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Abstract 
 

 

Robotic Wire Arc Additive Manufacturing (WAAM) refers to a class of additive 

manufacturing processes that builds parts from 3D CAD models by joining materials layer-

upon-layer, as opposed to conventional subtractive manufacturing technologies. Over the past 

half century, a significant amount of work has been done to develop the capability to produce 

parts from weld deposits through the additive approach. However, a fully automated CAD-to-

part additive manufacturing (AM) system that incorporates an arc welding process has yet to 

be developed. The missing link is an automated process planning methodology that can 

generate robotic welding paths directly from CAD models based on various process models. 

The development of such a highly integrated process planning method for WAAM is the 

focus of this thesis. 

The major steps in process planning for robotic WAAM includes generation of 2.5D 

layers, generation of deposition paths for these layers, the determination of welding 

parameters (e.g. wire-feed rate, travel speed, and stick-out) associated with the deposition 

paths, and an optional post-process machining. A more detailed explanation for each of these 

steps is provided as follows. 

In WAAM, the CAD model is sliced into a set of 2.5D layers along the build direction. 

Unlike existing slicing methods, which divide models into parallel slices of either equally or 

varying thickness, the newly-developed multi-direction slicing algorithm decomposes CAD 

models into slices in multiple directions based on geometric evaluations. This allows direct 

deposition of complex models without the need to introduce additional support structures. In 

addition, in multi-direction deposition, the accuracy of the deposited part is increased through 

minimising the “stair-stepping” effect. 

Deposition paths are subsequently generated for the 2D cross-section of the obtained 

2.5D layers. Path generation for processes that have fine, statistically distributed particles in 

powder-based AM system are somewhat independent of geometric complexity. However, 

AM systems based on arc-wire welding produce much larger deposits than powder-based 

systems, so the deposition paths are significantly influenced by geometric complexity and the 

material selected. Innovative MAT-based (medial axis transformation) path planning 

algorithms are proposed to generate void-free deposition paths irrespective of the complexity 

of the geometry.  
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Welding parameters associated with the generated deposition paths are selected to 

produce weld deposits with the desired width and height to produce the necessary layer 

thickness together with complete material infill between paths. Generally, welding variables 

such as wire-feed rate and travel speed are manually set by welding experts depending on the 

deposition process and the material selected. In this study, artificial neural network (ANN) 

single bead models are established for the gas metal arc welding (GMAW) process of mild 

steel and aluminium alloy materials, respectively. A multi-bead overlapping model is also 

developed to determine the appropriate overlapping distances (step-over distances) between 

the paths in order to obtain a smooth multi-pass surface. Both the ANN model and multi-bead 

overlapping model are integrated into the process planning methodology allowing the 

automatic selection of optimum welding parameters corresponding to the generated 

deposition paths. 

As a result, near-net shapes are fabricated using the generated deposition paths and 

welding parameters. The shapes are then machined to produce the finished parts with the 

required dimensional tolerances through a series of post-process robotic machining 

operations. The absence of re-fixturing problems and tool accessibility problems helps in 

fully automating the generation of robotic machining paths. Several parts were built 

automatically using this process planning and the results are discussed. 
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Chapter 1  

 

Introduction 

 

1.1 Motivation 

Over the past thirty years, Additive Manufacturing (AM) has gained increasing attention 

in the manufacturing industry, especially to manufacture component models and prototypes. 

Various AM processes, such as 3D Printing (3DP) [1], Selective Laser Sintering (SLS) [2], 

and Fused Deposition Modelling (FDM) [3], have been developed. Figure 1.1 shows the 

research and development of AM [4]. At the base are the various AM processes, and the 

branches are representative fields of outcomes and benefits.   

 

Figure 1.1 Schematic visualization of the AM processes and representative fields [4] 
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In order to meet the industrial demands of aerospace [5, 6], automotive [7], and rapid 

tooling [8, 9], the recent focus of AM research has shifted to the fabrication of complex 

shaped metal components, including titanium and nickel alloys that cannot be economically 

produced using conventional methods. The arc welding process has been widely explored for 

additive manufacture of large metal components for the aerospace industry, due to its lower 

capital cost, an unlimited build envelope, and higher deposition rates [10]. Although 

significant improvements have been made, an arc welding process has yet to be incorporated 

in a commercially available AM system. The next step in exploiting “true” arc-welding-based 

additive manufacturing is to develop the automation system required to produce CAD-to-part 

capability. 

This thesis focuses on developing a fully automated system to additively manufacture 

metal components using the robotic Gas Metal Arc Welding (GMAW) process, called robotic 

Wire Arc Additive Manufacturing (WAAM). The developed system reads only the CAD 

models as inputs and produces the finished parts without human intervention.  

 

1.2 Literature review 

1.2.1 AM vs. CNC Machining 

The competitive position of AM for metal components relative to alternative 

manufacturing processes is a function of the geometrical complexity and production volume. 

Figure 1.2 [8] shows that AM (also referred as Layer Manufacturing) is suitable to fabricate 

parts with medium to high geometrical complexity at relatively low quantities.  

 

Figure 1.2 Qualitative situation of the AM metal components production relative to usual options 

(MIM: Metal Injection Moulding; PM-Sintering: Powder Metallurgy Sintering) [8] 
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When compared with conventional subtractive manufacturing (e.g. CNC machining), AM 

has several advantages. Firstly, it is possible to automate the AM process from part design to 

fabrication in a CAD/CAM environment. This reduces both the production time and the 

amount of human intervention needed for each new part. Although programs for CNC 

machining can also be automatically generated from CAD models, multiple re-fixturing is 

necessary for complex geometries, resulting in time-consuming and expensive re-fixturing 

and calibration procedures. Secondly, AM is a cost-competitive approach for fabricating 

components made from expensive material such as titanium and nickel alloys in the 

aerospace industry, where such components often suffer extremely high buy-to-fly ratios. In 

addition, it is possible to use AM to create single-component structures with complex shapes 

that would be impractical or impossible to build with traditional subtractive approaches.  

 

1.2.2 Powder-based vs. wire-feed AM process 

According to the standard terminology for AM by ASTM (ASTM F2792), AM 

technologies for metal components are mainly classified into powder bead fusion, directed 

energy deposition, binder jetting, and sheet lamination as listed in Table 1.1. Typical additive 

materials are metal powder and metal wire. With regard to how the additive material is 

supplied, currently popular AM technologies can be classified as powder-feed, powder-bed or 

a wire-feed process. 

Table 1.1 Classification of AM for metal components 

Classification Terminologies Ref. Material 

Powder bed 

fusion 

Direct metal laser sintering (DMLS) [11] 

Metal powder 
Electron beam melting (EBM) [12] 

Selective laser sintering (SLS) [2] 

Selective laser melting (SLM) [13] 

Directed energy 

deposition 

Electron beam freeform fabrication (EBF3) [14] 

Metal powder,  

metal wire 

Laser engineered net shaping (LENS) [15] 

Laser consolidation (LC) [16] 

Directed light fabrication (DLF) [17] 

Wire and arc additive manufacturing (WAAM) [18] 

Binder jetting Powder bed and inkjet 3d printing (3DP) [19] Metal powder 

Sheet lamination 
Laminated object manufacturing (LOM) [20] Metal laminate, 

Metal foil Ultrasonic consolidation (UC) [21] 

The majority of research in AM has been focused on powder-based AM systems, where 

the laser or electron beam equipment is usually used as the power source. Powder-based AM 

techniques generally involve a complex non-equilibrium physical and chemical metallurgical 

process, which exhibits multiple modes of heat and mass transfer, and in some instances, 

chemical reactions. A comprehensive review on the materials design, process control, 
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property characterisation and metallurgical theories for laser sintering, laser melting, and 

laser metal deposition of a wide variety of metallic powders has been reported recently in the 

literature [22]. 

Table 1.2 provides a comparison of the basic features between powder-based and wire-

feed processes. The powder-based approach is better developed due to its capability of 

fabricating parts with high geometrical accuracy. The resolution of typical layer thickness in 

powder-based technology is 20-100 µm, and the completed components can achieve a 

dimensional accuracy of ± 0.05 mm and surface roughness of 9-16 µm [23, 24]. In addition, 

it is possible to produce parts with functionally graded materials (FGM) [25]. However, the 

deposition rate of powder-based technology is extremely low, typically around 10 g/min, 

which limits its application in fabricating median to large sized components. 

Table 1.2 Comparisons of some representative AM processes 

Additive 

materials 

Process Layer 

thickness 

(µm) 

Deposition 

rate (g/min) 

Dimensional 

accuracy (mm) 

Surface 

roughness 

(µm) 

Ref. 

Powder 

LC N/A 1   ̶ 30 ± 0.025   ̶ ± 0.069 1   ̶ 2 [23] 

SLM 20   ̶ 100 N/A ± 0.04  9   ̶ 10 [24] 

SLS 75 ~ 0.1 ± 0.05 14   ̶ 16 [26] 

DLF 200 10 ± 0.13 ~ 20 [17] 

Wire 
WAAM ~ 2000 ~ 180 ± 0.2 200 [27, 28] 

EBF3 N/A 50   ̶ 150 Low High [10] 

In wire-feed AM, a metal wire is used as feed material instead of metal powder. Wire-

feed AM has higher material usage efficiency up to 100% of the wire material deposited into 

the component. Therefore, it is a more environmental friendly process, which does not expose 

operators to the hazardous powder environment. Compared with the powder-based process, it 

has a much higher deposition rate of up to 150 g/min and its resolution of typical layer 

thickness could be higher than 2 mm [10]. Table 1.2 reveals that there is a trade-off between 

deposition rate and resolution. As also shown in Figure 1.3, by using wire instead of powder 

materials, the deposition rate increased and large components can be economically produced, 

while the resolution and complexity of the fabricated parts decreases. Additionally, metal 

wires are lower in cost and more readily available than metal powders having suitable 

properties for AM, making wire-feed AM technologies more cost-competitive for large 

components. 
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Figure 1.3 Comparison of surface finish and deposition rate between powder-based and wire-feed 

technologies. (a) Titanium 3D-micro-framwork-structure based on a diamond lattice fabricated using 

powder-bed electron beam melting [12]; (b) A powder-feed directed light fabrication of 316 stainless 

steel hemispherical shapes [17]; (c) Three as-consolidated powder-feed laser consolidation IN-625 

samples with surface roughness 1-2 µm [23]; (d) A large samples fabricated by WAAM from 

Cranfield University [29];(e) 2219 Al airfoil produced by wire-feed EFB3 [30]; (f) As deposited 

sample made by wire-feed LAM (AeroMet) with “stair stepping” surface, and (g) shows the sample 

after surface machining.  

The material properties of parts deposited using either metal wire or metal powder as the 

additive materials have been investigated [31]. The comparisons indicate that the 

microstructure of samples from both methods is similar, although some porosity is found in 

the powder-fed deposited parts. Other studies have investigated the combination of both wire-

feed and powder-fed deposition strategies [32, 33]. One study [32] found that the deposition 

efficiency can be increased if these two feeding technologies are combined. Also, the level of 

porosity was approximately 20% to 30 % lower than of samples made with powder feeding 

only. In [33], a combination of Ti-6Al-4V wire feeding and TiC powder feeding was 

investigated. It was found that a uniform distribution of the TiC particles in the new Ti-6Al-

4V/TiC composites could be achieved as long as the rates of TiC addition remained above a 

certain value.  
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1.2.3 Wire-feed AM processes 

Depending on the energy source used for metal deposition, wire-feed AM can be further 

classified into three groups: laser based, arc welding based, and electron beam based [34]. 

These wire-feed AM technologies are described below.  

Wire and Laser Additive Manufacturing (WLAM) is an AM process to produce metal 

components with full density using metal wires as the additive material and laser as the 

energy source. The WLAM system normally consists of a laser, an automatic wire-feed 

system, a computer numerically controlled work table or a robot system, and some 

accessories (e.g. shielding gas, preheating or cooling system). As schematically shown in 

Figure 1.4, the laser generates a melt pool on the substrate material, into which the metal wire 

is fed and melted, forming a metallurgical bound with the substrate [35]. By moving the laser 

processing head and wire feeder or moving the substrate, a bead is formed during 

solidification. The relative motion of the welding tool and the substrate can be achieved by 

using either a robot arm or a computer numerically controlled worktable. 

 
Figure 1.4 Left: Schematic drawing of the wire-feed process. Right: Top-and side view images of the 

real process [35]. 

Electron Beam Freeform Fabrication (EBF3) is a NASA-patented additive 

manufacturing process designed to build complex, near-net-shape parts requiring 

substantially less raw material and finish machining than traditional manufacturing methods. 

Figure 1.5 shows a schematic of the primary components in an EBF3 system. The process 
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introduces metal wire feedstock into a molten pool that is created and sustained using a 

focused electron beam in a high vacuum environment. The electron beam couples effectively 

with any electrically conductive material, including highly reflective alloys such as 

aluminium and copper. The EBF3 process is capable of bulk metal deposition at high 

deposition rates as well as finer deposition at lower deposition rates with the same piece of 

equipment, limited only by the positioning accuracy and wire feed capability. The diameter 

of the wire feedstock is the controlling factor determining the smallest feature attainable 

using this process: fine diameter wires may be used for adding fine details, and larger 

diameter wires can be used to increase deposition rate for bulk deposition. The electron beam 

power and focus can be adjusted to suit the required resolution. 

 
Figure 1.5 Schematic of electron beam freeform fabrication (EBF3) system [14] 

Wire Arc Additive Manufacturing (WAAM) is another popular Wire-feed AM 

technology. Several research groups have investigated the WAAM processes using Gas Metal 

Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), or Plasma Arc Welding 

(PAW) as a heat source.  

A schematic diagram of the GMAW, GTAW, and PAW process is shown in Figure 1.6. 

GMAW is a welding process in which an electric arc forms between a consumable wire 

electrode and the workpiece metal. The wire is typically perpendicular to the substrate. There 

are four primary metal transfer modes in GMAW, globular, short-circuiting, spray, and 

pulsed-spray, each having its distinct features. In addition, Cold Metal Transfer (CMT), a 

modified GMAW variant based on controlled dip transfer mode mechanism has also been 

widely implemented for AM processes [5], due to its high deposition rate and low heat input. 
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Figure 1.6 Schematic diagram of the (a) GMAW, (b) GTAW, and (c) PAW process 

GTAW and PAW use a non-consumable tungsten electrode to produce the welding arc, 

while the consumable wire is fed into the molten weld pool. Unlike GMAW, the wire feed 

orientation in GTAW and PAW is an additional variable which affects the quality of the 

deposit. The best results are typically obtained by feeding the wire at the “front” of the weld 

pool with respect to the direction of travel, although this condition may not always be 

achievable during deposition of a practical component. 

 

1.2.4 Wire arc additive manufacturing 

Robotic wire arc additive manufacturing (WAAM) is one of additive manufacturing 

technologies for producing large metal components using robotic arc welding. The 

advantages of such a system over the laser or electron beam additive manufacturing system 

include higher energy efficiency, lower capital investment, and a strong supply chain 

capability in industry. Laser has been the most popular due to its “precision”, or ability to 

narrowly and accurately focus the coherent light beam. However, it has very poor energy 

efficiency (2-5%) [36]. Electron beam has a slightly higher energy efficiency (15-20%) and 
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similar focusing ability to laser, but it requires a high vacuum working environment that  

limits its applications [37]. In comparison, the energy efficiency of arc welding processes 

such as GMAW or GTAW processes can be as high as 90% in some circumstances [38, 39], 

although the welding arc diameter is typically 3 to mm, depending on the chosen welding 

parameters. Additionally, the cost of the traditional arc welding equipment is much lower 

compared to the laser or electron beam equipment. 

A large amount of work has been done over the previous three decades to develop the 

capability to fabricate parts from weld deposits using a layer-by-layer approach. Early studies 

exploring arc welding for AM have been reported by European researchers [40-42]. The 

ability of arc welding to produce high quality full density near-net shapes has been 

confirmed. A preliminary automated system for welding-based AM was developed by Zhang 

et al. [43]. The deposition parameters, including the travel speed, welding current, and arc 

voltage were discussed in detail. Hybrid approaches to “3D welding and milling” have been 

established to fabricate parts with a high quality surface finish [34, 44]. The effects of bead 

modelling and process optimization in arc-welding-based AM were also investigated [27, 45, 

46]. Recently, vision-sensing systems have been designed to on-line monitor and control the 

robotic arc welding process in real time to deposit the desired bead geometry [47-49]. Several 

other organizations throughout the world continue to work in this exciting field of arc-

welding-based AM, as summarized in Table 1.3.  

Table 1.3 Different phrases of WAAM from various research groups 

Synonyms Institutions/Universities Energy Source Ref. 

3D welding University of Nottingham GMAW [40, 42] 

Welding-based deposition Southern Methodist University GMAW, GTAW [50-52] 

3D welding Korea Institute of Science and Technology GMAW [44] 

Welding-based rapid prototyping University of Kentucky GMAW [53] 

Near-net shape manufacturing Tufts University GMAW, PAW [54] 

Shape deposition manufacturing Carnegie Mellon and Stanford University GMAW, GTAW [55] 

GMAW-based rapid prototyping Harbin Institute of Technology GMAW [46] 

MPAW-based rapid prototyping Xi’an Jiaotong University Micro-PAW [56] 

Hybrid layered manufacturing Indian Institute of Technology GMAW [45] 

WAAM Cranfield University GMAW, GTAW, PAW [5, 57] 

WAAM University of Wollongong GMAW, GTAW [27, 28, 58-60] 

 

While WAAM is a promising technology for producing large aerospace components with 

moderate complexity, such as flanges or stiffened panels, there are a few technical challenges 

yet to be resolved, including the residual stress and distortion from excessive heat input, 

relatively poor part accuracy caused by the “stair stepping” effect, and poor surface finish.  
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Residual stresses and distortion: The control of residual stresses and distortion, 

especially for large-scale WAAM process is one of the major concerns because they not only 

cause poor dimensional tolerances but also induce premature failure. In welding, thermally 

induced stresses are the result of thermally induced strains during the non-uniform expansion 

and contraction of the material. The induced strain causes a material or structure to respond 

by distorting. If it is unable to cause a structure to respond by distorting macroscopically, it 

will either cause the structure to deform microscopically (e.g. yield or crack) or result in 

stresses that are “locked in” as residual stresses. When the fabricated component is 

unclamped from its production fixture, residual stresses will release, resulting in distortion of 

the component. Although the residual stresses could be minimized by post-processing 

technologies, residual stress induced distortions are a major cause of loss in tolerances. 

Therefore, the best way to limit distortions is to control the build-up of residual stresses 

during the deposition cycle.  

Researchers have analysed the stresses produced within deposits of multi-pass single-

layered structures by altering deposition patterns, deposition sequences, and preheating or 

interpass cooling. The selective deposition approach, which deposits a series of small patches 

(“towers”) first and later joins them together to form a large patch, has been used to minimize 

the deformation due to thermal stresses for shape deposition manufacturing [61]. As shown in 

Figure 1.7, these “towers” are only constrained at the bottom and their large surface area to 

volume ratio allows them to relax significantly as they cool down. Selective deposition can 

reduce deformation of the final part by allowing much of the deformation produced during 

cooling to occur before the deposit is fully constrained. The influence of deposition patterns, 

such as long raster and spiral, on the deflection of the metal part has been studied by Nickel 

et al. [62, 63] using a combination of finite element analysis and experiments as shown in 

Figure 1.8. It was found that the short raster pattern produced the lower deflection for a beam 

substrate, but for a plate substrate a spiral pattern scanned from the outside to the inside 

produces lower and more symmetrical deflections. The same result was also obtained in laser 

powder deposition process as reported by Foroozmehr [64]. This indicates that the deposition 

pattern significantly affects the temperature history of the process, and consequently, the 

stress distribution. 
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Figure 1.7 Schematic of two deposition techniques [61] 

 
Figure 1.8 Deposition patterns for plate substrates [63] 

Mughal et al. [65, 66] have developed a thermo-mechanical model to predict the residual 

stress induced deformations. It has been found that continuous deposition without interpass 

cooling results in less deformation as it equivalently provides a preheating for the substrate. 

Chin [67] also reported that uniform substrate preheating reduces residual stresses and 

deformation. However, continuous deposition may cause excessive heat input in a local area 

resulting in high temperature gradients and large remelting of the substrate, which will cause 

poor dimensional tolerances and surface finish [42]. Consequently, a compromise needs to be 

made between employing sufficient interpass cooling to avoid excessive heating and 

maintaining enough preheating to minimise deformation.  

The effects of deposition sequences on residual stresses have also been investigated [66]. 

