, undergraduate and graduate students, distance students, and industry

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    A tool-path generation strategy for wire and arc additive manufacturing

    Get PDF
    This paper presents an algorithm to automatically generate optimal tool-paths for the wire and arc additive manufacturing (WAAM) process for a large class of geometries. The algorithm firstly decomposes 2D geometries into a set of convex polygons based on a divide-and-conquer strategy. Then, for each convex polygon, an optimal scan direction is identified and a continuous tool-path is generated using a combination of zigzag and contour pattern strategies. Finally, all individual sub-paths are connected to form a closed curve. This tool-path generation strategy fulfils the design requirements of WAAM, including simple implementation, a minimized number of starting-stopping points, and high surface accuracy. Compared with the existing hybrid method, the proposed path planning strategy shows better surface accuracy through experiments on a general 3D component

    Process planning for an Additive/Subtractive Rapid Pattern Manufacturing system

    Get PDF
    This dissertation presents a rapid manufacturing process for sand casting patterns using a hybrid additive/subtractive approach. This includes three major areas of research that will enable highly automated process planning; a critical need for a rapid methodology. The first research area yields a model for automatically determining the locations of layers, given the slab height, material types and part geometry. Layers are chosen such that it will avoid catastrophic failures and poor machining conditions in general. First, features that are possible thin material machining positions are defined, and methods for detecting these feature positions from an STL model are studied. Next, a layer thickness calculation model is presented according to positions of these features. The second area focuses on tools and parameters for the subtractive side of processing each layer. A tool size and machining parameter selection model is presented that can automatically select tool sizes and machining parameters, given layer thickness, part geometry, and material types. Machining strategies and related machining parameters are studied first. Then the method for Stepdown parameter calculation is presented. Finally, an algorithm based on both accessibility and machining efficiency is proposed for the selection of tool sizes for the rough cutting operation, finish cutting operation and optional semi-rough cutting operation. The final research area focuses on a cutting force analysis for thin material machining with additional layer thickness & tool size interaction. Popular cutting force models are reviewed, and a suitable model for cutting force calculation in this process is evaluated. Then, a cantilever beam model is used to analyze the thin material machining failure problem, and a minimum layer thickness model is presented. Third, a combined layer thickness & tool size model is constructed based on the machining tool deflection under cutting forces. This rapid pattern manufacturing process and related software has been implemented, and experimental data is presented to illustrate the efficacy of this system and its process planning methods

    Process planning for robotic wire ARC additive manufacturing

    Get PDF
    Robotic Wire Arc Additive Manufacturing (WAAM) refers to a class of additive manufacturing processes that builds parts from 3D CAD models by joining materials layerupon- layer, as opposed to conventional subtractive manufacturing technologies. Over the past half century, a significant amount of work has been done to develop the capability to produce parts from weld deposits through the additive approach. However, a fully automated CAD-topart additive manufacturing (AM) system that incorporates an arc welding process has yet to be developed. The missing link is an automated process planning methodology that can generate robotic welding paths directly from CAD models based on various process models. The development of such a highly integrated process planning method for WAAM is the focus of this thesis
    corecore