It was found that residual stresses are dependent on deposition sequences in continuous 

deposition. While the maximum stress value does not vary, the highest stresses are always 

found at the last deposition rows, since latter deposition is a reheating process which relaxes 

the stresses in the former deposits. However, with enough (or excessive) interpass cooling, 

the residual stress distribution becomes insensitive to the deposition sequence as each 

deposition sequence does not provide any preheating effects to the next sequence.  
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Thermo-mechanical analysis of material deposition on a single-pass multi-layer wall 

structure (see Figure 1.9) has also been widely investigated [68]. The study from [65] shows 

that the process using monotonic (single) deposition direction compared with alternating 

deposition directions provides better heat diffusion conditions and a more favourable 

temperature gradient trend. Recently, research works on wall structures [5] have shown that 

the heat from the welding process causes a tensile residual stress along the weld bead due to 

material contraction during solidification, which causes a balancing compressive residual 

stress in the base plate. A significant distortion of the component and relaxation of the 

stresses was observed after the base plate clamping mechanism was removed. It was also 

found that the stresses across the deposited wall are uniform with very little influence from 

the preceding layers. Rolling can reduce residual stresses and distortions on WAAM parts, 

particularly in the areas adjacent to the baseplate [69]. In addition, rolling also induced grain 

refinement when the rolled material was reheated during the subsequent deposition pass. 

 
Figure 1.9 Ti-6Al-4V wall structure deposited by WAAM process, the deflections along the 

deposition direction can be observed [68] 

Reported experimental research of the effects of deposition pattern, deposition sequences, 

and preheating on the residual stress mainly involves 2D layers or thin wall structures. For 

real engineering applications, finite element models are commonly used to predict residual 

stresses and distortions [70]. Currently an optimum deposition strategy for reducing the 

residual stresses induced by AM of any given 3D components remains unavailable.  

Accuracy and surface finish: Besides the distortions induced from residual stresses, 

another significant factor that affects the accuracy of the part is the slicing method, which 

produces the un-match effect and also the staircase effect. Normally, a solid model is sliced 

with a constant layer thickness, as shown in Figure 1.10a. The partially fractional-height 

layers cannot be faithfully reproduced by the deposition process, effectively resulting in the 

inaccurate deposition model shown in Figure 1.10b. The adaptive slicing strategy which 

involves non-constant layer thickness is an effective way to address this issue. In the adaptive 
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slicing strategy [53, 71], the layer thickness can be adjusted automatically within a certain 

range to suit the shape of the model, as shown in Figure 1.10c. 

The “stair-stepping” effect comes from the approximate construction of surfaces using 

deposition layers with a certain layer thickness. It exhibits dimensional errors normal to the 

build (deposition) direction as shown in Figure 1.11. For a given part surface, increased layer 

thickness produces a larger staircase error [72]. Therefore, the accuracy of a part 

manufactured by wire-feed AM technology is typically 10 times lower than that made by 

powder-bead/feed technology, due to the thicker layer thickness of the wire-feed AM 

technology (about 1.5 mm compared to 100 microns for powder).  With a high deposition 

rate, the WAAM process is effective for simpler geometries. However, when high accuracy 

parts are desired, it is necessary to integrate post-process machining in WAAM process.  

 
Figure 1.10 The principle of layer thickness adjustment: (a) original solid model, (b) sliced model 

with constant layer thickness, and (c) sliced model with adjusted layer thickness [53] 

 
Figure 1.11 Approximate surface – “stair stepping” effect [72] 

In AM, since a surface is usually fabricated through deposition of a large number of 

adjacent weld beads with or without overlapping and each weld bead is a parabola-like curve 

rather than a regular rectangle, the surface finish (also referred to as “surface roughness”) 

needs to be controlled. Therefore, accurate models for single bead geometry as well as the 

multi-bead overlapping play an important role in determining the surface finish of the 

fabricated components.  
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For GMAW-based WAAM process, due to the inherent characteristics of the process, the 

weld bead geometry within a single weld pass is not uniform, particularly at the start and end 

portions. This will lead to the uneven bead geometry, poor surface finish and part accuracy.  

To overcome this issue, Zhang et al. [53] adjusted the welding parameters at the start and 

end portions of weld paths to control the bead geometry. At the start portion of the weld pass, 

the current and travel speed are decreased from initially higher values to the nominal or 

steady-state values. This avoids the typical “fattening” that occurs at the start of weld beads 

that are deposited with constant wire-feed rate and travel speed, due to initially cold 

conditions. At the end portion of the pass, the current and the travel speed are reduced 

gradually to fill the weld crater that is typically produced if the GMAW process is abruptly 

terminated. Although the shape of the weld pass can be flexibly controlled using this method, 

the adjustment procedures are empirical and time-consuming. Instead of changing the process 

parameters, an alternative method has been developed to optimise the deposition tool path 

pattern. A continuous path has been proposed to minimize the number of weld passes for 

each layer to eliminate the unwanted side effects of the arc starting/stopping [28]. It has been 

shown that the surfaces deposited using the continuous tool-path planning method (only one 

starting/stopping) are better than those produced by welding paths that use multiple 

starting/stopping. However, the proposed continuous deposition path method has been 

developed without considering the undesirable side effects of residual stress and distortion. 

Further research efforts will need to be applied towards optimising the deposition patterns in 

order to reduce residual stresses as well as improve surface finish.  

 

1.3 Research gaps 

Although significant progresses have been made, a commercially available additive 

manufacturing system based on arc welding process is yet to be developed. This is due to the 

lack of an automated process planner to optimally set all of the process parameters based on 

the information of the input CAD models. Process parameters such as deposition path, wire-

feed rate, and travel speed are, insofar as described in the literature set by an experienced AM 

technician depending upon part geometry, energy source, and the material selected. However, 

for the case of components with complex geometries, the selection of process parameters will 

need to be fully automatic as human intervention in this complicated process is impractical.  
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Accordingly, the next step towards a “true” WAAM system is to develop the automation 

software required to produce seamless CAD-to-part capability. Existing commercial AM 

software has been developed for either powder-based processes or polymer materials, and 

cannot be directly used for WAAM. The main challenges in process planning are listed as 

follows.  

Bead modelling: The effects of welding parameters on bead geometry should be 

systematically investigated. The single bead modelling with respect to different materials and 

feeding wire diameter is required to be established. The selection of the appropriate welding 

parameters should be automated based on a reliable weld bead model. 

In WAAM, the step-over distance, i.e. the distance between adjacent weld beads, needs to 

be carefully selected to obtain a smooth overlapped surface. In order to improve the surface 

quality and dimensional accuracy of the fabricated products, therefore, accurate models for 

single weld bead geometry as well as multi-bead overlapping are required. 

Slicing: CAD models are generally sliced into a set of parallel layers in the building 

direction, and the part is built layer-upon-layer. Some complex models may have overhangs 

which require the deposition of sacrificial supports resulting in an increased build time, 

wastage of material and costly post-processing. Robotic WAAM has the capability to deposit 

materials along multiple directions and therefore, eliminate or reduce the need for supports. 

However, the majority of the existing multi-direction slicing strategies apply to only a subset 

of potential part geometries. More emphasis should be placed on multi-direction AM to 

develop robust algorithms capable of automatically slicing any CAD model which satisfies 

support-less and collision-free layered deposition.    

Path planning: Path generation for WAAM is more complicated since special attention 

should be paid to residual stress evolution and the dimensional relationship between the weld 

bead and the part geometry. In addition, the quality of material produced by WAAM is 

closely related to the appropriate selection of deposition paths. A poorly planned path often 

results in voids or gaps between adjacent passes. The number of path passes should be 

reduced to avoid the start/stop effects, particularly for the GMAW process. However, there 

are currently no solutions for producing appropriate paths that satisfy all requirements. The 

automatic generation of deposition paths for any given arbitrary geometry is still a challenge. 

 

1.4 Present work 
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This work has the objective of developing a robotic Wire Arc Additive Manufacturing 

(WAAM) system with an incorporated robotic machining process. Robotic GMAW is used to 

additively manufacture near-net metal shapes through melting metal wire. Then robotic 

machining process is conducted to obtain the finished components with the desired 

dimensional tolerances. WAAM is a hybrid process, thereby exploiting the advantages of 

both additive manufacturing and conventional subtractive manufacturing.   

Being a new manufacturing process, WAAM poses new challenges in process planning. 

This study addresses the process planning issues in WAAM. The major steps involve the 

development of bead models, generation of 2.5D layers, generation of deposition paths for 

these layers, and an optional step of post-process robotic machining.  

Artificial neural network (ANN) single bead models for mild steel and aluminium alloys 

are established as essential process databases for the robotic WAAM system. The ANN 

models are integrated into the process planning methodology allowing the automatic 

selection of welding parameters (e.g. wire-feed rate, travel speed, and stick-out). A tangent 

multi-bead overlapping model is then developed to determine the appropriate step-over 

distance between deposition paths in terms of producing smooth overlapping surfaces. 

An algorithm for multi-direction slicing of 3D CAD models into a variety of 2.5D layers 

along multiple directions is developed. Multi-direction slicing allows the robotic arc welding 

system to deposit complex components in multiple directions, which can eliminate or 

significant reduce the usage of supports for fabricating overhangs. In addition, the deposition 

direction changes as required to accommodate the geometry of the model, which minimises 

the “stair-stepping” effect and increases the accuracy of the fabricated component.  

Compared to existing multi-direction slicing algorithms, the proposed algorithm is more 

efficient for components with sharp edges and hole-features.  

Algorithms for generating deposition paths are also developed. Some of the factors that 

influence the derivation of deposition paths are identified. Algorithms for deriving the 

innovative Medial Axis Transformation (MAT)-based paths are developed. MAT paths are 

generated through offsetting the medial axis of the geometry from the centre towards the 

boundaries, allowing complete coverage of the cross-section area without overlapping or 

revisiting. In addition, MAT paths are contour-like curves which are suitable for WAAM to 

control the build-up of thermal stresses by avoiding locally high heat input. As a final 

advantage for WAAM, adaptive MAT paths are a set of closed curves that require a 
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minimum number of start/stop sequences within a given layer. For many geometries, the 

step-over distance can be adaptively changed along the deposition path so that all path loops 

in a given layer are continuous and closed, while conforming accurately to the modelled 

external boundaries of each layer and producing complete filling within the build area. These 

features enable the production of void-free components with minimum post machining at the 

external boundaries or surfaces.  

Post-process robotic machining operations are conducted for producing finished parts 

with the desired dimensional tolerances. As an optional step, generation of robotic machining 

paths for side milling, top milling, and base milling are simply described.  

The proposed process planning methodology and the developed algorithms have been 

verified through building several complex sample parts. The process planning problems that 

are typically encountered in building some of those parts are detailed, and future 

developments that are needed to overcome these issues are outlined. 

 

1.5 Thesis outline 

The objective of this thesis is to develop a highly integrated and automated process 

planning methodology that can generate robotic deposition and machining paths directly from 

CAD models. The proposed WAAM process is optimised for using the wire-feed gas metal 

arc welding process for deposition process, chosen due to its advantages of lower capital cost, 

a much larger build envelope, higher production rates, and a strong supply chain capability in 

industry.  

Chapter 2 gives an overview of the proposed WAAM process outlining the variety of 

processing steps needed to produce a finished part from a CAD model. 

Chapter 3 establishes an artificial neural network single bead model as well as a multi-

bead overlapping model. Bead modelling provides the essential information for process 

parameters selection in the following Chapters. 

Chapter 4 provides the multi-direction slicing algorithm. CAD models are decomposed 

into various sub-volumes, where each can be built along a single direction. These sub-

volumes are then sliced according to their appropriate building directions. Sliced layers are 

finally organized in a certain sequences based on the layer-upon-layer manner.  
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Chapter 5 details the deposition path generation algorithms. Existing path planning 

methods are reviewed and their suitability for WAAM are discussed. Innovative MAT-based 

paths are proposed for the arc welding process. Generation algorithms of these paths are 

developed.  

Chapter 6 introduces post-process machining. The machining process is divided into three 

classes, namely top region machining, side region machining, and base region machining. 

Algorithms for generation of machining paths are provided. 

In Chapter 7 a variety of sample parts are built for verification of the developed 

algorithms and process planning methodology. The problems that were encountered in 

building some of these parts are described. 

Chapter 8 concludes the thesis by outlining the accomplishments of this work. Some of 

the process planning issues that are not addressed in this work are discussed, and some 

suggestions for the improvement of the methods given in this work are also outlined. 
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Chapter 2  

 

Process Planning Overview 

 

Robotic wire arc additive manufacturing (WAAM) has been widely investigated as an 

option for fabricating metallic full density near-net shapes. But little progress has been made 

towards the ability to directly build metal shapes from CAD models without human 

intervention. In addition, industrial applications often require fully dense metal parts that 

have accurate dimensions and good surface appearance. This study attempts to address the 

issue of directly fabricating full density metal components with the desired dimensional 

tolerances. The major steps of process planning in WAAM will be identified in this chapter. 

 

2.1 The WAAM process 

Wire Arc Additive Manufacturing (WAAM) is a manufacturing process that creates 

functional metal parts by incremental material deposition and material removal. It combines 

the benefits of AM (handling complex geometries), traditional machining (accurate and 

precise with good surface quality), and arc-welding-based deposition (superior material 

properties).  

Although progress has been made in process planning for CNC machines (such as 

identification of machining features, process sequencing, selection of fixtures, and generation 

of cutting tool paths), significant human intervention is still required resulting in long lead 

time and high cost.  

In contrast, one of the advantages of AM processes is to produce physical objects from 

CAD models in a completely automated fashion. Complex geometries are sliced into a set of 

2.5D layers, resulting in highly automated fabrication of simplified sub-geometries. Although 

it is argue that there are many potential issues, such as thermal build up, process optimization, 

and possible fusion defects, to automatically fabricate finished function metal components 

using AM methods, the layer-by-layer manner in AM makes fully automation of fabricating 
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complex structures easier, especially for some components that traditional CNC process 

could not build due to the tool accessibility or collision.  

The steps involved in building parts with robotic WAAM are shown in Figure 2.1. The 

system starts from the CAD model, and ends with the finished component. The input CAD 

model is sliced into a set of layers using the 3D slicing module. Then deposition paths are 

generated for each layer through the 2D path planning module. Welding parameters 

associated with each generated paths are automatically selected based on the ANN bead 

geometry model. Deposition paths together with the determined welding parameters are 

translated to robot code proceeding to the fabrication process. Finally, the near-net shape is 

fabricated and post-process robotic machining is conducted if necessary.  

 
Figure 2.1 Steps involved in building parts with WAAM system 

By using these step-by-step modules in a robust and autonomous fashion, producing parts 

using the WAAM processes requires very little human intervention. Of course, issues such as 

distortions and residual stresses would make process planning a far more challenging process. 

However, addressing these additional issues is beyond the scope of this study.  

 

2.2 Process planning 

An automated process planning methodology for implementing WAAM from CAD 

model inputs to finished parts is shown in Figure 2.2. Several modules are essential including 
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slicing, path planning, welding parameter setting, post-process machining, and the robot code 

generation module. 

 

Figure 2.2 Schematic diagram of the automated process planning methodology of WAAM 

The 3D CAD model in STL format is firstly sliced into a set of 2.5D layers through the 

slicing module. Then the path planning module generates deposition paths for each of the 

sliced layers. After the paths are generated, the desired bead geometries along the path are 

determined accordingly. 

Bead geometry model controls two of the key slicing and path planning variables, namely 

layer thickness and step-over distance, respectively. In addition, it determines the optimum 

welding parameters corresponding to the desired bead geometry. Welding parameters include 

wire-feed rate, travel speed, and stick-out length for the GMAW process used in this study.  
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The post-process machining module generates machining tool paths for the post-weld 

machining process. With the geometries of the sliced layers, the machining paths can be 

generated by offsetting the boundaries of each layer by half of the machining tool diameter. 

Subsequently, the welding deposition paths together with the automatically-selected 

welding parameters and the machining tool paths are transformed into an integrated robot 

code file through the robot code generation module.  

Finally, a near-net shape deposit is produced automatically by the robotic arc welding 

system and the finished component with the desired dimensional tolerances is obtained 

through robotic machining. 

 

2.3 User interface 

Based on the developed automated process planning described in Section 2.2, the 

following user interface has been designed for a non-expert operator as shown in Figure 2.3. 

A total of seven steps are included, from loading the STL model to generating the robot code. 

 

Figure 2.3 User interface for the WAAM. A total of 7 steps from S1 to S7 are described. 

Step 1, load STL model: The input is a digital 3D STL file. 
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Step 2, bead modelling: By adding experimental results from weld bead profile tests into 

the list, the bead geometry model is trained using the artificial neural network (ANN). The 

inputs in this study are wire-feed rate, travel speed, and stick-out length; while the outputs are 

bead height and bead width. The bead database is saved for the later steps. This step is only 

performed once for a welding wire of any given composition, diameter and corresponding 

shielding gas. 

Step 3, slicing: After slicing the 3D STL model, a set of 2D slices (layers) are obtained. In 

this study, both uni-direction and multi-direction slicing algorithms are developed. Layer 

thickness can be user defined or automatically selected with the aid of the bead database. 

Step 4, path planning: Deposition paths are automatically generated with appropriate 

step-over distances according to the information contained in the bead database. The optimal 

step-over distance of weld beads is determined to obtain a smooth upper surface for each 

deposited layer. Step-over distance can also be set manually at this step. Although various 

path patterns are provided, MAT-based path is preferred for many practical parts since it is 

more suitable for the arc-welding-based system. 

Step 5, weld setting: Weld settings (wire-feed rate, travel speed, and stick-out length) 

along each of the generated deposition paths are selected automatically based on the 

established ANN bead model.  

Step 6, post-process machining: Machining paths are also generated automatically by 

offsetting the boundary of the geometry by half of the diameter of the machining tool.  

Step 7, robot code generation: An integrated robot code file is generated, where the 

information of deposition paths, the welding parameters along the paths, and the machining 

tool paths are included. 

 

2.4 Summary 

This chapter has described the WAAM process and the process planning methodology. 

WAAM is a layered manufacturing process that employs material deposition and material 

removal processes for fabricating parts. As a new manufacturing method, process planning 

poses several challenges.  

Three major tasks in WAAM are identified, including bead modelling, slicing, and path 

planning. Robotic post-process machining is considered as an optional step in this study. The 

relationships between each task are introduced, and a user interface is developed. Challenges 

and solutions for each task are discussed individually in the following chapters.   
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Chapter 3  

 

Bead Modelling 

 

In WAAM, the layer-by-layer building strategy incorporates the deposition of a large 

number of single weld beads side by side. Therefore, accurate model for single bead 

geometry as well as the multi-bead overlapping play important roles in determining the 

surface quality and dimensional accuracy of the fabricated products. 

This chapter firstly builds models for a single bead profile through curve fitting methods. 

A multi-bead overlapping model is then developed to determine the appropriate step-over 

distance in the path planning module. Consequently, the artificial neural network (ANN) bead 

models are established for mild steel and aluminium alloys. ANN models provide the 

essential information that not only guide the layer thickness in slicing module but also control 

the appropriate welding parameters in weld settings step. 

 

3.1 Single bead geometry 

Figure 3.1 shows the typical weld bead geometry with bead height (h) and bead width 

(w). Much research has been directed towards developing mathematic functions to describe 

the single bead geometry. A symmetric parabola profile of the weld bead has been described 

by Suryakumar et al. [45]. Cao et al. [73] fitted the weld bead boundary with Gaussian, 

logistic, parabola and sine functions, and found that the sine function can fit the measured 

data with highest accuracy. Xiong et al. [46] compared the measured weld beads under 

different welding parameters to three frequently-used profile models, namely circular arc, 

parabola, and cosine function. It was shown that the optimal model for the bead profile is 

largely dependent on the ratio of wire-feed rate to travel speed (welding speed). 
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Figure 3.1 Weld bead geometry 

Previous research used measured bead height and width instead of complete cross-

sectional profile for the model parameters identification. Nevertheless, the relative errors of 

bead cross-sectional area predicted by their models were as high as 15 – 20% in certain 

circumstance [45, 46]. Therefore, a further detailed measurement of the bead cross-sectional 

profile and the curve fitting based method are developed for accurate modelling of bead 

geometry. 

 

3.1.1 Single bead empirical models 

Three popular mathematic functions, parabola, cosine and arc, are used here to model the 

cross-sectional profile of a single weld bead, as shown in Table 3.1. The bead height, h, bead 

width, w, and the bead area A for each model are summarised using various model 

parameters. In these functions, a, b, and c are model parameters which must be identified 

through experimental measurements. Note that the single bead models developed in this 

section is only suitable for placing such a bead on a larger substrate or previously deposited 

large area, but not for building components using a single bead only.  

Table 3.1 Three bead models and the related bead height, bead width, and bead area.  

Models Model function Bead height, h Bead width, w Bead Area 
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3.1.2 Experimental set-up 
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Experimental tests were conducted using a robotic welding system at the University of 

Wollongong. The WAAM system and 3D laser scanning system have been integrated into a 

welding cell to conduct the experiments, as described in Figure 3.2. A computer interface (1) 

is used to program the experimental processes and collect the experimental results. The robot 

controller (2) is used to coordinate both the robot motions and welding processes. (3) A 

programmable GMAW power source (3) is used to control the welding process. A large 

industrial robot (4) implements the movement of the welding torch (5) for metal deposition, 

and subsequently a laser profiler (6) to measure the bead profile.  An example of weld bead 

deposits on a work piece is shown (7).  

 

Figure 3.2 Schematic diagram of the experimental set-up for bead deposition and measurement 

The pulsed-spray GMAW transfer mode was used to minimize the heat input. The wire 

electrode was copper coated steel wire with the diameter of 1.2 mm. The stick-out length was 

set to 18mm to minimise weld spatter for this particular process. A shielding gas mixture of 

82% argon and 18% CO2 was used with a flow rate of 22 L/min. The wire-feed rate was set 

at 5 m/min and the welding speed was varied from 0.2 to 0.55 m/min. A 3D laser profile 

scanner with a resolution of 0.02 mm was used to accurately measure the cross-sectional 

profile of the weld beads at different locations along the welding direction. In order to 

improve the accuracy of measurements that are subject to random errors, each bead profile 

was scanned 200 times. The experimental data obtained from the laser profiler was processed 

using MATLAB. A 3D plot of some measured weld bead profiles is shown in Figure 3.3. The 
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left profile is a single bead with 200 cross-sections, while the centre and right are the profiles 

of welds having two overlapping beads. 

 

Figure 3.3 Experimental measurements of weld bead profile 

 

3.1.3 Curve fitting results 

Experiments were carried out for a combination of one wire-feed rate (F, m/min) and 

eight different travel speeds (S, m/min). Each of the eight weld bead profiles is fitted using 

the three previously mentioned models with parameters that produce the highest value of R2, 

which is the square of the correlation between the response values and the predicted response 

values. The parameters obtained from each model are summarised in Table 3.2. The ratio (λ) 

of wire-feed rate to welding speed is also calculated. With λ ranges from 9.1 to 25, the R2 of 

all models are higher than 0.975, indicating that all of the models can represent the weld bead 

geometry accurately.  

Table 3.2 Curve fitting with three mathematic models 

S. No Process parameters Parabola model Cosine model Arc model 

S Ratio λ a c R2 a b R2 a b R2 

1 0.2 25 -0.0840 3.3418 0.9989 3.395 0.2411 0.9937 7.010 -3.720 0.9990 

2 0.25 20 -0.0955 3.0176 0.9996 3.071 0.2716 0.9969 6.216 -3.251 0.9841 

3 0.3 16.7 -0.1040 2.7210 0.9994 2.765 0.2971 0.9951 5.715 -3.042 0.9859 

4 0.35 14.3 -0.1144 2.5420 0.9976 2.592 0.3248 0.9991 5.220 -2.727 0.9786 

5 0.4 12.5 -0.1262 2.4615 0.9934 2.483 0.3461 0.9968 4.941 -2.571 0.9915 

6 0.45 11.1 -0.1221 2.1919 0.9943 2.239 0.3625 0.9988 4.866 -2.717 0.9923 

7 0.5 10 -0.1405 2.1513 0.9934 2.198 0.3925 0.9982 4.299 -2.194 0.9967 

8 0.55 9.1 -0.1511 2.0704 0.9873 2.123 0.4173 0.9961 4.052 -2.034 0.9943 

 



 

29 
 

The relative error of area prediction, eArea, is defined as the percentage of the area 

difference between the predicted and the actual bead area over the actual bead area,  

%100



a

ap

Area
A

AA
e         (3.1) 

where, Ap is the prediction of the bead area by the mathematical models listed in Table 3.2. 

The actual area, Aa of a weld bead cross-section, namely metal deposition rate per unit length, 

can be calculated as 
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where, Dw is the diameter of the wire electrode. 

As shown in Figure 3.4, the relative errors of all three models are within ±4%. Compared 

with relative errors up to 15% in previous literature, the model parameters identified in this 

study are much more accurate without considering the material loss during the welding 

process. This is mainly due to the use of curve fitting with detailed bead cross-sectional 

measurements instead of only employing the bead height and width in the model fitting. As 

shown in Figure 3.4, between the three empirical models, the parabola model and the cosine 

model provide a better approximation than the arc model. Good agreement between 

experimental results and the parabola model is obtained under all welding speeds, as shown 

in Figure 3.5. In the following sections, the parabola model will be used for developing the 

overlapping model.  

 
Figure 3.4 Relative error for predicted and actual area of weld bead cross-section 
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Figure 3.5 Weld bead geometry of a single bead with various welding speeds (Vw) or travel speed (S) 

through pulsed spray GMAW synergic model. Note that the parabola fitting parameters may not 

suitable if the arc welding deposition system or the deposition model was changed. 

 

3.2 Multi-bead overlapping model for mild steel 

Some preliminary investigations on multi-bead overlapping models have been made in 

recent years [46, 56]. A simple Flat-top Overlapping Model (FOM) has been developed in the 

literature, and is described as follows. Let a single bead have a height h and width w; and the 

adjacent beads have a centre distance or step-over distance d. The area of valley and 

overlapping area in adjacent beads are depicted in Figure 3.6.  
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Figure 3.6 Sketch of the traditional flat-top overlapping model (FOM) 

The step-over distance d between adjacent beads plays an important role in determining 

surface quality and smoothness. When d is greater than the single bead width w, there is no 

overlap within the two adjacent beads. As the step-over distance is decreased, the overlapping 

area in Figure 3.6 increases, and the area of the valley decreases. As the distance d decreases 

to a certain value, the overlapping area becomes equal to the area of the valley and the 

overlapped surface will become an optimal plane. With a further decrease of d, excessive 

overlapping area leads to an increased thickness of the deposited layer and decreasing surface 

smoothness.  

Consequently, the optimal step-over distance d is determined by the criterion that a flat 

plane will be obtained when the overlapping area is equal to the area of valley. However, it 

has been observed through experimentation that it is impossible to achieve the ideally flat 

overlapped surface [45, 56]. Therefore the overlap criterion proposed in these studies is not 

optimal and produces an undesired wavy surface. As a work piece requires deposition of 

several layers, uneven layer surface may lead to accumulating errors along the vertical 

direction, resulting in unstable deposition after several layers. Therefore, it is very important 

to build a more accurate bead overlapping model based on the determination of the optimal 

centre distance, so that a stable overlapping process can be achieved.  

 

3.2.1 Principle of the tangent overlapping model (TOM) 

In the traditional flat-top overlapping model (FOM) of Figure 3.6, the area of valley 

consists of the boundaries of two beads and one straight line which connect the summits of 

both weld beads. However, during welding tests described in the previous section, it was 

observed that there is a “critical valley” geometry that better approximates the cross-section 

of multiple welding beads in Gas Metal Arc Welding (GMAW). Note that the phenomenon 
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of “critical valley” is the experimental observation while its principle is not further 

investigated in this work.  

As shown in Figure 3.7(a), for two weld beads with a width w and a height h, Bead 1 is 

first deposited on the substrate, and Bead 2 is deposited next to Bead 1 with a step-over 

distance of d. A is the left-most point of Bead 2, at the toe of the weld. Point B is the point on 

Bead 1 which shares the same abscissa with point A. Line BC is tangential to Bead 2. In 

contrast to previous studies, this newly proposed model defines the critical valley as the zone 

BEC. The overlapping area is AED; the same as the previous FOM model. As the distance d 

is decreased from w to w/2, the size of the overlapping area (SAED) increases from zero, 

while the size of the critical valley (SBEC) increases initially from zero but then decreases. 

 
Figure 3.7 Schematic diagrams of the tangent overlapping model (TOM) 

The detailed calculations of the area variations are provided in the following sections. As 

an introduction, the principle of TOM can be summarised as follows: 

(1) When SAED = SBEC, the overlapped profile is described by Figure 3.7(b). The 

corresponding centre distance is called the critical distance d*.  

(2) When the centre distance d varies from d* to w, SAED < SBEC. In this case, the 

overlapped profile is shown in Figure 3.7(c). Since the area of the critical valley BEC 

is larger than the overlapping area AED, the actual area of valley will be B'EC' with 

the area of B'EC' is equal to the area of AED, where B' is a point on Bead 1, and line 

B'C' is tangential to Bead 2. 

(3) When the centre distance d varies from w/2 to d*, SAED > SBEC, as shown in Figure 

3.7(d). The excessive overlapping area results in the altered profile of Bead 2. 
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Through experimental tests, the parabolic curve of Bead 2 has been measured. As for 

previous geometric cases, B is also a point on bead one that shares the same abscissa 

with point A, but point A is defined on the non-altered profile of Bead 2 rather than 

the actual altered profile. Line BC is tangential to the altered profile of Bead 2. The 

profile of Bead 2 has been changed, indicating that the overlapping process is not 

stable for the first few beads. When multiple beads are deposited, the layer thickness 

will increase in comparison with the case d* ≤ d < w. This results in the height of the 

first bead being much lower than the rest. 

 

3.2.2 Overlapping of two beads 

With the proposed overlapping principles of TOM, the key step of the overlapping model 

is to calculate the critical centre distance for any given weld bead. 

Case (1) The step-over distance d = d* 

In Figure 3.7(a), two weld beads are considered as two parabolic functions expressed as: 

          (3.3) 

          (3.4) 

where c is equal to the weld height h and a = -4h/w2. For a given weld bead, a and c are 

derived from the model of a single bead.  

If the coordinates of points A, B, F, C are defined as A(x1,0), B(x1,y1), F(x2,0), C(x2,y2), 

the gradient of the line BC is k, then SAED and SBEC can be represented using the 

following functions: 

        (3.5) 

 
 

          (3.6) 

We define f(d) as the function of the difference between SAED and SBEC: 

  (3.7)
 

When SAED = SBEC, f(d) =  0. Among the four roots obtained from this equation, only two 

of them have positive real values: 
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This indicates that within the range of (w/2, w), there exist a unique critical distance, d* = 

0.738w. Figure 3.8 plots the trends of SAED, SBEC, and f(d) as the centre distance d varies 

from w/2 to w. With increasing centre distance, the SAED decreases, while SBEC increases 

at the beginning but decreases to zero in the end. SAED is equal to SBEC when the step-over 

distance d is equal to the critical centre distance 0.738w.   

 
Figure 3.8 The overlap area, the area of the critical valley, and f(d) as a function of the step-over 

distance d 

Case (2) The step-over distance d in the range d* < d < w 

As described in Figure 3.7(c), B' is a point on Bead 1, C' is a point on Bead 2. Line B'C' is 

tangential to Bead 2. By applying the relationship that SAED is equal to SB'EC', the 

coordinates of point B' and C' can be solved, and the overlapped profile can be obtained 

similarly to case (1). 

Case (3) The step-over distance w/2 < d < d*  

When the step-over distance d is less than the critical centre distance, the second bead 

profile is changed. In this case, the overlapping process is more complicated. Through 

experimental measurements, it was found that the boundary of the second weld bead can 

also be represented by a parabola function with the same parameter a as the parabolic 

curve of the first weld bead. Therefore, the second bead can be represented as: 

         (3.8) 

wwd 738.0
16

1

512

1

8

1

16

1

512

1 3

1

3

1

2 

















































2

2)( cdxay 



 

35 
 

where, the parameter c2, the height of the second weld bead, can be solved at the certain 

step-over distance d. For simplicity, the detailed calculations are omitted here.  

 

3.2.3 Multi-bead overlapping 

In WAAM, each layer is usually fabricated by depositing a large number of single weld 

beads side by side. The overlapping processes of weld beads determine the surface quality 

and dimensional accuracy of the fabricated products. Therefore, it is important to investigate 

the overlapping process of multi-bead deposits.  

In the case of d ≥ d*, the all weld beads have the same height, so the parabolic function of 

all weld beads have the same value of parameter c (c1 = c2 = … = cn). This means that the 

overlapping process of the third weld bead on the second weld bead is the same as that the 

process of overlapping the second weld bead on the first weld bead. Therefore, the process of 

multi-bead overlapping can be considered as the repeated two-bead overlapping processes.  

However, in the case of d < d*, the parabolic function of the second weld bead boundary 

will be changed during the overlapping process. For any given weld bead in the multi-bead 

deposit, the overlapped profile can be simulated numerically. The schematic overlapped 

profile of a multi-bead deposit at d < d* is represented in Figure 3.9. It can be found that such 

overlapping processes are not stable, with the thickness of the layer increasing as more beads 

are deposited.  

It should be note that this multi-bead overlapping is not suitable for single bead walls and 

the minimum resolution of this approach might be d + w in width and h in height 

corresponding to two beads overlapped geometry. 

 
Figure 3.9 Schematic overlapped profile of a multi-bead deposit at d < d* 

 

3.2.4 Experimental verification for the overlapping model 

Based on the traditional FOM, to achieve a flat deposition surface the optimal step-over 

distance is d = 0.667w using the parabola model for single bead. According to the proposed 

TOM, a centre distance of 0.667w would induce an unstable overlapping processes as it is 

less than the critical step-over distance d* = 0.738w. Figure 3.10 compares the experimental 
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measurements of overlapping bead profile with the predictions from the proposed TOM and 

the traditional FOM. The welding speed was set at 400 mm/min for this test. The single bead 

model parameters can be obtained from row 5 in Table 3.2. The bead width is calculated 

using the formula in Table 3.1.  

 
Figure 3.10 Comparison of experimental measurements of bead profile with the tangent overlapping 

model (TOM) and the flat-top overlapping model (FOM) 

Prediction of the overlapped profile at d = 0.667w through the traditional FOM yields: 

, .      (3.9) 

Prediction of the overlapped profile at d=0.667w through the proposed TOM yields: 

, .     (3.10) 

where,  is the height of the first bead; c2 is the height of the second bead, which could 

be solved numerically; x1, x2 and k are parameters as mentioned in Section 3.2.2, all of these 

can be solved for any given weld bead;  w2 is the width of the second bead which could be 

solved when c2 is obtained.  

In Figure 3.10, the experimental data, FOM and proposed TOM are represented by the 

dotted line, dashed line and solid line respectively. It can be seen that the proposed TOM 

approximates the experimental results much better than the traditional FOM, particularly in 

the zone of the valley.  

Using the traditional FOM, a flat plane would be obtained at the optimal step-over 

distance, which does not match with the experimental data. The proposed TOM model is 

more suitable in describing the zone of the valley. Additionally, the proposed model predicts 

a higher peak for the second bead as the centre distance is less than d*, which has been 

confirmed in the experimental measurements. 
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To compare the accuracy of both models quantitatively, relative errors between the 

measured profile and the predicted profile along the bead width direction are plotted in Figure 

3.11, with ey defined as, 

       (3.11) 

It can be found that FOM results in a high relative error in the zone of the valley (0 ~ 

6mm in Figure 3.11). This is because the valley is assumed to be a flat plane in the literature, 

but it is waved in the experiments. The proposed TOM is more accurate than the traditional 

FOM. Although both models are not accurate at the zone near the substrate, it is 

inconsequential and may be disregarded when compared to the zone of the valley, because 

the volume of deposited material is much lower near the weld toe in comparison to the valley. 

 
Figure 3.11 The relative errors between the experimental bead profile and the models 

Further experimental measurements of overlapped bead profile for various step-over 

distance d are provided. Figure 3.12 presents the model predictions and measurement data in 

all three circumstances, namely: (a) d = d*, (b) d > d*, (c) d < d*. It can be seen that, the 

proposed TOM agree with experiments very well in all three situations.  
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Figure 3.12 The experimental results of overlapped bead profile at various distance d 

Unlike the traditional FOM, the proposed TOM model predicts an asymmetrical 

overlapping geometry between the peaks of the two beads. In addition, the experimental 

measurements show that the height of second bead is higher than the first one when the step-

over distance is smaller than the critical step-over distance, which agrees with the proposed 

model. The ratio of the height for the second bead over the first bead at various step-over 

distances are calculated and compared to experimental measurements, as shown in Figure 

3.13. It can be seen that when the step-over distance d is larger than the critical step-over 

distance d*, the ratio is approximately 1.0, i.e. the second bead has the same height as the 

first one. When the centre distance is less than the critical step-over distance, the ratio 

increases, indicating an increase in the height of the second bead. The proposed TOM model 

has been quantitatively verified through these experimental measurements. According to the 

step-over distance, there are stable and unstable overlap zones, which is has significant 

implications for process planning in WAAM.  
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Figure 3.13 The ratio of the height of the second bead to the first bead (c2/c1) at various centre 

distance d/w 

The best use of the bead overlapping model is to provide an estimate of optimal step-over 

distance for AM. The traditional model proposes dopt = 0.667w while the proposed model 

claims dopt = 0.738w. Further experiments were conducted at both of these step-over 

distances for multi-bead and multi-layer deposition to compare the performance of the 

models. As shown in Figure 3.14, AM deposits were made at these step-over distances with 

five layers of deposition and six beads in each layer. The welding speed was 0.5 m/min for 

these tests. The cross section was scanned after the first, third and fifth layers were deposited. 

It should be noted that, during the deposition processes, a few minutes of waiting time was 

used between each pass as well as subsequent layers to eliminate the temperature’s effects on 

weld bead geometries as much as possible. 
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Figure 3.14 Experiments of multi-bead and multi-layer deposition. 

In Figure 3.14(a), a step-over distance of d = 0.667w was used. After deposition of five 

layers, it can be seen that the layer thickness at the first bead becomes much lower than the 

rests. This result is predicted by the proposed TOM. Since the centre step-over distance is 

less than d*, the height of the following bead will be higher than the previous one. In Figure 

3.14(b), the critical step-over distance (d = 0.738w) proposed by the TOM is used. After 

deposition of five layers, the variations in the height of the bead peaks from left to right hand 

are relatively smaller. As more layers are deposited, the variation in bead peak height 

becomes progressively worse when the centre distance d = 0.667w, while it is significantly 

more stable when the step-over distance d = 0.738w. These results demonstrate that the 

critical step-over distance proposed by the TOM results in a stable overlapping process, 

which is a necessary condition for the additive manufacture of large components. 

Generally, any component that is built by depositing a series of overlapping beads is 

subjected to a machining process to remove the scallops. Yield η is the ratio of the volume of 

the part remaining after machining to the volume of the total metal deposited. Yield reflects 

the material utilization for a process, very similar to casting. In Figure 3.14(a) and (b), the 
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maximum yield at two centre distance are 75.7% and 84.1% respectively, indicating that the 

proposed TOM is more material efficient than the traditional FOM.  

 

3.3 Artificial neural network bead models 

Through adjusting process parameters such as wire-feed rate and travel speed, different 

bead profiles can be obtained. In the present work, an attempt has been made to develop a 

neural network model in order to correlate the welding parameters and bead geometry. The 

artificial neural network has been demonstrated to be a powerful tool for representing 

complex relations between multiple inputs and responses, especially for the welding process 

which exhibits strong nonlinearity [74, 75]. 

Based on the effect on weld bead geometry, the chosen input factors for this study are 

wire-feed rate (F), travel speed (S), and stick-out length (L); the responses are bead height (h) 

and bead width (w). Figure 3.15 shows the diagram of the feedforward neural network for 

weld bead geometry. The network is composed of an input layer (has three input neurons), a 

single hidden layer, and an output layer (has two output layers). Neurons in the hidden layer 

are computational elements accomplishing nonlinear mapping between process variables and 

responses.  

 

Figure 3.15 Schematic diagram of the feedforward neural network for weld bead geometry 

 

3.3.1 Forward computing 

Consider a general single hidden-layer feedforward network which has L input neurons, 

M hidden neurons, and N output neurons. Let x = (x1, x2, …, xL) be the input vector, h = (h1, 

h2, …, hM) and o = (o1, o2, …, oN) be the output vectors of the hidden layer and output layer 

respectively. Figure 3.16 shows the connections of each hidden neuron between inputs and 
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outputs (responses). Let wij denotes the weight between the ith input neuron and the jth hidden 

neuron. The weight matrix between the input and hidden layers is then an L × M matrix 

denoted by W = (ωij). Similarly, the weight matrix between the hidden and output layers is an 

M × N matrix denoted by V = (υjk). Training patterns are indicated by the superscript as xs, s 

= 1, …, p. 

As shown in Figure 3.16, the weighted sum netj to the jth hidden neuron is expressed as 

𝑛𝑒𝑡𝑗 = ∑ 𝜔𝑖𝑗𝑥𝑖
𝐿
𝑖=1 , 𝑗 = 1, 2, … ,𝑀.      (3.12) 

The value of jth hidden neuron is calculated by 

ℎ𝑗 = 𝑓𝑎𝑐𝑡(𝑛𝑒𝑡𝑗).         (3.13) 

where, fact is the activation function which is continuously differentiable. Similar expressions 

could be derived between the hidden and output layers, 

𝑛𝑒𝑡𝑘 = ∑ 𝜐𝑗𝑘ℎ𝑗
𝑀
𝑗=1 , 𝑘 = 1, 2, … ,𝑁.      (3.14) 

𝑜𝑘 = 𝑓𝑎𝑐𝑡(𝑛𝑒𝑡𝑘).         (3.15) 

 

Figure 3.16 Architecture of an individual neuron for neural network  

 

3.3.2 Error backpropagation learning 

The main task in neural network is to obtain the weight matrix W and V through 

backpropagation learning. In backward learning, the generated output of the network is 

compared to the desired output. The error signal at the kth output neuron at the training pattern 

s is defined by 

s

k

s

k

s

k ode  ,         (3.16) 

where 
s

kd  and 
s

ko  denotes the desired and output values of the kth output neuron at the 

training pattern s. In this study, the mean squared error is used and written as 
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After all the training patterns are fed into the inputs, the weights are updated and thus the 

error becomes 
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For the output layer, the derivative of E with respect to the weights υjk is: 
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Similarly, the derivative of E with respect to the weights ωij is: 
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In this study, the normally log-sigmoid activation function is used for the hidden layer: 
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The output value lies in the range 0 ≤ hj ≤ 1. Its derivative is computed as  

 )(1)()('

jactjactjact netfnetfnetf  .      (3.21) 

The simple linear activation function 

kkact netnetf )( .         (3.22) 

is used for the output layer, and its derivative is  

1)(' kact netf .         (3.23) 

The optimization of the error function over the weights ωij and υjk is typically taking the 

steepest descent algorithm,  
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where η is a positive constant and called the learning rate. In the steepest descent method, a 

momentum term is often added into the above equation [76], 

)1(
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where t denotes the iteration number, and β is a positive constant between 0 and 1 called the 

momentum constant.  

Weight matrix W and V are independent and initially distributed randomly. Through 

iterative learning, the appropriate weight matrix could be obtained after the mean square error 

is less than the minimum acceptable value. The number of neurons in the hidden layer is also 

optimized according to the finial mean square error. 

 

3.3.3 Training of neural network 

The artificial neural network can find multi-dimensional dependencies between process 

parameters by learning. The development and the training of the network were carried out 

using MATLAB Neural Network Toolbox. In this study, the values of the chosen process 

variables at various levels are presented in Table 3.3. However, the data for teaching or 

training the artificial neural network need to be carefully selected.  

Table 3.3 Input process parameters 

Parameters Factor levels 

Level 1 Level 2 Level 3 Level 4 

Wire-feed rate, F (m/min) 5.0 5.7 6.4 7.0 

Travel speed, S (m/min) 0.35 0.46 0.58 0.7 

Stick-out, L (mm) 9 11 13 15 

 

The Taguchi method, which is one of the fractional factorial designs, has a good 

reappearance of experiment concerned only with the main effects of design parameters. 

Therefore, if the training data for the artificial neural network are selected using an 

orthogonal array table in the statistical design of experiments, and the process characteristics 

as output data of the  artificial neural network are transformed by the Taguchi method, then 

this method has been shown to produce more accurate data using a smaller training set than 

other methods. Using the four levels of inputs selected in Table 3.3, the optimum parameter 

design for artificial neural network training is obtained as 16 test runs provided in Table 3.4 
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denoted in blue. A further 7 parameter test runs (No.17 to No.23 denoted in green in Table 

3.4) are randomly chosen to test the performance of the trained network. 

Table 3.4 Welding process input parameters (blue, green) and responses (orange) 

 

3.3.4 Bead geometry measurement 

One single bead was produced for each parameter set in Table 3.3. Weld beads deposited 

for No.16-23 are shown in Figure 3.17 as examples. A 3D laser profile scanner with a 

resolution of 0.02 mm, projecting a laser line on the weld bead cross-section, was used to 

measure the bead height and width, as shown in Figure 3.17b. The scanner was carried by a 

robot moving along the deposited weld beads. Each bead having a total length of 60 mm was 

cross-sectioned three times, i.e. at a length of 15 mm, 30 mm, and 45 mm as shown in Fig.4a. 

The measured bead height and bead width are listed in Table 2 as columns coloured in 

orange. 

No. Parameter design Bead height h, 

(mm) 

Bead width w, 

(mm) Wire-feed rate F, 

(m/min) 

Travel speed S, 

(m/min) 

Stick-out L, 

(mm) 

1 5.0 0.35 9 3.43 6.74 

2 5.0 0.46 11 2.96 5.97 

3 5.0 0.58 13 2.59 5.48 

4 5.0 0.70 15 2.33 5.32 

5 5.7 0.35 11 3.36 7.70 

6 5.7 0.46 9 2.82 6.81 

7 5.7 0.58 15 2.57 6.19 

8 5.7 0.70 13 2.21 5.70 

9 6.4 0.35 13 3.42 8.53 

10 6.4 0.46 15 2.91 7.53 

11 6.4 0.58 9 2.38 7.07 

12 6.4 0.70 11 2.11 6.39 

13 7.0 0.35 15 3.21 9.22 

14 7.0 0.46 13 2.86 8.17 

15 7.0 0.58 11 2.56 7.79 

16 7.0 0.70 9 2.29 7.28 

17 6.0 0.50 12 2.75 7.04 

18 6.5 0.60 10 2.50 7.27 

19 5.5 0.40 11 2.94 7.34 

20 5.8 0.48 11 2.56 7.12 

21 6.2 0.52 10 2.49 7.45 

22 6.2 0.35 13 3.26 8.86 

23 6.2 0.70 11 2.17 6.65 
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Figure 3.17 (a) Single beads (60 mm long) deposited onto aluminium substrate with parameter sets 

No.17-23; welding direction runs from left to right; the red lines represent the locations of cross-

sectioning away from arc starting and extinguishing points to eliminate the start and end effects. (b) 

Schematic diagram of bead geometry measurement using the 3D laser profile scanner. 

 

3.3.5 Testing of neural network 

The performance of the trained ANN bead model (using data No.1-16 from Table 3.4) 

was evaluated using 7 independent testing data sets (No.17-23 from Table 3.4). A comparison 

of the predicted bead geometry using the trained ANN and measured bead geometry is shown 

in Figure 3.18.  

 

Figure 3.18 Comparison between predicted and measured weld bead geometry (normalised) 

In Fig 3.18, the horizontal axis represents the measured bead height and bead width, and 

the vertical axis represents the predicted bead height and bead width. For comparison, the 

linear solid line representing the measured values are equal to the predicted values is 

provided. It can be seen that most of the data points lie on or near to the provided linear line 

indicating the ANN model is able to predict bead height and bead width within the range of 

reliable accuracy. Note that to train and test the network accurately, all inputs and outputs are 

normalised within the range of -1 and +1. The normalised value (Xi) for each raw input or 

output (Ri) was calculated as 
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      (3.24) 

where, Rmax and Rmin are the maximum and minimum values of the raw data, respectively. 

The trained neural network bead model is used as the essential database to determine the 

optimum welding parameters corresponding to the desired bead geometry (bead height and 

bead width). 

 

3.4 Summary 

This chapter provides the detailed development of bead modelling. First, single weld bead 

was modelled as parabola curve with high accuracy through using the whole bead cross-

sectional profile instead of using only the bead width and bead height to fit the bead geometry 

with mathematic models. Then, an innovative multi-bead overlapping model, tangent 

overlapping model, was developed to describe the multi-bead overlapping process. The 

optimal step-over distance is confirmed to be function of bead width. Finally, artificial neural 

network model aluminium bead model was established. With this neural network, the optimal 

welding parameters in terms of the desired bead geometry could be determined automatically. 

Note that ANN mild steel bead model is also developed and introduced in chapter 7. 
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Chapter 4  

 

3D CAD Slicing 

The process planning requires an input CAD model of the part which may be designed in 

a CAD system, or obtained from reverse engineering such as 3D scanners. Once the CAD 

model is completed, it is converted to the standard STL format, which is most commonly 

used to represent 3D CAD models in additive manufacturing. A section of a STL file and its 

3D model are shown in Figure 4.1. In an ASCII STL file, the CAD model is represented 

using triangular facets, which is described by the X-, Y-, and Z-coordinates of the three 

vertices and a unit vector to indicate the normal direction that point outside of the facet. 

Redundant information for indicating model name, facet normal, and vertex are also 

included. 

 

Figure 4.1 Example of a STL file format and its model 

In this chapter, algorithms for uni-direction slicing and multi-direction slicing of STL 

models are provided. 

 

4.1 Uni-direction slicing 

Uni-direction slicing algorithm slices the STL model into a variety of 2.5D layers parallel 

to the build direction. Figure 4.2a shows a STL model and various cutting planes for uni-

direction slicing; and Figure 4.2b shows the resulting slicing layers which are polygons.  
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Figure 4.2 (a) STL model with slicing layers in uni-direction; (b) Resulting layer boundary polygons  

Uniform slicing method slices CAD model with a constant thickness. The accuracy of the 

additive manufactured parts could be controlled by altering the layer thickness. The smaller 

layer thickness, the higher accuracy will be obtained. Adaptive slicing approach slices a 

model with a variable thickness. Based on the surface geometry of the model, this approach 

adjust automatically the layer thickness to improve the accuracy or to improve the build-time.  

With the increasing size of the STL file, a major challenge of slicing algorithms is the 

computing efficiency. An efficient and fault-tolerant slicing algorithm was proposed by Choi 

et al. [77]. This study applies this tolerant algorithm for slicing purposes. The detailed slicing 

algorithm is presented as follows. 

 

4.1.1 The tolerant uni-direction slicing algorithm 

Figure 4.3 shows the flowchart of the tolerant slicing algorithm [77]. Two stages are 

included, namely, pre-processing stage concerning orientation, and slicing stage. The 

orientation of the STL model is usually user defined or obtained with respect to the optimal 

build time or the surface quality, and support structures required. Algorithms regarding the 

orientation of CAD models is beyond the scope of this thesis. 

In the slicing stage, the algorithm mainly involves manipulation of the facet data and 

comparison of the z-coordinates, and then calculates the line segments that are subsequently 

joined to construct layer contours.  

For each layer construction, the algorithm scans the STL file to extract one facet at a time 

sequentially and compares the z-coordinates of its three vertices to the z-height of the cutting 

plane. Setting a small value bound tolerance, , the possibilities of intersection of a facet with 

a cutting plane can be divided into the following four classes, as shown in Figure 4.4 [77]. 

Class 1 is shown in case 1 in Figure 4.4, where a facet intersects with the cutting plane 

without one vertex lies on the plane. Two intersecting points are calculated by the 
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intersection of the plane and the triangular facet in this case. A line segment is generated by 

connecting the intersection points and stored for constructing the slice layer contour. 

 

Figure 4.3 Flowchart of the tolerance slicing algorithm [77] 

Class 2 is shown in case 2 in Figure 4.4, where one vertex lies in the cutting plane while 

the two remaining vertices lie in different sides of the cutting plane. Case 3 and case 4 show 

also one vertex lies in the cutting plane while other vertices lie in the same side of the cutting 

plane. In this case, there will be no intersection line segment calculated. 
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Figure 4.4 Possible cases of facet-plane slicing [77] 
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Class 3 is shown in case 5 and case 6 in Figure 4.4, where two vertices of the facet lie in the 

cutting plane. The remaining vertex can be either above or below the cutting plane. This is a 

concurrent case in a valid STL model that results in one duplicated line segment and either one should 

be ignored. 

Class 4 is shown in case 7 in Figure 4.4, where all three vertices lie in the cutting plane. In this 

case, the whole triangular facet lie in the cutting plane and will not contribute any line segments to the 

contour of the slice layer. Therefore this case can be directly ignored without any ambiguity. 

After all the possible intersection line segments have been calculated and stored, the contour of 

the slice layer is constructed through head-to-tail connecting of the line segments. 

 

4.1.2 Implementation 

The algorithm has been implemented in MATLAB program. The slicing algorithm was 

able to slice complex STL models with good performance. Three case studies are provided as 

shown in Figure 4.5 – 4.7. The number of facets of three models are provided in Table 4.1. 

The algorithm is verified to be efficient with the computing times less than half second for all 

cases. 

 

Figure 4.5 Case I. (a) An engineering STL model; (b) Resulting slices 

 

Figure 4.6 Case II. (a) A Great Wall STL model; (b) Resulting slices 
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Figure 4.7 Case III. (a) A Triceratops STL model; (b) Resulting slices 

Table 4.1 The computing time of the program 

No. Facets Computing time 

Case I 1,076 12 ms 

Case II 1,584 34 ms 

Case III 172,122 352 ms 
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4.2 Multi-direction slicing 

Most of the current AM processes involve slicing a 3D CAD model into a set of 2.5D 

layers with a constant or adaptive thickness perpendicular to the build-up direction as 

mentioned in uni-direction slicing. However, to fabricate parts with complex shapes in 

WAAM technologies, processes based on a uni-directional slicing strategy are generally 

limited by the need for support structures to deposit overhangs. Figure 4.8a shows a 

component and its usual build direction B. It is clear that to fabricate the component in 

direction B, support structures (refer Figure 4.8b) are required due to overhangs. For metal 

components, the supports are normally deposited using the same material. The deposition of 

supports results in the wastage of materials and the removal of these supports requires costly 

post-processing.   

 
Figure 4.8 (a) The component and its usual build direction B; (b) support required (parts coloured in 

orange); (c) multi-direction slicing and various build directions B1, B2, and B3 

WAAM, which mounts a deposition nozzle on a multi-axis robot arm, is able to deposit 

materials along multiple directions as shown in Figure 4.9. The application of multi-direction 

deposition could eliminate or significantly decrease the usage of supports for complex 

components. As shown in Figure 4.8c, the component can be fabricated in multiple 

directions, e.g., B1, B2, B3, without support structures. Such a multi-direction deposition 

system furthers the capability of layered manufacturing by reducing the need for supports.  

 

Figure 4.9 Schematic diagram of a robotic multi-direction deposition system 
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A key challenge in multi-direction AM is to develop robust algorithms capable of 

automatically slicing any 3D model into a set of layers which satisfy support-less and 

collision-free layered deposition. This study proposes an innovative strategy to slice CAD 

models in multiple directions for WAAM system.  

 

4.2.1 Related works of multi-direction slicing 

In AM, slicing is an important process that yields a set of layers for subsequent tool-path 

generation. These 2.5D layers are generally parallel to each other and perpendicular to the 

build-up direction. Slicing algorithms producing 2.5D layers with both a constant and 

adaptive thickness have been widely studied. Recently, research focus has shifted to multi-

direction slicing which varies not only in layer thickness but also in slicing direction. This 

technique significantly improves the ability of AM for producing complex components. Some 

existing multi-direction slicing strategies are reviewed here.  

Silhouette edges projection [78]: This strategy firstly identifies the unbuildable surface 

features of a model by projecting silhouette edges along the user defined original build 

direction. Then the part is decomposed into buildable and unbuildable sub-volumes using the 

silhouette-edge based method. For the unbuildable sub-volume, a new suitable build direction 

is determined using the Gauss and Visibility maps. With the new build direction, the 

unbuildable sub-volume is further decomposed through repeating the same projection 

procedures. This projection method is recursively used to decompose the sub-volume until 

the generated sub-volume is buildable along one direction. The framework for the multi-

direction slicing and some essential problems have been addressed and discussed by the 

authors. However, the implementation of the strategy could be complicated and 

computationally expensive for complex components with inner cavities. 

Transition wall [79]: The key idea of this strategy is to identify the overhang layers by 

computing the difference between the current layer and the previous layer. Then, to build an 

overhang structure, the machine is turned 90º to start depositing a transition, namely thin 

wall. After the deposition of the first few layers, the wall is finished and the subsequent 

overhang structures can be deposited in the vertical direction again. Although this strategy is 

simple, it is only suitable for a subset of part geometries. In some cases, the deposition of the 

transition wall is difficult or impossible to implement due to deposition nozzle collision, such 

as the part shown in Figure 4.8a. 
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Centroid axis extraction [80]: The first step in this strategy is to extract the centroid axis 

of the model which provides a global perspective on the geometry, allowing the slicing 

procedure to be conducted on an optimal sequence. Through analysing the topological 

information from the centroid axis, the splitting surface is identified and the subsequent 

decomposition operation is conducted. For each sub-component obtained from 

decomposition, multi-axis slicing is performed and the collision free slicing sequence is 

finally generated. The centroid axis extraction method decomposes the component by 

detecting the change of centroid of pre-sliced layers, making the geometry analysis process 

easier. However, in some cases it will be difficult to decompose components efficiently as 

required since the centroid axis does not always indicate the change of the geometry.  

Other multi-direction slicing methods have been proposed that are either adaptions or 

combinations of a few techniques from the above strategies, such as adaptive slicing 

algorithm [81], offset slicing [82], skeleton method [83], and modular boundary 

decomposition [84]. However, each method is only suitable for a subset of part geometries. In 

addition, these methods are not efficient for processing parts with holes and depression 

features. As shown in Figure 4.10, the part is decomposed into buildable volume and 

unbuildable volume due to the direction of hole, H, is vertical to the build direction, B, of its 

associated volume. Figure 4.10b shows the part with holes as well. The part is firstly 

decomposed into buildable and unbuildable sub-volume [78]. The unbuildable sub-volume 

could be further build by offset slicing strategy [82] with the direction as shown in Figure 

4.10b. Even though, unbuildable volume also exists due to the holes. It is clear that holes 

would be obstacle for implementing multi-direction slicing algorithm.   

Differing from these existing slicing approaches, which are mainly focused on finding an 

optimal volume decomposition strategy, this study presents simplification of holes and a 

decomposition-regrouping method. A model simplification step is introduced before CAD 

decomposition to significantly enhance the capability of the proposed multi-direction 

strategy. The CAD model is then decomposed into sub-volumes using a simple curvature-

based volume decomposition method and consequently a depth-tree structure based on 

topology information is introduced to merge them into ordered groups for slicing. The 

proposed strategy is proven to be simple and efficient on various tests parts. Since there is no 

robust multi-direction slicing algorithm validated for any complex geometry, the proposed 

multi-direction slicing algorithm is not versatile also, while it is particularly useful for 

components with large number of holes. 
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Figure 4.10 Illustration of the impact of holes on multi-direction slicing strategy 

 

4.2.2 Strategy overview 

The algorithm proposed in this study for generating multi-direction slices consists of five 

modules, including STL input, Model simplification, Volume decomposition-regrouping, 

Build direction identification, and Model slicing as shown in Figure 4.11.  

 
Figure 4.11 Architecture of the multi-direction slicing strategy 

Model simplification of 3D geometry is a strategy commonly used in applications such as 

dynamic simulation and finite element analysis (FEA) in order to improve the mesh quality 

and reduce the computational time. It is adopted here to greatly simplify the volume 

decomposition and to generate optimised sub-volumes and building directions. The complex 
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models are categorised into meaningful parts, i.e., major object features, and subtle parts, 

such as small holes, appendixes, etc. As shown in Figure 4.12, performing volume 

decomposition directly on the original CAD model with many small holes is difficult and 

often generates excessive sub-volumes and problematic building directions. To simplify CAD 

models with respect to holes, there are two tasks: hole-identification (Figure 4.12c) and hole-

filling (Figure 4.12d). It should be noted that holes may have various shapes and are not 

limited to a single feature plane.  

 
Figure 4.12 An example of a complex model with holes (a) the original model; (b) STL mesh; (c) 

identified holes; and (d) simplified model without holes 

Volume decomposition-regrouping module firstly decomposes a complex part into a 

variety of convex sub-volumes through progressively using a curvature-based decomposition 

method. A variety of sub-volumes are obtained from the volume decomposition, and the 

region from which the sub-volume has been split is stored as the topology information. Then 

a depth-tree structure based on the topology information is constructed to regroup the sub-

volumes and provide the order of sequences for the latter slicing module.  

Build direction identification module is developed to identify the build direction for each 

sub-volume to guide the subsequent slicing procedure. For convenience, Gauss Map is used 

to calculate the optimal build directions for sub-volumes.   

Model Slicing module slices each sub-volume along its own build direction (Z+) using a 

tolerant slicing algorithm that has been mentioned [77]. Differing from the existing slicing 

algorithm, an important step in this module is to process the subtle parts from model 

simplification. The decision for hole-filling is determined under a set of rules. If the axis of a 

hole is not parallel to the build direction of its sub-volume, the hole is required to be filled as 

a support. In this situation, post process milling is needed to reconstruct the hole afterwards. 

If the axis of a hole is parallel to the build direction of its sub-volume, the hole can be either 

filled or not based on its dimension. If the size of the hole is very small and close to the 

deposition accuracy of the machine, the hole will be filled and drilled out in post-processing, 
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which would significantly reduce the complexity of the sliced layer and facilitate the 

subsequent path-planning.  

The volume decomposition process, the depth-tree structures, build-directions, and model 

slicing for a sample part are shown in Figure 4.13. With the multi-direction deposition 

method proposed in this study, the part can be fabricated without additional supports. The 

original orientation of the part with respect to its base is considered as a user defined input 

and not to be changed in the proposed algorithm.  

 
Figure 4.13 (a) a progressive decomposition of an example into sub-volumes with their own build 

directions; (b) sub-volume grouping with depth-tree structure; and (c) model slicing along multiple 

build directions  

 

4.2.3 Multi-direction slicing algorithms 

 

A. Terminologies 

To simplify the presentation in the paper, the basic terminologies and concepts related to 

STL model (triangle mesh) are given as follows:  

(1) Feature edge: An edge shared by two triangular facets whose normal vectors make an 

angle greater than a certain threshold; 

(2) Region: A set of connected triangular facets with the same normal vectors within a 

given tolerance, usually corresponding to a face of the model (as shown in Figure 

4.14a in different colours); 

(3) Boundary: A set of connected feature edges (refer Figure 4.14b); 
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(4) Loop: An ordered and connected feature edge set which forms the closed boundary of 

a region. There are two types of loops: outer loop and inner loop. The outer boundary 

of a region forms the outer loop (Figure 4.14c red loops), while the boundary of an 

inner hole or protrusion forms the inner loop (Figure 4.14c blue loops); 

(5) Concave/convex edge: An feature edge is concave/convex if the angle between its two 

adjacent triangles is smaller/larger than π; 

(6) Concave loop: A loop is concave if all the edges of the loop are concave edges; 

(7) Sub-volume: Any volume that is decomposed from the CAD model; 

(8) Base region: The region from which the input volume is grown perpendicularly.  

 
Figure 4.14 Illustration of basic concepts: (a) regions (in different colours); (b) boundaries; and (c) 

loops 

 

B. Model simplification 

To simplify the model, all holes are initially identified and filled. As STL files use 

triangle meshes to represent the surface of CAD models, the main issues are how to recognize 

the hole and how to fill the hole using triangular facets.  

 

a) Identification of the holes 

As has been described, holes are represented by one type of inner boundary loops. There 

are three steps to identify the holes: find the feature edges, construct the boundary loops, and 

extract the inner boundary loops. 

1) Find the feature edges 

An efficient curvature-based method is used to find the feature edges. The dihedral angle 

of the adjacent facets is the main curvature parameter, which has been used to estimate 

surface curvature [85]. The edges with a dihedral angle greater than a certain threshold can be 

extracted and grouped as the boundaries. As shown in Figure 4.15, two adjacent facets i and j 

with the normal vectors of ni and nj respectively are presented. e(i, j) is the shared edge which 

contains the shared vertices a and b of the two adjacent facets. The dihedral angle of e(i, j) is 

)arccos(),( ji nnji  ,        (4.1) 



 

61 
 

Considering the various resolutions of STL files triangulation, different thresholds would 

be used. Normally, the threshold of 10º is chosen, and the edges whose dihedral angles are 

greater than this threshold are marked as the feature edges. The feature edges are further 

divided into convex edges and concave edges, by calculating the following expression 

  abnn jiab  .          (4.2) 

If 0ab , the edge e(i, j)  is a convex edge; If 0ab , the edge e(i, j)  is a concave edge. 

By applying the above equations to all edges, the feature edges of the model can be extracted.  

 
Figure 4.15 (a) The planar edge; (b) The feature edge (convex); (c) The feature edge (concave) 

 

2) Constructing boundary loops 

The above procedure extracts all the feature edges which will form a variety of boundary 

loops by tail-to-head search and region filtering. The start and end vertex of a feature edge 

are called the head and the tail of the feature edge, respectively. The tail-to-head search 

repeatedly connects a feature edge (e.g. edge ab as shown in Figure 4.16) to a neighbouring 

one by checking the vicinity of its tail and the head of the neighbouring edges. Generally, two 

neighbouring edges are detected (edge bc and bd are the neighbouring edges of ab as shown 

in Figure 4.16) due to the characteristics of triangle meshes.  
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Figure 4.16 Rules for constructing boundary loops 

Region filtering is used to choose the right edge. The reference feature edge (e.g. edge ab) 

and the neighbouring edge will have their normal vectors parallel to each other within a 

certain tolerance. As shown in Figure 4.16, the blue feature edges belong to one region while 

the red feature edges belong to another. The vector ni is the normal vector of the facet where 

edge ab belongs to, and nj and nk are the normal vector of the neighbouring edges, 

respectively. By calculating the respective angles between neighbouring normal vectors nj, nk 

and reference ni, it is easy to find the lesser angle and thereby identify the appropriate 

neighbouring edge to ab. When no further neighbouring edges have been detected, the 

construction of the boundary loop is finished and a new boundary loop starts if there are any 

feature edges that have not been engaged. The iterative tail-to-head search and region 

filtering are used to construct all the boundary loops, and the procedure ends when all the 

feature edges have been chosen. An example of the boundary loops constructed from the 

mesh is shown in Figure 4.17.  

 
Figure 4.17 An example of a STL model and the generated boundary loops  

 

3) Find the inner boundary loops 

As shown in Figure 4.18, holes are represented by inner loops. The outer loops (blue) are 

ordered in an anti-clockwise direction, while the inner loops (red) are ordered in clockwise 
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direction. Two methods for identifying the orientation of a set of 2D closed contours, or 

polygons, based on ray-tracing and the point-in-polygon tests have previously been reported 

[86]. In this study, a simpler but more effective algorithm is developed to identify the 

direction of each loop by calculating the sum of the inner angles. As described in Figure 4.18, 

one can obtain the following expressions: 
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where, θi represents one of the angle of the vertex i from the loop j; 
j

ie


represents the unit 

vector of the edge i from the loop j; navg is the average normal of the facets where the edges 

of the loop j belong to. We define 
j
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i   , which represents the supplementary angle of 

θi. If 0j
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i

j

i . It is found that, for outer loops, 
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angle, while for inner loops, it represents the outer angle. The sum of the inner angles of the 

loop having N edges is )2( N , and that of the outer angle is )2( N . The sum of 
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 . Then one can identify the inner or outer boundary 

loop by the following expressions: 
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This simple method is developed for identify the direction of loops in one plane. It is 

found that this strategy is also suitable for spatial loops by determining which value of either 

)2( N or )2( N is closer to the value of  


N

i

j

i

1

 .  

After the inner loops have been extracted, the checking of the convexity is required to 

determine whether an inner loop belongs to a hole or protrusion. If all the feature edges of the 

inner loop are convex edges, the inner loop represents a hole; otherwise it belongs to a 

protrusion.  
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Figure 4.18 Rules for identifying the inner loops 

 

b)  Hole-filling 

Many researchers have focused on developing automatic hole-filling algorithms, which 

should be able to efficiently process any arbitrary holes [87, 88]. In this study, a modified 

advancing front mesh method is developed to fill the holes. The method consists of the 

following steps: 

Step1. Initialize the front using the vertices of the hole (see in Figure 4.19a, vertices V1, 

…, Vi, …, VN in the order as shown). 

Step 2. Calculate the angle of θi between two adjacent edges (ei and ei+1) at each vertex Vi 

on the front; The normal of the facet where Vi and Vi-1 belongs to is used for calculating the 

angle of θi. 

Step 3. Identify notches. A notch is defined as a vertex whose interior angle is larger than 

π.  

Step 4. Starting from the notch (Vi+1 in Figure 4.19a) for which the next vertex (Vi+2) is 

not a notch, create a new triangle by connecting the notch Vi+1 and the vertex (Vi+3). This step 

will either eliminate the notch or reduce the interior angle of the notch. 

Step 5. Update the front as shown in Figure 4.19b. 

Step 6. Repeat Steps 2 through 5 until all the vertices of the front are not notches. As long 

as this step is done, no matter what shape the hole is, it will become to a convex polygon. A 

polygon that has at least one notch is called a non-convex polygon; otherwise, it is a convex 

polygon.  

Step 7. Reorder all the vertices. Starting from any vertex Vi, create a new triangle by 

connecting Vi and Vi+2. 
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Step 8. Update the front. 

Step 9. Repeat Steps 7 through 8 until the entire hole region has been patched by all 

newly created triangles. 

This method fills the hole by repeatedly creating a new triangle and advancing the front 

of the hole at each time. For simple holes whose geometries are convex polygons, the 

procedure from Step 2 to 6 is not engaged and the computing time will be greatly reduced. As 

shown in Figure 4.20, the experiments indicate that this proposed approach is simple, 

efficient, and robust for any hole geometry.  

 
Figure 4.19 Modified advancing front mesh method for hole-filling 

 
Figure 4.20 Illustration of the developed hole-filling algorithm for planar and spatial holes with 

complex shapes (red regions are holes filled by triangular facets through the proposed hole-filling 

algorithm) 

 

C. Volume decomposition-grouping  

1) Volume decomposition  

In this section, the algorithm for progressive decomposition of the volume is summarized 

with the aid of the flowchart shown in Figure 4.21. The input for this task is the simplified 

STL model (triangle mesh) in which all the holes been filled. The volume is decomposed into 

several sub-volumes by splitting the triangular facets along the concave loops. Consequently, 

a set of sub-volumes free of any concave loops is obtained.  
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Figure 4.21 The algorithm for progressive decomposition 

 

Concave_loop_set extraction module: Generate the boundary loops of the input mesh 

again and check the convexity of the edges for each boundary loops. Then concave loop sets 

are extracted. The process of decomposing an input mesh can be considered to be the process 

of progressively eliminating concave loops. For a complex model with NC concave loops, the 

algorithm outputs NC +1 sub-volumes. 

Split mesh module: When the concave_loop_seti is selected as the split loop, an effective 

algorithm is required to divide the facet set into two facet sets. An advancing front search 

technique is developed to split the mesh into two new facet sets. This method consists of the 

following steps: 

Step 1. Initialize the front using the selected concave_loop_seti. As shown in Figure 4.22, 

ei and ei+1 are the front edges. 
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Step 2. Search the related triangle facet for each front edge. In Figure 4.22a and 4.22b, j 

and k are the related triangle facets of ei and ei+1 respectively; while in Figure 4.22c, ei and 

ei+1 share the same facet j. 

Step 3. Add triangles to a new facet set and update the front with the following three 

rules, as shown by the three cases in Figure 4.22. Rule (a): If the related triangle facets are 

independent (such as facet j and k in Figure 4.22a), add the related triangle facets into the 

new facet set, and update the front edge using the other edges of the related triangle facets 

(dashed red lines with arrow).  Rule (b): If the related triangle facets share one edge (such as 

facet j and k in Figure 4.22b), add the related triangle facets into the new facet set, but update 

the front using the other edges except the shared edge of the related triangle facets. Rule (c): 

If the related triangle facets are overlapped (such as facet j in Figure 4.22c), add the triangle 

facet into the new facet set, and update the front using the rest edge of the related triangle 

facet.  

Step 4. Repeat Steps 2 through 3 until the front is empty. 

Step 5. The triangle facets, which haven’t been detected from Step 2 through 4, are 

collected to another new facet set. 

 
Figure 4.22 Rules for adding triangles and updating the front 

This method can always split the input mesh into two facet sets, whatever its shape, and 

guarantee the robustness of the proposed algorithm. Note that the generated two facet sets are 

two open half volumes. 

Complete sub-volume module is developed to complete the two sub-volumes from the 

two open facet sets generated by applying the above procedure. The selected 

concave_loop_seti is considered as the hole loop, and the hole-filling algorithm is used again 

to close the two open sub-volumes. The filled hole regions are recorded as the feature regions 

of the sub-volume, which is useful for the subsequent grouping process. With the progressive 

decomposition, the component is decomposed into a variety of sub-volumes. 
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2) Sub-volume regrouping 

Since the obtained sub-volumes are disordered, topology information between each sub-

volume and its feature regions is constructed for the grouping process. The feature region 

represents the connection between two sub-volumes and is important information for 

ordering sub-volumes. As the example shown in Figure 4.23, seven disordered sub-volumes 

are obtained from the decomposition. The regions coloured in red are feature regions. As the 

orientation is the user defined input, the base region is the bottom of the input component. 

Only one of the sub-volumes has the base region. Starting from the base region on basis of 

the characteristics of AM, all sub-volumes are connected by searching the shared feature 

regions as shown in Figure 4.23b.   

 
Figure 4.23 (a) An example for illustration of sub-volumes, feature regions (coloured in red), and base 

region (b) Grouped sub-volumes (c) Slicing in multiple directions 

The sub-volumes then are ordered and grouped with the depth-tree structure starting from 

the sub-volume that has the base region. As schematically shown in Figure 4.24, sub-volumes 

are stored as (i, j), where i represents the depth of the sub-volume. As the orientation is the 

user defined input, the base region is the bottom of the input component, therefore sub-

volume (1, 1) is easily identified from the sub-volumes. Usually, there is only one sub-

volume that has the depth of 1. Then, sub-volumes whose base regions are connected with the 

sub-volume (1, 1), have the depth of 2. Finally, all the sub-volumes are stored within the 

depth-tree structure.  
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Figure 4.24 Sub-volumes grouping with the depth-tree structure 

 

D. Build directions determination 

The optimal build direction of each sub-volume must be determined to guide the 

subsequent slicing procedure. Figure 4.25 shows two sub-volumes V1 and V2. Assume the 

build direction of V1 has already been determined, but the optimal build direction of V2 is not 

yet determined. The base region of V2 was obtained in section 4.3.2.C. All the regions except 

the base region of V2 are used to find the optimal build direction Bopt. The normal vectors of 

the facets in these regions are recorded in a set n. The problem is stated as follows: 

Given a set of normal vectors n = (n1, …, ni, …, nn). Find the optimal vector Bopt that 

produces the smallest maximum angle between this vector and any vector ni within the set. 

Gauss Map [89] is used, which collects all the normal on a unit sphere. A set of normal 

vectors n can be represented in a set of points on the surface of a unit sphere. For this set of 

points, a spherical crown C with a minimum-radius bottom surface that contains all the points 

can be found on the sphere surface [90]. The unit vector from the centre of the sphere to the 

centre of the bottom circle of the spherical crown C is the desired optimal build direction. 

The optimisation problem is thereby simplified to searching for the minimum spherical crown 

which contains all the points of the normal vectors n. Algorithms to find the minimum 

spherical crown basing on the algorithm for the smallest enclosing discs problem were 

developed [90], [91]. The detailed algorithm for the smallest enclosing discs problem is 

provided in Appendix B.  
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Figure 4.25 The optimal build direction for sub-volume 

 

E. Slicing 

According to the depth of each sub-volume, the slices of each sub-volume along its 

optimal build direction can be generated one by one. Slicing algorithms for STL models 

along the Z+ [0 0 1] direction has been widely reported [77]. In this study, matrix 

transformations are used to apply these basic tolerant slicing algorithms to each sub-volume 

in the model along the optimal build direction.  

Assume the build direction of a sub-volume is Bi = [Bix Biy Biz]. Through the rotation θ 

and φ about x and y respectively, the z axis is made parallel to the build direction. One can 

obtain the following equation: 
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One can obtain the value of rotation θ and φ, and consequently the transfer matrix M and 

the inverse matrix M-1. Transfer all the facets vertices and facet normal of the sub-volume i, 

then slice along Z+ direction using the existing algorithms [77]. Finally, transfer the slice 

layers back to the original orientation of the sub-volume. With this process, each sub-volume 

is sliced along its build direction individually. Note that this proposed process can also be 

extended to utilise the adaptive direction and thickness slicing algorithm [90] which could 

generate non-uniform thickness layers matching the surface curvature of the sub-volume 

appropriately. 
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At this point, filled holes need to be reconsidered. If the sub-volume contains a hole-loop, 

this hole belongs to the sub-volume. Each hole is uniquely associated to its related sub-

volume. If the hole is parallel to the build direction of its sub-volume, it is not require filling. 

Therefore, the slice of the hole is conducted, otherwise, deposition of the hole is needed for 

support purposes and the volume of the hole is extracted from the final part by post-process 

milling.   

 

4.2.3 Implementation and results 

The strategies presented in this study were implemented by programs written in 

MATLAB. Besides the slicing results shown in Figure 4.13c and Figure 4.23c, two more 

examples and slicing results are presented here. As shown in Figure 4.26 and Figure 4.27, 

both components have many holes which are difficult to handle when using previously-

developed multi-direction slicing algorithms from the literature. 

In Figure 4.26, the boundaries of the component are generated as shown in Figure 

4.26(b). Seven holes are detected (refer Figure 4.26d) and four of them are required to be 

deposited as supports, since the hole directions are not parallel to the build directions of their 

sub-volumes. Three large holes do not need to be deposited as supports and therefore the 

slicing procedure is applied. Figure 4.26c shows the slicing results, in which four build 

directions are used. Figure 4.26e shows the deposited holes (four small holes) which will 

need to be produced by post-process of milling. 
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Figure 4.26 (a) Keel fitting component in aerospace industry; (b) generated boundaries of the model; 

(c) slicing results; (d) all the detected holes; and (4) holes need to be deposited as supports 

Another example is shown in Figure 4.27. The slicing results are given in Figure 4.27b 

and all the holes are presented in Figure 4.27c. As discussed earlier, a sufficiently large hole 

with the direction parallel to the build direction of its sub-volume does not need to be 

deposited. The 12 small holes on the top of the surface in Figure 4.27a satisfy this 

requirement. However, if the hole is much smaller than the geometry of its sub-volume, 

depositing the hole would significantly reduce the complexity of the geometry of the layer. 

This simplification is desirable for subsequent path-planning. Further simplification of the 

slices could be obtained as shown in Figure 4.27d, in which it is more convenient to mill 

these small holes in post process rather than form them during the AM deposition process.  
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Figure 4.27 (a) An engineering part; (b) slicing results; (c) all the detected holes; (d) further 

simplification of slices 

These implementations indicate that the proposed multi-direction slicing strategy is 

simple and efficient for AM. Special concerns on hole-features could significantly simplify 

the algorithms for volume decomposition. In addition, flexible choice on small holes would 

increase the efficiency of the multi-deposition system. These examples illustrate the enhanced 

capability of AM using multi-direction slicing. As the reader will note, both parts can indeed 

be fabricated by conventional (unidirectional) deposition. However, support structures will be 

required.  

 

4.3 Summary 

This chapter presented the widely reported tolerant slicing algorithm for uni-direction 

slicing and developed a new strategy for multi-direction slicing of CAD models represented 

in STL format for WAAM. The layer thickness could be variable while should within the 

ranges of the bead height established in chapter 3. 

Differing from the previously devised methodologies in the literature, model 

simplification and the concept of decomposition-regrouping are introduced in the workflow. 

The algorithm is verified to be an efficient and flexible method for various types of CAD 

models in AM application. Since each step of the process maintains the integrity of STL 
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format (triangle mesh), then intermediate results from each of the modules (such as model 

simplification, volume decomposition, and holes-extraction) can produce standard STL files 

to be used at other downstream CAD/CAM applications that are not limited to AM. 

It should be noted that in this study, only the closed concave loops are adopted to 

decompose the components. A complete decomposition module, which could process 

components with any complex geometry, collision problems, as well as issues related to the 

orientation of the components for multi-direction AM, will be our future research interest.  
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Chapter 5  

 

2D Deposition Path Planning 

One of the crucial requirements for an automated AM system is the development of an 

elaborate path planning strategy. Path planning for powder-based AM processes that have 

fine, statistically distributed particles are somewhat independent of geometric complexity. 

However, path planning for wire-feed AM processes that have coarse and large sized deposits 

is influenced by geometric complexity. Also, the property of the deposited shape will be 

influenced by the deposition path trajectory. In the following section, methods are described 

to generate different types of deposition paths. 

 

5.1 Existing path planning methods 

Many types of tool-path patterns have been developed for AM processes in general. 

Examples are raster, zigzag, contours, hybrid, and continuous path patterns. The raster 

scanning path technique, as shown in Figure 5.1, is based on planar ray casting along one 

direction. In this strategy, 2D regions are filled by a set of scan lines with finite width [92]. It 

is commonly employed in commercial AM systems due to its simple implementation and 

suitability for almost any arbitrary boundary. 

 

Figure 5.1 Raster path pattern 

Derived from the raster strategy, zigzag tool-path generation is the most popular method 

used in commercial AM systems. While it fills geometries line-by-line along one direction 

like the raster approach, the zigzag approach combines the separate parallel lines into a single 

continuous pass (see Figure 5.2) which significantly reduces the number of tool-path passes 

[93, 94]. This method significantly improves the productivity of the AM process by reducing 

the required transition motions of the machine. However, the outline accuracy of the part for 
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both raster and zigzag approaches is poor due to the discretization errors on any edge that is 

not parallel to the tool motion direction. 

 

Figure 5.2 Zigzag path pattern 

Contour path generation as shown in Figure 5.3, which is another typical method, can 

address the above geometrical quality issue effectively by following the geometrical trend of 

the boundary contours [95, 96]. Various contour-map patterns were investigated by Li et al. 

[97] to develop optimal tool-path patterns for sculptured parts with a single island and no 

seriously non-convex shape.  

 

Figure 5.3 Contour path pattern 

The spiral tool-path generation, as shown in Figure 5.4, has been widely applied in 

numerically controlled (NC) machining, especially for 2D pocket milling and uniform pocket 

cutting [98, 99]. This method can also be used to solve the problems of zigzag tool-paths in 

AM process, but is only suitable for certain special geometrical models. 

 

Figure 5.4 Contour path pattern 



 

77 
 

The hybrid path planning strategy is promising as it shares some merits of various 

approaches. A combination of contour and zigzag pattern is commonly developed to meet 

both the geometrical accuracy and build efficiency requirements. Zhang et al. [53] applied a 

new image algorithm for welding-based AM. The planned approach includes one inner 

zigzag path which is faster and more universal, and one outline vector path which is very 

helpful for maintaining the surface accuracy and quality. Jin et al. [100] proposed a mixed 

tool-path algorithm to generate contour and zigzag tool-path for AM of biomedical models, 

as shown in Figure 5.5. The zigzag tool-path is employed to fill the interior area of the part to 

improve the efficiency, while the contour tool-path is used to fabricate the area along the 

boundary of the contours to improve the geometrical quality of the model.  

 

Figure 5.5 Hybrid path pattern 

Continuous path planning can be considered as another tool-path generation method. 

Hilbert filling curve applied by Bertoldi et al. [101] is a continuous path, which can cover a 

region of space without intersecting itself as shown in Figure 5.6a. It has been found to be 

particularly useful in reducing shrinkage during AM fabrication processes. However, the 

large number of path direction turning motions that are produced by using this strategy are 

not suitable for WAAM. Wasser et al. [102] introduced a fractal-like build style using a 

simulated annealing algorithm. This method is able to generate filling patterns that allow the 

continuous deposition of a single path to fill arbitrarily shaped area, as shown in Figure 5.6b. 

In this method, the area to be deposited is firstly decomposed into nodes, with the number of 

the nodes determined by the accuracy requirement of the AM process. However, when the 

area to be filled is large and the accuracy requirement is high, the processing time required 

would be unacceptably long. Moreover, highly convoluted paths may result in accumulation 

of heat in certain regions, therefore inducing excessive distortion of the part. Frequent 

alternations of tool-path travel directions are also not preferred in WAAM. Dwivedi et al. 

[51] developed a continuous path planning approach which combines the merits of zigzag 

and continuous path patterns, as shown in Figure 5.6c. In this method, the 2D geometry is 

firstly decomposed into a set of monotone polygons. For each monotone polygon, a closed 
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zigzag curve is then generated. Finally, a set of closed zigzag curves are combined together 

into an integrated continuous torch path. The continuous path planning approach significantly 

reduces the number of welding passes. However, purely employing zigzag based curves 

would have a surface accuracy issue, as Zhang et al. [53] point out the importance of filling 

the outline of the image with vector motions in WAAM. Recently, we proposed another 

continuous path pattern which leverages the advantages of zigzag, contour, and continuous 

path patterns, as shown in Figure 5.6d [28]. It is indicated that this continuous path pattern is 

suitable for WAAM of solid structures. The algorithm for the continuous path generation is 

provided in Appendix A. 

 

Figure 5.6 Continuous path pattern. (a) Hilbert filling curve; (b) Fractal-like build style; (c) Hybrid 

continuous path (zigzag & continuous); (d) Hybrid continuous path (zigzag & contour & continuous). 

 

5.2 Path planning challenges in WAAM 

 



 

79 
 

For arc-welding-based additive manufacturing process, some of the requirements of path 

planning are: 

 

Robustness: The deposition paths should be automatically generated irrespective of the 

complexity of the geometry.  

Existing path planning methods were mainly developed for powder-based additive 

manufacturing process, in which the size of deposits is far less than the dimensions of the 

geometry. Path planning is independent of geometry in such powder-based additive 

manufacturing systems and the existing path patterns could be generated successfully for any 

complex geometries.  

However, path planning in WAAM is dependent of part geometries due to the large size 

of the deposits. Therefore, existing path planning methods cannot be directly used for 

WAAM. An automatic path generation should take the following requirements into account. 

 

Void-free deposition: All portions of the given geometry should be covered by the deposited 

material. Since gaps or voids would result in serious problems, void-free deposition is 

required for path planning. 

Gaps or voids could occur due to the unappropriated path planning, especially for thin-

walled structures, where the parts thickness is close to one deposit width. The example of a 

thin-walled structure is shown in Figure 5.7. Figure 5.7a illustrates the 3D CAD model and 

Figure 5.7b shows the sliced geometry. Applying a contour path planning algorithm to this 

example is likely to fail since the thin-walled areas would not allow sufficient width for a 

contour path to be applied. As shown in Figure 5.7d, after applying contour path planning 

with a step-over distance of 3 mm (a typical minimum value for the arc welding process), 

paths for the thin-walled areas are lost. Step-over distance is defined as the distance between 

a deposition track and the previous one. Typical step-over distance for powder-based AM 

ranges from 0.01 mm to 1mm, while for arc-welding-based AM ranges, from 3 mm to 8 mm 

depending on the chosen material and wire diameter.  

Another example is shown in Figure 5.8, a cross-section of a simple thin-walled geometry 

is described by the boundary (Figure 5.8a). The contour paths (green lines shown in Figure 

5.8b) are generated by offsetting the boundary towards its interior with the ith contour path 

offset at distance (i-(1/2)d) from the boundary, where d is the step-over distance. The 

deposition process can be considered as a constant-radius disk with the diameter of d being 

swept along the computed path. It is found that contour path patterns leave narrow gaps since 
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there is not enough space for offsetting the next path as the middle white area shown in 

Figure 5.8c. The area of the produced gaps is highly dependent on the step-over distance d, 

which varies for different AM system. For powder-based system, d could be generally small. 

The negative effects of gaps with small area on the quality of the produced components could 

be neglected for many applications. However, for WAAM, gaps resulting from poorly 

planned paths could be as large as 2 mm width, therefore poses a severe problem, especially 

for thin-walled structures. The unavoidable gaps may potentially lead to structural failure of 

highly loaded components. 

Note that, the unsuccessful path planning for thin-walled structures in WAAM could also 

occur using other existing path planning method, such as zigzag, hybrid, and continuous path 

generation. 

 
Figure 5.7 Illustration of automatic path planning. Green lines represent the generated paths, and 

black lines represent the boundary of the geometry. (a) CAD model. (b) A slice. (c) Raster paths 

(green). (d) Contour paths (red). 
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Figure 5.8 (a) A cross-section of a simple thin-walled structure. (b) Contour path patterns generated 

by offsetting the boundary curves towards its interior. (c) Deposition of materials along the generated 

path. Narrow gap (middle white area) is left which cannot be filled by the path.  

 

Uneven bead profile: Weld bead profile distribution within weld paths is uneven, particularly 

in arc start and arc end portions. Weld bead profiles at various travel speeds are measured 

using the 3D laser scanner described in chapter 3. Figure 5.9 shows weld deposits heights 

along the welding distance at various welding speed. Since the wall height is mainly 

determined by the wire-feed rate, the wall heights for all conditions are relatively 

homogenous along the welding distance. However, in the arc start portion, the welding 

process requires a certain time to stabilise and during this time the deposited material does 

not correspond well to the steady-state bead behaviour. Excessive materials are deposited in 

arc start portion since part of the arc energy is used for heating up the substrate. While in arc 

end portion, the slope shape are created gradually due to the flowing of the molten metal. 

 

Figure 5.9 Weld deposits heights along the welding distance 
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Uneven weld bead profile may lead to the accumulation of errors in the vertical 

direction after the deposition of several layers. Figure 5.10 shows an example of thin walls 

built by weld deposition where there are significant differences in bead geometry at the start 

and end of the weld paths [57]. As can be seen, the errors introduced in lower layers are 

compounded as further layers are added. To overcome this issue of uneven surface induced 

by arc start and arc end procedures, the number of deposition passes should be minimized to 

reduce or eliminate the arc start/end effects. Raster path patterns are not suitable for some 

geometries, and continuous or contour path patterns are desired. 

 
Figure 5.10 Thin walls built by weld deposition showing the changing bead geometry at the start and 

end of weld paths [57] 

 

Crossings: Crossings in thin-walled structures make path planning more complex. Thin-

walled structures are most commonly seen in aerospace components, which are attractive 

applications for AM due to their high buy-to-fly ratios. Crossings always exist in the case of 

these structures, as shown in Figure 5.11. Experiments reveal that directly crossing paths 

produce peaks where the weld beads overlap at the crossing points, as shown in Figure 5.11a. 

In addition, sharp angles in the intersections can concentrate stresses. The path pattern of 

opposite angle, as shown in Figure 5.11b, has been demonstrated to produce the best 

crossings with smooth radii in corners [103].  

An alternative approach is shown in Figure 5.11c in the red circle [10]. The crossing 

is fabricated through one central deposition and two crossing branches. The two branches are 

always deposited tangentially to existing material, so no crossing occurs. Both strategies 

solve the issue of crossings, however, it is quite complex to design the program for the path 

planning algorithm so that it functions automatically and correctly for all situations. 
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Figure 5.11 Concerns of crossings in thin-walled structures. (a) Direct crossing induces peaks. (b) 

Path pattern of opposite angles [103]. (c) One direct and two crossing method [10]. (d) Finished part 

As the limitations of the arc welding deposition process mentioned above, the 

performance of the existing popular path planning is discussed and summarized in Table 5.1. 

Table 5.1 The performance of the existing popular path planning for WAAM 

Requirements Raster path Zigzag path Contour path Continuous path 

Robustness + + + + 

Void-free deposition + - - - 

Uneven bead profile - - + + 

Crossings - - + - 

“+” represents good performance; “-” represents bad performance. 

It is found that none of the existing paths are suitable for WAAM especially for thin-

walled structures. Among these paths, contour path is most preferable while it cannot 

guarantee fully cover of the region. Therefore, a special path planning strategy which fulfils 

all the requirements in WAAM is required. To automatically generate appropriate paths, the 

challenge is to develop an adaptable strategy that can cater for variable geometry and use the 

information to produce paths that are appropriate to the limitations of the arc welding 

deposition process. 

 

5.3 MAT-based path planning 

 

5.3.1 Overview of MAT-based path 
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Kao [104] has proposed an alternative methodology of using the Medial Axis 

Transformation (MAT) of the geometry to generate the offset curves by starting at the inside 

and working towards the outside, instead of starting from the boundary and filling towards 

the inside. This approach is able to compute paths which can entirely fill the interior region of 

geometry as the paths are generated from interior to the boundary. This strategy avoids 

producing gaps by depositing excess material outside the boundary, as illustrated in Figure 

5.12. The extra material can subsequently be removed by post-processing. Therefore, the 

traditional contour path patterns from outside to inside is natural for machining whereas 

MAT-based path starting from inside and working towards the outside is suitable for WAAM 

of void-free components.  

 
Figure 5.12 Illustration of path generated from MAT. (a) up: original geometry (green region) and the 

MAT of the geometry (black line); down: contour path patterns with gaps in middle are clearly seen; 

(b) up: red region are deposition of excessive materials; down: the MAT path patterns without gaps 

[104]. 

However, the previous authors limit their discussion to geometries with simple MAT 

paths, and the MAT-based path for general geometries or arbitrary shapes, to our knowledge, 

is still unavailable.  

This study developed a methodology of generating MAT-based paths for an arbitrary 

geometry, either thin-walled or solid structures. Medial axis transformation (MAT) –based 

path planning is able to generate a set of closed loop paths which cover entirely the sliced 

layers. The detailed path planning methodology will be reported in the following section. 

Here, the path planning strategy is described through an example and its capability of 

fulfilling the requirements for an arc-welding-based system is explained. 

There are the main steps for generating MAT-based paths: 

Compute the medial axis: The cross-section of a sliced layer with a thin-walled structure 

is shown in Figure 5.13a. The medial axis or skeleton of the geometry is computed and 
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represented using red lines. The computed skeleton is the crucial information, which 

describes the shape of the geometry. 

Decompose the geometry: Using the computed medial axis, the geometry is decomposed 

into several domains. As the geometry with N holes will be decomposed into N+1 domains, 

this geometry is decomposed into 10 domains as shown in Figure 5.13b. As displayed in 

different colours, each domain is bounded by a portion of medial axis (red lines in Figure 

5.13a) and a boundary loop (black line loop in Figure 5.13a). 

Generate path for the domain: Deposition paths for each domain are generated by 

offsetting the medial axis loop (red line loop in Figure 5.13c for domain 3) towards the 

corresponding boundary loop (black line loop in Figure 5.13c) with an appropriate step-over 

distance. The offsetting is repeated and terminates when the domain is fully covered. Green 

line loops in Figure 5.13c, represent the generated deposition paths. 

Complete the deposition paths: A complete set of MAT-based deposition paths is 

obtained by repeating step 3) for all the decomposed domains. The generated paths are a set 

of closed loop lines without start/stop sequences, which is preferred for the arc welding 

system. 

 
Figure 5.13 Illustration of MAT-based path planning. (a) The medial axis computing (red lines). (b) 

Domain decomposition (each domain is described in one different colour. (c) Path generation for 

domain 3. (d) MAT-based paths at the crossing area. 
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From the above description, the MAT-based path planning algorithm for an arc welding 

process is able to be automated for any complex geometry; just as the existing commercially 

available raster and contour path planning strategies have been automatically applied to 

powder-based AM. In addition, the process to form crossings is shown in Figure 5.13d, where 

no direct crossings occur. The issue of crossings is inherently solved using MAT-based path 

planning since it produces crossings in a manner similar to opposite angle deposition [103]. 

 

5.3.2 Definition and computation of the MAT 

 

A. Definition 

The Medial Axis Transformation (MAT) is a technique first proposed by Blum [105] to 

better describe geometrical features. The medial axis is defined as loci of centres of locally 

maximal spheres inside a 3D geometry. For a 2D polygon, the medial axis is the loci of 

centres of locally largest circles inside the polygon, as the dash lines shown in Figure 5.14a 

[104]. The points on the medial axis are called medial axis points. Depending on how many 

points of the largest circle that touches the boundary of the polygon, the medial axis points 

are further classified into end points, branch points, and normal points.  

Definition 1: 

 End points are points on the medial axis that touch the boundary at only one 

point. End points must be the convex vertices of the polygon.  

 Branch points are points on the medial axis that are centres of circles that touch 

the boundary at more than two points.  

 Normal points are points on the medial axis that that are centres of circles that 

touch the boundary at only two points.  

 
Figure 5.14 (a) Medial axis transformation (MAT) of a geometry. The dash lines represent the medial 

axis. (b) Red lines represent branches and red dash lines represent sub-branches. 
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As shown in Figure 5.14a, four end points (e1, e2, e3, and e4) and four branch points (b0, 

b1, b3, and b4) are marked, and a large number of normal points are located on the medial axis 

either between a branch point and an end point or between two branch points. 

The medial axis or skeleton of a polygon consists of either line segments or parabolas, as 

the medial axis points must have the same distance to two points or one point and one line. 

The skeleton of the polygon in Figure 5.14a is represented by six line segments (b0e1, b0e2, 

b0b1, b4e3, b4e4, and b4b3) and one parabola (b1b3). Associated with the medial axis is a radius 

function, which defines for each point on the axis its distance to the boundary of the polygon. 

The medial axis and the radius function together are important topological information for a 

given geometry. Refer to [106] for a more detailed description of MAT.  

 

B. Computation 

Medial Axis Transformation, or skeletonization, has been widely studied over the past 

few decades in the computer vision field. Lee [106] proposed a divide-and-conquer approach 

that constructs the generalized Voronoi diagram for simple polygons. The medial axis 

transformation can be easily extracted by removing the Voronoi edges connecting to concave 

vertices of the polygon. Srinivasan et al. [107] extends Lee’s algorithm to computing a 

generalized Voronoi diagram for polygons with holes. Choi [108] presents an MAT 

approximation algorithm in the planar domain via domain decomposition. Kao [109] 

proposes a method that directly associates boundary points to the corresponding proximity 

metrics based on Lee’s and Srinivisan’s methodology.  

Based on Lee’s and Kao’s approach, a simple MAT method is developed through 

computing the bisector of each pair of segments. As shown in Figure 5.15, the geometry is 

represented by line segments ab, bc, cd, de, and ea. For line segment ab, there are four pairs, 

and the bisectors of each pairs, B(ab, bc), B(ab, cd), B(ab, de), B(ab, ea), are computed. Each 

bisector of two closed line segments (a pair) is formed by straight lines and parabolic curves 

as shown in Figure 5.15a. By definition, the MAT produces a set of lines which divide the 

geometry into several sub-regions. In each sub-region, all the points are closet to its 

associated boundary. Therefore, the medial axis is constructed by using the bisectors which 

are closest to the relevant boundary, as the bold red line shown in Figure 5.15b. The detailed 

computing algorithms refer to [106-109].  
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Figure 5.15 Computation of the bisector lines for pairs of line segments. Black lines represent the 

boundary of the geometry. Coloured lines represent the bisector lines. Bold red line in (b) represents 

the MAT corresponding to the boundary ab. Pink area is the region in which all points are closet to its 

associated boundary ab. 

 

5.3.3 MAT-based path generation 

The overview of the developed algorithms is described as shown in Figure 5.16. The 

flowchart of the algorithms consists of two phases: Phase 1, preparing the MAT of the 

geometry; and Phase 2, generating the path from the medial axis. Algorithms for phase 1 

(from CAD model to MAT) are not detailed in this section, since slicing algorithm has 

already introduced in chapter 4 and algorithms for medial axis transformation can be found in 

the literature [106-109]. The detailed algorithms for Phase 2 are presented in this section. 

 

A. Generation of branch vectors 

The skeleton of the geometry identified in the previous step can be classified into 

branches and sub-branches. Branch vectors can be generated from the obtained branches. 

These branch vectors are extracted to form branch loops, which are used for offsetting 

welding paths at a later stage in the algorithm. 

Definition 2: 

 Branches are line segments of the skeleton between two branch points.  

 Sub-branches are line segments of the skeleton between one branch point and one 

end point.  

 Branch vectors are two vectors with opposite directions that are generated from 

each branch.  
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 A branch loop is a closed loop formed by a set of branch vectors, with the set 

having a head-to-end connection. 

 
Figure 5.16 Flowchart of the developed approach for generating path from MAT 

In this study, any existing parabolic section within the skeleton is simplified into two line 

segments. This simplifies subsequent steps in the algorithm without producing excessive 

positional errors for the skeleton. For example, in Figure 5.14b, the parabola (b1b3) is 

simplified as two line segments (b1b2) and (b2b3), where b2 is the middle point of parabola 

b1b3. Therefore, four branches (as solid red lines b0b1, b1b2, b2b3, and b3b4 shown in Figure 

5.14b) and four sub-branches (as dashed red lines shown in Figure 5.14b) can be obtained. 

Accordingly, eight branch vectors ( 10bb , 01,bb , 21,bb , 12bb , 32 ,bb , 23 ,bb , 43,bb , and 34 ,bb ) 

are generated (shown as black vectors in Figure 5.14b). 
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B. Branch loop formation 

For a simple polygon (without holes or other internal features), a single branch loop will 

be formed. Starting from any branch vector, the connected branch vector is added into the 

branch loop one by one with a counter-clockwise order. The branch loop is completed when 

all the branch vectors have been included.  

Figure 5.17 shows the skeleton of a simple polygon, the computed branch points (a, b, c, 

d, e, and f), branches, and branch vectors. If the branch loop starts from the branch vector, ab , 

four branch vectors ( bd ,bc , be , and ba ) are found as the connected branch vector. Among 

them,
 

bd  is the vector that forms a branch loop in the counter-clockwise direction. The 

completed branch loop is (abdbegefebcba) following the branch vectors. For the geometry in 

Figure 5.14b, the resulted branch loop is (b0b1b2b3b4b3b2b1b0). 

 
Figure 5.17 Illustration of the general skeleton and branch loop formation for a simple polygon 

without holes   

For complex geometries with N holes, there will be N+1 boundary loops, with one 

external contour and N internal contours, one for each hole. During the branch loop formation 

step, a closed branch loop is firstly formed as well, but not all the branch vectors are included 

as would be the case for a simple geometry. Accordingly, more new branch loops will be 

formed by the remaining branch vectors and branch loop formation will be completed when 

all branch vectors are included. Consequently there will be N+1 branch loops formed, with 

one loop formed in the contour-clockwise direction corresponding to the single external 

contour of the geometry and N loops formed in the clockwise direction corresponding to the 

N internal contours. 
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Figure 5.18 shows the geometry with two holes. Black lines represent the three boundary 

loops, and red lines represent the calculated the skeleton of the geometry. Through the steps 

of branch vectors generation and branch loop formation for complex geometries, N+1 branch 

loops are formed with one closed loop in the counter-clockwise direction (for the external 

boundary loop) and N closed loop (for the holes) in clockwise direction as the red loops with 

arrows shown in Figure 5.18.  

 
Figure 5.18 Branch loop formation for complex geometries with holes. Black lines represent the 

boundary of the geometry. Red line loops with arrows represent the formed branch loops.  

 

C. Domain 

For a simple polygon without holes, there is only one boundary loop and one branch loop. 

The whole region can be considered as a single domain enveloped by the boundary loop and 

the branch loop. 

For a complex geometry with N holes, there will be N+1 domains that compose the whole 

area of the geometry. The first domain is enveloped by the branch loop in the counter-

clockwise direction and its associated external boundary loop. The other N domains are 

enveloped by the remaining branch loops in a clockwise direction and their associated 

internal boundary loops. As shown in Figure 5.18, three domains are formed and displayed in 

different colours. 

 

D. Path generation 

Paths are generated by recursively offsetting contour-clockwise branch outward and 

clockwise branches inward at distance di )
2

1
(  . i represents ith offset, and d represents the 

step-over distance. It should be noted that during the offsetting self-intersection may happen 

regardless of whether it is inward or outward offset. Algorithm for solving self-intersection is 

not detailed in this paper since they have been reported elsewhere in the literature [96]. As 
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shown in Figure 5.16, Pathij represents the ith offset of the Branch_loops j. Path_B ij 

represents the path outside boundary of the ith path. When the area of the ith path boundary j is 

larger than its relevant contour j, and there is no intersection between the boundary and the 

contour, the Branch_loops j will be updated to empty. Meanwhile the offsetting of this branch 

loop will be ceased since the region relevant to this branch loop is fully filled by deposition 

material. The iterative procedure ends when all the branch loops are updated to be empty and 

there is no more offset needed.  

The output is a set of untrimmed paths, and the structures of the untrimmed paths for the 

geometry in Figure 5.19 are shown in Figure 5.20 using Matlab cell structures. There are 

three branch loops corresponding to three columns in Fig. 10, and the iterative procedure 

ceases at the 6th offset. The generated untrimmed paths for the geometry in Figure 5.14 are 

shown in Figure 5.21 (a). The whole procedure ceases after the 5th offset as the area of the 5th 

path boundary (the outside blue lines) is larger than the area of the geometry and there is no 

intersection between them. It can be seen from Figure 5.21 (a) that the geometry is fully filled 

but there is an obvious excess of deposited material. To improve the material efficiency, the 

last step is to trim the paths. The parts of blue lines outside of the geometry represent extra 

materials and the associated paths are trimmed as shown in Figure 5.21 (b).  

 
Figure 5.19 Example of the shape with two holes. (a) Computed MAT as represented by dotted lines; 

(b) Multiple branches as described by red lines; and (c) Formed one branch loop along counter-

clockwise direction and other two branch loops inside along clockwise.  

 
Figure 5.20 The cell structures of untrimmed paths in the program 
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Figure 5.21 (a) Untrimmed paths for the simple shape. Black lines represent the boundary of the given 

geometry. Red lines represent the MAT. Green lines stand for the generated untrimmed paths, and 

blue lines represent the outside of each untrimmed path. (b) Trimmed paths. 

The generated adaptive paths are a set of closed loop line segments. The generated 

adaptive MAT paths and the associated step-over distances are stored in the format of 
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where represents the ith closed curve from the jth domain. j has value from 1 to N+1 for 

a geometry with N holes. , , and Lk represent the coordinate of the start point, the 

coordinate of the end point, and the length of the kth path line segment of , 

respectively.  and represent the step-over distance at the start and the end point of the 

kth line segments of , respectively.  

 

E. Implementation 

Five geometries sliced from CAD models are tested to validate the effectiveness and 

robustness of the developed algorithms. As shown in Figure 5.22-5.26, various types of 

geometries are tested including solid structures with or without holes, and thin-walled 

structures. Table 5.2 provides basic information of the geometries. The MATs and the 

trimmed paths for all geometries are successfully generated using the developed algorithms.   

Table 5.2 Basic information for five case study geometries. 

No. Geometry 1 2 3 4 5 

Area of enveloped box ( × 104 mm2) 28.64 31.06 12.74 17.52 4.84 

Area of geometry ( × 104 mm2) 9.25 17.06 1.29 2.78 1.44 

Volume ratio (%) 32.3 54.9 10.1 15.9 29.8 
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Figure 5.22 Geometry 1, solid structure with multiple branches. (a) Geometry is represented by black 

lines, MAT represented by dotted red lines, and red solid lines stand for branches. (b) Generated 

trimmed path. 

 
Figure 5.23 Geometry 2, solid structure with holes. (a) Geometry is represented by black lines, MAT 

represented by dotted red lines, and red solid lines stand for branches. (b) Generated trimmed path. 

 
Figure 5.24 Geometry 3, thin-walled curved structure. (a) Geometry is represented by black lines, 

MAT represented by dotted red lines, and red solid lines stand for branches. (b) Generated trimmed 

path. 
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Figure 5.25 Geometry 4, thin-walled complex structure. (a) Geometry is represented by black lines, 

MAT represented by dotted red lines, and red solid lines stand for branches. (b) Generated trimmed 

path. 

 
Figure 5.26 Geometry 5, thin-walled structure with varied characteristic thicknesses. (a) Geometry is 

represented by black lines, MAT represented by dotted red lines, and red solid lines stand for 

branches. (b) Generated trimmed path. 

5.3.4 Discussions 
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Using the MAT-based path generated in this study, the gaps that would be generated by 

using traditional contour path patterns are removed. And other requirements for WAAM are 

also fulfilled. However, this has been achieved at the cost of creating some discontinuity of 

the path and extra deposition at the boundary. Post-processing, such as milling or grinding, is 

required to remove excess materials and improve the accuracy of the fabricated components. 

Material efficiency, which defined as the ratio of the real area of the geometry to the 

deposited area, is an important factor for the AM process. Material efficiency, E, is expressed 

as: E = Ar/Ad = A/(Ld). Ar represents the real area of the geometry; Ad represents the 

deposited material which is calculated by times of the total path length L and the step-over 

distance d.   

The material efficiency of AM, based on the proposed MAT-based path at various step-

over distances, is simulated for the different geometries as shown in Figure 5.27. Material 

efficiency of the traditional CNC machining is also provided as a comparison. It is found that, 

in general, material efficiency decreases with the increasing of step-over distance. This is 

intuitive as step-over distance represents the resolution of the deposition system. To fill 

geometry with deposition material, the greater the step-over distance, the more excess 

material will need to be deposited. The results also show that AM technology has a much 

higher material efficiency compared to traditional subtractive manufacturing.  

The effects of the step-over distance on part building time are also discussed. The 

building time t is determined by the sum of the total path length L and the travel speed, V, of 

the deposition head. If the build time at the step-over distance of 1 mm, t1, is set to be the 

characteristic time, the non-dimensional building time T at the step-over distance of d is 

expressed as 
111 /

/

L

L

VL

VL

t

t
T ddd  . Where, Ld represents the total path length at the step-over 

distance of d; and the travel speed V is assumed to be the same at various step-over distances. 

The non-dimensional building time as the function of step-over distances are calculated as 

shown in Figure 5.27. With the increasing of the step-over distance, the build time T declines 

exponentially. It reveals that it is always better to have a small step-over distance for high 

material efficiency whereas that would be at the expense of productivity. 
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Figure 5.27 Material efficiency & non-dimensional build time vs. step-over distance. (a) Geometry 1. 

(b) Geometry 2. (c) Geometry 3. (d) Geometry 4. (e) Geometry 5. 

For powder-based AM system, the step-over distance generally ranges from 0.01mm to 2 

mm.  Material efficiency in this range decreases only slightly, indicating that the step-over 



 

98 
 

distance does not have a significant effect on the material efficiency of powder-based AM. 

As inferred above, material efficiency is determined by the resolution of the deposition 

system in relation to the size of the geometry. Building time changes significantly in this 

range, therefore, build rate will be an important factor for powder-based AM system. 

On the other hand, for WAAM technology, the typical step-over distance varies from 2 

mm to 12 mm for mild steel materials. Building time in this range as shown in Figure 5.27 

doesn’t change significantly and therefore build rate for WAAM is not the major concern. 

Material efficiency in WAAM using the proposed MAT-based paths is shown in Figure 5.28. 

It is found that for solid structures (Geometry 1 and Geometry 2) material efficiency is 

relatively constant, with a slight decrease as step-over distance increases. However for thin-

walled structures, such as Geometry 3, 4, and 5, the variation of material efficiency 

corresponding to the step-over distance are significant. Although the generally-descending 

trend of material efficiency can still be found, the variation cannot be predicted since the 

shapes of various geometries are very different. The optimal step-over distances for 

Geometry 1 and 2 are 4 mm, while for Geometry 3 is around 4 mm, for Geometry 4 is near 6 

mm and for Geometry 5 is approximately 3 mm.  

 
Figure 5.28 Material efficiency vs. step-over distance for five geometries in WAAM system 

Variations of material efficiency in WAAM for the five tested geometries are shown in 

Figure 5.29. It is clear that while the variation of material efficiency for different step-over 

distances is minimal for solid structures, it is quite significant for thin-walled structures. For 

geometry 5, by choosing the optimal step-over distance, material efficiency could be 

increased by 2.4 times from 38.63% to 94.15%. This indicates that step-over distance plays 
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an important role on material efficiency when fabricating thin-walled structures using 

WAAM technology. 

 
Figure 5.29 Variations for material efficiency in WAAM for Geometry 1, 2, 3, 4, and 5. 

 

5.4 Adaptive MAT path planning 

 

5.4.1 Essential of adaptive MAT path 

Traditional contour path always generates gaps or voids as shown in Figure 5.30a and b. 

To avoid internal voids, the MAT (Medial Axis Transformation) path was introduced and its 

extension for complex geometries was developed in section 5.3. MAT paths are generated by 

offsetting the medial axis of the geometry from the centre towards the boundary. Figure 5.30c 

shows an example of MAT path with the deposition sequence indicated by numbers. 

Although void-free deposition is obtained using MAT paths, this is achieved at the cost of 

creating discontinuity of the path (such as path 3, 4, and 5 in Figure 5.30c) and extra 

deposition at the boundary as described in Figure 5.30d.  Post-process machining must be 

used to remove the extra materials and improve the accuracy at the cost of material and 

energy wastage.  

Step-over distance, which is defined as the distance between the next deposition path and 

the previous one, is always constant for both contour path patterns (refer to Figure 5.30a) and 

MAT path patterns (refer to Figure 5.30c). For certain geometries, it is not possible to achieve 

both high accuracy (refer to Figure 5.30b) and void-free (refer to Figure 5.30d) components 

using paths with constant step-over distance. However, the wire-feed AM process is capable 

of producing different widths of deposits within a layer through varying travel speed and 
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wire-feed rate, while maintaining a constant deposit height. Therefore, we propose an 

adaptive path planning strategy that uses continuously varying step-over distances by 

adjusting the process parameters to deposit beads with variable width within any given path. 

The developed adaptive MAT path planning algorithm is able to automatically generate path 

patterns with varying step-over distances (refer to Figure 5.30e) through analysing geometry 

information to achieve better part quality (void-free deposition), accuracy at the boundary, 

and material efficiency, as shown in Figure 5.30f. 

 
Figure 5.30 Illustrations of different deposition paths. Black lines represent the boundary of the 

geometry; green lines represent the deposition paths with the numbers representing the order of the 

deposition paths; grey regions are deposited area by the relevant paths. (a) Contour path patterns; (b) 

The predicted high accuracy deposition but with internal gaps; (c) MAT path patterns; (d) The 

predicted void-free deposition but with extra material deposited along the boundary; (e) Adaptive 

MAT path patterns with varying step-over distance; (f) The predicted void-free deposition with high 

accuracy at the boundary through using adaptive MAT path. 
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This section presents an innovative adaptive MAT path planning algorithm for wire-feed 

AM to generate void-free parts with better continuity and geometrical accuracy, improved 

buy-to-fly ratio and less energy consumption. 

 

5.4.2 Algorithm for adaptive MAT path generation 

The flowchart of the adaptive MAT path planning algorithm is shown in Figure 5.31. 

Different from MAT-based path (non-adaptive) generation, domain decomposition module is 

required before path generating for each domain. 

 
Figure 5.31 Flowchart of the adaptive MAT path planning algorithm 

 

A. Domain decomposition  

For a simple polygon without holes, there is only one boundary loop and one branch loop. 

The whole region can be considered as a single domain enveloped by the boundary loop and 

the branch loop. In this step, the domain is decomposed into a set of simple shapes for the 

following subsequent path generation.  

As has been defined before, the circle corresponding to a branch point touches the 

boundary at more than two points. Radial line segments of the branch point are formed by 

connecting the branch point and its touch points, as shown by the blue line segments in 

Figure 5.32a. These radial line segments as well as sub-branches (red dashed lines shown in 

Figure 5.32a) decompose the domain into a variety of simple shapes. Three types of shapes 

can be found, namely T1, T2, and T3.  

Definition 3: 
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 Radial line segment is a line segment connects the branch point and one of its 

touch points. 

 T1 shape is a triangle that consists of one sub-branch segment, one boundary line 

segment, and one radial line segment. 

 T2 shape is a triangle that has one branch segment and no boundary line 

segments. 

 T3 shape is a trapezoid that consists of two parallel radial line segments, one 

branch, and one boundary line segment. 

 
Figure 5.32 Geometry 1, illustrations of adaptive path generation for the given geometry. (a) Three 

typical simple shapes decomposed from the domain, T1: triangle1; T2: triangle2; and T3: trapezoid. 

(b) The decomposed shapes are shown in order of processing. (c) Offset rules for three typical shapes. 

(d) Apply the offset rules for all decomposed shapes. (e) Final generated adaptive paths with varying 

step-over distances. 

As shown in Figure 5.32a, triangle ABb0 is a T1 shape, triangle Cb1b2 is a T2 shape, and 

trapezoid BCb1b0 is a T3 shape. Any complex domain can be decomposed into these three 

fundamental shapes. These shapes are sequenced according to the previously-formed branch 

loop. The processing order of the shapes is shown in Figure 5.32b for example.  

 

B. Path generation 

Adaptive paths are generated separately for each shape. If the number of n closed paths is 

required for the domain, the rules for generating paths on different shapes are provided as 

follows. 
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(a) Path generation for T1 shape  

The ith path is generated by parallel offsetting the boundary line segment at the distance 

(i-(1/2))d1 from the branch point to the touch point. d1 is the step-over distance for the given 

shape T1. d1 is a constant and expressed as  

n

R
d 1

1  ,           (5.1) 

where, R1 represents the radius of the T1 shape, which is equal to the length of the radial line 

segment; n represents the total number of offset paths.  

For the T1 shape ABb0 shown in Figure 5.32c, AB is the boundary line segment, b0B is 

the radial line segment. Three paths b01p1, b02p2, and b03p3 parallel to the boundary line 

segment AB are generated if n is chosen to be 3 for the domain. 

 

(b) Path generation for T2 shape  

The ith path is generated by parallel offsetting the branch at the distance (i-(1/2))d2 from 

any one of the two branch points to the touch point. d2 is the step-over distance for the given 

shape T2. d2 is also a constant and expressed as  

n

R
d 2

2  ,           (5.2) 

where, R2 represents the radius of the T2 shape, which is the distance from the touch point to 

the branch.  

For the T2 shape Cb1b2 shown in Figure 5.32c, C is the touch point, b1 and b2 are two 

branch points and b1b2 is the branch. Three paths parallel to the branch are shown in Fig.6c. 

 

(c) Path generation for T3 shape  

Since T3 has two branch points and each branch point has its own touch point, there are 

two radii and therefore the paths will be generated by non-constant offsetting. The ith path is 

generated by offsetting one of the branch points at the distance (i-(1/2))d31 towards its touch 

point, and offsetting the other branch point at the distance (i-(1/2))d32 towards its touch point, 

respectively. d31 and d32 are step-over distances at two branch points and are expressed as  














n

R
d

n

R
d

32
32

31
31

,          (5.3) 
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where, R31 and R32 represents the two radii of the T3 shape. Consequently, the paths in a T3 

shape are non-parallel curves with varying step-over distances from d31 to d32.  

For the T3 shape BCb1b0 shown in Figure 5.32c, BC is the boundary line segment, b0b1 is 

the branch, b0B and b1C are two radial line segments and their lengths are two radiuses, 

respectively. Three paths b01b11, b02b12, and b03b13 with varying step-over distances are 

generated. 

By applying this offset rules for all decomposed simple shapes of the domain (refer to 

Figure 5.32d), the final adaptive paths which consists of n continuous closed loops are 

generated as shown in Figure 5.32e. Figure 5.32 shows the adaptive MAT-based path 

generation of simple geometry without holes. 

Figure 5.33 and Figure 5.34 show the step-by-step process of adaptive MAT path 

generation for complex geometries. Figure 5.33(a) shows the medial axis as red dotted lines 

for an example geometry with a single hole. Branches are extracted as red solid lines shown 

in Figure 5.33b. Two branch loops are formed. (b0b1b2b3b4b5b4b1b0) in the counter-clockwise 

direction and (b1b4b3b2b1) in the clockwise direction. Accordingly, two domains (displayed in 

different colours in Figure 5.33c) are formed with each enveloped by its branch loop and 

boundary loop. Then, each domain is decomposed into a set of three fundamental shapes as 

shown in Figure 5.33d. By applying path generation algorithm on each domain separately, 

both domains are covered by the generated paths as shown in Figure 5.33e. Final paths with 

varying step-over distances are shown in Fig.8f. 

Figure 5.34 shows a geometry with multiple holes. Branches are extracted and six branch 

loops are formed, namely, loop (b0b1b2b3b4b5b6b7b8b9b10b11b0) in the counter-clock direction, 

and other loops (b0b11b10b15b0), (b1b12b3b2b1), (b4b13b6b5b4), (b7b14b9b8b7), and 

(b0b15b10b9b14b7b6b13b4b3b12b1b0) all in the clockwise direction. Accordingly, six domains are 

generated and displayed in different colours in Figure 5.34b. Domain decomposition and the 

final adaptive MAT paths are shown in Figure 5.34c and Figure 5.34d, respectively. Note that 

not all branch points are displayed in Figure 5.33 and Figure 5.34 for the explanation of 

branch loop formation. 
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Figure 5.33 Geometry 2, illustrations of the adaptive path generation for geometry with a single hole. 

(a) Computed medial axis as represented by red dotted lines. (b) Branch loop formation. (c) Geometry 

sub-division, two domains are divided and displayed in different colours. (d) Domain decomposition, 

all domains are decomposed into a set of three typical simple shapes. (e) Apply the offset rules for all 

decomposed shapes. (f) Final generated adaptive paths. 
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Figure 5.34 Example of a geometry with multiple holes. (a) Computed branch loops as represented by 

red lines; (b) Divided six domains as represented by different colours; (c) Generated numerous 

radiations from the branch points and the various decomposed simple shapes; (d) Generated adaptive 

paths for the geometry 

 

5.4.3 Validation of the proposed algorithm 

The newly developed path planning algorithms are validated by application to different 

geometries as shown in Figure 5.35 and Figure 5.36. Figure 5.35 shows a thin-walled 

structure with multiple holes and varied wall thickness, which will result in severe problems 

using existing path generation strategies, due to the geometrical complexity and the large 

deposition width of wire-feed AM. In this case, 16 branch loops are formed and consequently 

16 domains are generated. Adaptive paths are generated through non-constant offsetting from 

the branch loops towards the boundary loops. Adaptive paths with varying step-over 

distances accommodate the changing wall thickness of the geometry. Figure 5.36a shows a 

more complex geometry and the generated paths clearly demonstrate the variance of step-

over distances in each domain. Figure 5.36b shows the previously non-adaptive MAT paths 

for the geometry. It can be seen that, non-adaptive MAT generates a set of discontinues paths 
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at the boundary of the component and would result in excessive material deposition at the 

boundary. The proposed adaptive MAT generates closed-loop paths and improves the 

accuracy at the boundary. 

 
Figure 5.35 Geometry 3, a thin-walled structure with multiple internal holes recesses. 

 
Figure 5.36 Geometry 4, a complex thick-walled structure with multiple internal holes. (a) Adaptive 

MAT path. (b) Non-adaptive MAT path 
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Unlike other offsetting-based path generation methods such as non-adaptive MAT path 

and contour path, the proposed adaptive MAT path algorithm will not produce self-

intersection. This is because the adaptive MAT systematically decomposes the complex 

geometry into simpler domains and these are further decomposed into a set of fundamental 

shapes, which can be linked together with a single path loop without self-intersection. The 

proposed algorithm is proven to be efficient and robust.  

 

5.4.4 Discussions 

Buy-to-fly ratio, which is defined as the mass ratio of the raw material used to fabricate a 

component and the final component itself, is an important factor for the AM process. Buy-to-

fly, BTF, for a sliced layer can be defined as:  

desired

deposited

A

A
BTF  .          (5.4) 

 Adesired is the desired area of the geometry which is determined from the sliced CAD model. 

Adeposited represents the deposited area, which depends on the path planning strategy. The 

deposition process can be represented as a circle with a diameter dk (the step-over distance) 

being swept along the computed path. Since dk varies for each line segment of the path, 

Adeposited could be obtained by the sum of the area deposited by every line segment of the 

computed path. The deposition area of a line segment is generally a trapezoidal shape and 

therefore one can obtain 
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where, nj represents the maximum offset closed paths in domain j. 
j

in represents the 

maximum path line segments of the 
j

iPath .  

For the different geometries described in Section 5.4.3, the BTF using the proposed 

adaptive MAT path is computed and summarized in Table 5.3. The BTF of the previously 

reported non-adaptive MAT path and the traditional CNC machining (equal to the volume 

ratio of the geometry, assuming no over-dimensioning of the raw material billet) are also 

provided for comparison. It can be seen that AM technology (both adaptive MAT path and 

non-adaptive MAT) has a much better BTF compared to traditional subtractive 

manufacturing. The results also show that BTF can be further improved to almost 1.0 by 

using the proposed adaptive MAT path. For the thin-walled geometry No.3, BTF for the 
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adaptive MAT path is improved by 27% from the value of 1.39 achieved by using non-

adaptive MAT, and improved by 79% from 4.76 for subtractive manufacturing. Using the 

adaptive MAT paths achieves higher deposition accuracy at the component boundary, which 

result in less material waste in deposition and less energy consumption for post-process 

milling.  

Table1 5.3 Basic information for four geometries presented in this paper and their BTF associated 

with different manufacturing methods. 

No. 

Geometry 
Figure 

Area (104 mm2) Buy-to-fly ratio, BTF 

Real 

geometry 

Enveloped 

box 

Volume 

Ratio (%) 

Adaptive 

MAT path 

Non-adaptive 

MAT path 
CNC 

1 6 0.45 0.6 75.0 1.01 1.08 1.33 

2 8 0.55 1.0 55.0 1.01 1.24 1.82 

3 10 1.93 9.18 21.0 1.01 1.39 4.76 

4 11 11.5 24.5 46.9 1.01 1.11 2.13 

 

Table 5.4 compares the performance of different path planning algorithm in terms of, 

quality, accuracy, and buy-to-fly ratio. Contour path is not suitable for certain geometries in 

wire-feed AM due to the large deposition width of the arc welding process, and the 

geometrical complexity of the paths would result in gaps during deposition. Non-adaptive 

MAT path is able to produce void-free part; however it deposits excessive materials due to its 

low accuracy at the component boundary. Adaptive path generates void-free paths with 

improved accuracy and therefore better BTF is obtained compared to existing algorithms. 

The adaptive MAT path has significant advantages for wire-feed AM, particularly where the 

wall thickness is similar to the range of deposition width of the wire-feed AM process.  

Table 5.4 Comparison of three paths for wire-feed AM: “+” represents good, and “─”represents poor. 

 
Quality 

(void-free) 
Accuracy 

Buy-to-fly ratio 

(BTF) 

Contour path ─ + + 

Non-adaptive MAT  path  + ─ ─ 

Adaptive MAT path + + + 

 

 

5.5 Summary 

This chapter reviews the existing path planning methods and the challenges of path 

planning in WAAM. Since none of existing path patterns are suitable for WAAM of any 

complex geometries, newly MAT-based non-adaptive and adaptive paths are proposed. 

Algorithms for generating the proposed paths are developed and tested. 
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The research has revealed that MAT-based paths are able to generated void-free 

deposition paths which are beneficial for arc-welding-based process. And the further 

developed adaptive MAT path improves geometrical accuracy as well as buy-to-fly ratio. 

Application of MAT-based path and adaptive MAT path will be provided in Chapter 7. 
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Chapter 6  

 

Post-process Machining 

 

Post-process machining is required to obtain the finished parts from the produced near-net 

shapes. In traditional CNC machining process, full automation has been difficult due to the 

possible problems related to tool accessibility and fixture. However, in WAAM, automation 

of post-process machining could be possible since the CAD model will be decomposed into 

layers, and post-process could also be divided into layer-by-layer machining. 

This Chapter briefly introduce the robot machining steps. The machining process could 

be classified into three types, top region machining, side region machining, and base region 

machining as shown in Figure 6.1. Details of the machining path generation are given as 

follows. 

 

Figure 6.1 Schematic diagram of the near-net shape as deposited. (a) After top region machining; (b) 

After side region machining; and (c) Base region machining. 

 

6.1 Top region machining 

Top region machining is used to maintain the top surface of the deposited layers, as 

shown in Figure 6.1. The machining paths for top region is relatively simple since there is no 

self-intersection or revisiting issues.  
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In this study, MAT-based paths are implemented to the generation of top region 

machining paths. The path generation algorithm is similar to the algorithm for deposition 

paths. The machining tool radius is used as the step-over distance between each top region 

machining paths. For example, the boundary of the desired layer is represented by black lines 

in Figure 6.2a. The medial axis of the geometry is calculated as the red dash lines shown in 

Figure 6.2b. Through offsetting the medial axis, the machining paths for the top region is 

generated as the red solid lines shown in Figure 6.2c. Figure 6.2d shows part of the trajectory 

of machining tool. 

 

Figure 6.2 Top region machining paths generation. (a) Black lines represent the boundary of the 

geometry; (b) Red dash lines represent the medial axis of the geometry; (c) Red solid lines represent 

the generated paths through offsetting the medial axis; and (d) Trajectory of machining tool. Blue 

circles represent the tool cross section. 

 

6.2 Side region machining 

Side region machining could be conducted after the deposition of each layer or several 

layers depending on the complexity of the geometry and the depth of the machining tool. The 

machining paths for side region is generated through offsetting the boundaries of the 

geometry. As shown in Figure 6.3a, two red lines are calculated machining paths, and the 

trajectory of the machining tool is shown in Figure 6.3b. The algorithms for offsetting the 

boundaries could be found in [96].  
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Figure 6.3 Side region machining paths generation. (a) Red lines represent the path generation 

through offsetting the boundaries of the geometry; and (b) Trajectory of the machining tool. 

 

6.3 Base region machining 

Due to the high heat input of arc welding process, the substrate would have distortions 

resulting the dimensional errors in base region. Therefore, base region is also required to be 

machined. Zigzag path pattern is implemented for base region machining for its simplicity. 

Figure 6.4 shows the zigzag paths generation for the base region. And the trajectory of the 

machining tool is described in Figure 6.4b. 
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Figure 6.4 Base region machining paths generation. (a) Red lines represent the Zigzag path 

generation; and (b) Trajectory of the machining tool. 

 

6.4 Summary 

For some complex workpiece, 3D machining after the deposition of the whole component 

would be impossible due to the occurrence of collision. Periodic milling after each layer 

deposition is possible to produce high accuracy components, however, it is time-consuming 

and wastage materials.  

This Chapter provides a preliminary investigation of path generation methods for post-

process machining.  The effective machining tool path is generated from the geometry 

information of the original 3D components and machining tool. In future, the sequence of 

machining operations need to be coordinated properly to avoid accessibility issues as well as 

maintain the efficiency of the system. 
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Chapter 7  

 

Applications 

 

A few sample parts are fabricated using the developed WAAM system to test its 

performance. Building these parts also helped to better understand some of the finer aspects 

of the process planning.  

Most of the experiments were conducted using a robotic gas metal arc welding (Fronius) 

system and a robotic machining system at the University of Wollongong, as shown in Figure 

7.1. An ABB 1400 industrial robot arm with six degrees of freedom was used to generate the 

movement of the welding torch relative to the substrate, as shown in Figure 7.1a. A larger 

ABB 6660 robot was used for post-process machining, since it is able to withstand high 

process forces and enables high-performance applications of finishing and milling. Note that 

the 3D profiler scanner mentioned in Chapter 3 was carried by another ABB 4400 industrial 

robot, separately, for process measurements.  

 
Figure 7.1 Experimental set-up: (a) ABB 1400 robot with Fronius welder for additive manufacturing, 

(b) ABB 6660 robot with motor spindle for machining. 

 

7.1 Mild steel components with complex geometries 
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Figure 7.2 to Figure 7.4 show three parts with complex geometries that would require 

significant materials, time, and effort to be fabricated using the conventional subtractive 

manufacturing methods. These parts would require quite a lot of manual programming and 

adjustments to be manufactured using a CNC machine. However, using the developed 

automated WAAM system, these parts could be produced in a fairly automated fashion. 

 

Figure 7.2 A turbine blade structure 

Figure 7.2 shows a turbine blade structure produced in WAAM. The contour path pattern 

with the single path and therefore single bead is implemented since the geometry of the sliced 

layer is relatively simple. The wire-feed rate is 2.5 m/min, and the travel speed is 0.4 m/min. 

Each layer is deposited in around 30 seconds and has an average thickness of 1.3 mm. With 

the deposition of 150 layers without any interlayer machining, the blade has a height of 195 

mm. During the deposition, a 60 seconds-wait time is used between each layer to avoid 

distortion and poor surface finish due to overheating of the previously deposited layers. The 

whole deposition process takes around 4 hours. Minimum distortion is found with the use of 

8 mm thickness mild steel plate as the substrate. 

Figure 7.3 shows a twist blade structure. Similar welding parameters,  contour path 

planning method, and cooling time were used for this part. No interlayer or post machining 

process was conducted. It is nearly impossible to fabricate this highly curved structure 
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automatically using the traditional machining method. This case demonstrates the kind of 

complex parts that robotic WAAM system can build.  

 

Figure 7.3 A twist turbine blade structure 

Figure 7.4 shows an impeller structure. Figure 7.5 shows briefly the architecture of 

process planning from CAD model to robot code generation. A special continuous path 

planning and multi-bead overlapping method were used for this structure as shown in Figure 

7.5. 5 m/min wire-feed rate and 0.8 m/min travel speed were chosen. Each layer has an 

average thickness of 1.8 mm. During the deposition, a certain amount of waiting time was 

used. With the deposition of 40 layers without any interlayer surface machining, the impeller 

has a total height of 70 mm. After cleaning and milling the top surface and part of the side 

walls, the partially machined components is illustrated in Figure 7.4b. 

 

Figure 7.4 An impeller structure 
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Figure 7.5 Example of process planning for the impeller structure 

For mild steel structures, the pulsed-spray GMAW transfer mode was used to minimize 

the heat input. The wire electrode was copper coated steel wire with the diameter of 1.2 mm. 

The stick-out length was set to 18mm to minimise weld spatter for this particular process. A 

shielding gas mixture of 82% argon and 18% CO2 was used with a flow rate of 22 L/min. 

Above three cases verified the capability of WAAM to fabricate near-net shapes. 

Different path planning strategies were used depending on the geometry of the sliced layers.  

 

7.2 Aluminium thin-walled structure with finished quality 

An aluminium thin-walled structure was built to test MAT-based path planning, bead 

modelling and post-process machining. 

The geometry of the structure is shown as black lines in Figure 7.6. It should be noted 

that the wall thicknesses are varied making the previous path planning impossible for this 

particular part. MAT-based paths were proposed for this particularly thin-walled structure. 

Using algorithms developed in Chapter 5, MAT-based paths are automatically generated with 

appropriate step-over distances according to the information to obtain a smooth upper surface 
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for each deposited layer. The final deposition paths are 15 closed loops, as green lines shown 

in Figure 7.6. Note that it seems the generated paths haven’t envelope the geometry in some 

edge areas (such as top left corner), while materials with certain bead width are deposited 

along the path enables fully covering of the geometry. The optimum step-over distance for 

each path are listed in Table 7.1. 

 
Figure 7.6 Final MAT-based paths for the thin-walled structure 

Table 7.1 Process variables 

 

Weld settings (wire-feed rate, travel speed, and stick-out length) along each of the 

generated deposition paths are selected automatically based on the ANN bead model. The 

welding parameters for each path are listed in Table 7.1. 

Machining paths are also generated automatically for this case. Figure 7.7 shows the tool 

path for side region milling. This single path indicates that the excess material will be 

removed in a single cut, and that the machining robot has the capacity to perform this action. 

Process variables Deposition path 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Step-over distance (mm) 4.0 4.0 3.5 3.5 3.5 3.5 6.3 6.3 5.4 5.4 4.0 4.0 4.0 4.0 5.3 

Wire-feed rate, F (m/min) 5.7 5.7 5.3 5.3 5.3 5.3 6.0 6.0 5.1 5.1 5.7 5.7 5.7 5.7 6.3 

Travel speed, S (m/min) 0.55 0.55 0.47 0.47 0.47 0.47 0.50 0.50 0.39 0.39 0.55 0.55 0.55 0.55 0.59 

Stick-out Length, L (mm) 14 14 14 14 14 14 13 13 11 11 14 14 14 14 14 
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Figure 7.7 Tool paths for side region machining 

During the experiments, the pulsed-spray GMAW transfer mode was used and the wire 

electrode was aluminium alloy (5% Mg) wire with a diameter of 1.2 mm. Argon shielding 

gas with a flow rate of 15 L/min was used. 

After the deposition of 8 layers, the part was built up to 20 mm height. Figure 7.8a shows 

the near-net shape of the produced aluminium component. Details of crossings, start/stop 

sections and corners are shown in Figure 7.8b and Figure 7.8c. Figure 7.9a shows the process 

of post machining, and the final finished part with the desired dimensional tolerances is 

shown in Figure 7.9b. 

 
Figure 7.8 Experimental results. (a) Near-net shape of the produced aluminium component. (b) 

Details of crossings and start/strop sections. (c) Details at a corner. 
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Figure 7.9 (a) Process of post machining. (b) Final finished part with the desired dimensional 

accuracy 

This experiment verifies that the proposed WAAM system can be used to fabricate near-

net shape part automatically from the CAD model. The excellent appearance of the produced 

shape at crossings (shown in Figure 7.8b in the red circle) indicates that the MAT-based path 

planning algorithm has effectively solved the issues at crossings of thin-walled structures. 

Height errors at start/stops (shown in Figure 7.8b in the blue circle) are minimised due to the 

closed loop of the paths. Good quality deposition is also evident at corners, as shown in 

Figure 7.8c. 

In conducting this experiment, a few observations are worth mentioning. For example, the 

condition of the substrate, including temperature and geometrical shape, has a remarkable 

influence on the deposition accuracy and surface quality of the following layers. Furthermore, 

disturbances to the welding process may occasionally occur, depending on the materials, 

equipment, and deposition process selected, and also the previously deposited layers. The 

deposition process is sensitive to disturbances from the surface condition of the previously 

deposited layer. Consequently, defects may be produced as shown in Figure 7.8a in the red 

circles. Further online monitoring and control are required to be integrated to the proposed 

system for automatic in-process control of the deposition. In the event that a disturbance is 

detected during the deposition of a layer, an intermediate milling operation is required to 

maintain the surface quality. 

In this study, different robots are used for deposition and machining. This results in 

additional calibration and re-fixturing steps, which imposes difficulties for post-process 

machining. Therefore, to produce components with high accuracy it is preferable to have an 

integrated system with the ability to generate a final part using a single machine. 

In this particular case study, the machining process was performed after the near-net 

shape was completely deposited. For other component designs, it may not be possible to 
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delay all machining until the part is entirely deposited due to the limitations of the machining 

tool or spindle collision issues. Machining from time to time during the deposition process 

may be required. This will need to be determined through analysing the geometry of the input 

CAD parts. So, future work concerning optimization of the machining process is necessary to 

further develop CAD-to-part arc-welding-based additive manufacturing systems. 

 

7.3 Adaptive MAT paths with minimum post milling 

This section provides the implementation of adaptive MAT path in WAAM through case 

studies. Firstly, the relationship between single bead geometry and welding process 

parameters is established through an artificial neural network (ANN) model. Then, the 

adaptive MAT path is implemented by using the single bead ANN model together with a 

previously developed multi-bead overlapping model. Finally, the adaptive MAT path 

planning strategy and the established bead models are tested through experimental deposition 

of two metal components (mild steel). 

 

7.3.1 ANN model of mild steel 

Similar to the former established ANN model for aluminium alloys, single bead profile 

measurements were carried out first. For mild steel material, two inputs of wire-feed rate (F) 

and travel speed (S) were chosen. Bead width and bead height were responses as well. Table 

7.2 shows a total 81 combinations of 9 different F and 9 different S.  

Table 7.2 Welding parameters for weld bead model 

Parameters Value 

Wire-feed rate, F, m/min 2.0, 2.8, 3.6, 4.4, 5.0, 5.6, 6.4, 7.2, 8.0 

Travel speed, S, m/min 0.4, 0.47, 0.54, 0.61, 0.68, 0.75, 0.82, 0.91, 1.0 

 

The weld bead height and width of all the tests are shown in Figure 7.10. It can be seen 

that the obtained bead widths range from 2 to 12 mm and bead heights range from 1 to 3 mm. 

With the changing of bead height, the range of bead width at the same height also varies.   
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Figure 7.10 Experimentally measured bead widths and bead heights of all tests 

The relationships of 81 combinations between process parameters and the weld bead 

geometry were randomly divided into two datasets, of which 65 were used for training and 8 

for validation. The remaining 8 combinations were reserved for independent testing. The 

experimental data were linearly normalized for ANN training, validation and testing. The best 

architecture of 2-13-2 network with the mean square error of 0.0019 was trained. The 

predicted bead geometry in the training of the network was confirmed by correlation with the 

independent 8 testing experimental data as shown in Figure 7.11. It can be seen that there is 

high correlation between the predicted and experimental values of the bead geometry, 

indicating the ANN has the ability to accurately predict the bead geometry from welding 

parameters input. 

 
Figure 7.11 Measured bead height and width vs. predicted bead height and width using ANN model. 

Circles represent the bead heights of the independent 8 testing data. Solid red squares represent the 

bead widths of the independent 8 testing data. Units for both axes are millimetres. 
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In order to optimise the welding parameters based on the desired bead geometry simply, a 

database of 3721 combinations (61 by 61 input matrix) of welding parameters has been built, 

with the wire-feed rate ranging from 2 to 8 m/min in the steps of 0.1 m/min and the travel 

speed ranging from 0.4 to 1 m/min in the steps of 0.01 m/min. An output matrix (61 by 61) of 

the predicted bead height and width is then generated through the trained neural network as 

shown in Figure 7.12. This database is used to select the optimal welding parameters that will 

produce a given bead geometry. 

 
Figure 7.12 Surface plots of the bead height and bead width as the function of wire-feed rate and 

welding travel speed 

 

7.3.2 Determination of 2D path planning variables 

To implement the adaptive MAT path algorithm, one important task is to determine 

appropriate values of nj for domain j. The values of nj has significant effects on the desired 

bead size, with small n corresponding to larger weld deposits. If the desired weld bead height 

is chosen to be h, then a number of beads with the same height could be chosen by 
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combinations of different wire-feed rate and travel speed. Using the weld bead database 

matrix developed in Section 7.3.1, the range of weld bead width as a function of weld bead 

height are shown in Figure 7.13 as the shaded area within the black curve. For certain a 

height of h, the width of these weld beads are within a range [w(h)min, w(h)max].  

 
Figure 7.13 Ranges of bead width and bead height through varying wire-feed rate and travel speed. 

In adaptive MAT path planning, the deposition process can be considered as a disk with 

varying diameter being swept along the computed path. As shown in Figure 7.14, the domain 

is expanded along the branch loop, with the internal or external boundary represented by the 

black solid line. The maximum step-over distance dmax is obtained at the maximum radius 

(Rj)max and the minimum step-over distance dmin is obtained at the minimum radius (Rj)min.  

 
Figure 7.14 Illustration of the deposition process in an expanded domain.  

The following relationships can be obtained if nj paths are generated 
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where, d*
min = 0.738w(h)min and d*

max = 0.738w(h)max by means of the multi-bead overlapping 

model. Eq.7.1 reveals the path planning for WAAM is highly geometry-related which is 
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affected by both the complexity of the geometry (variations of R) and the shape of deposit (w 

or d*). By solving n, one can obtain  
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Eq.7.2 can be further simplified as 
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Since n must be an integer, the final solution for n is given as 
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where, function ceil rounds the elements within it to the nearest integers towards infinity and 

function floor rounds the elements within it to the nearest integers towards minus infinity.  

In Eq.7.4, Rmax and Rmin are sliced layer geometry parameters which are obtained from 

medial axis transformation. For a given bead height (layer thickness) and the established bead 

model as shown in Figure 7.12, the range of achievable bead width can be determined, as 

well as d*
min and d*

max  by means of the multi-bead overlapping model. Therefore, the 

optimum n for a domain can be easily solved. If there is no integer solution then the adaptive 

MAT path algorithm is not suitable for the domain. This means that the capability of the 

deposition system to vary the bead width while maintaining a constant bead height is not 

sufficient to accommodate the width variation of the given domain. In this case another path 

planning method such as non-adaptive MAT is applied to the domain, at the cost of increased 

deposition outside of the component boundary.   

 

7.3.3 Determination of welding process parameters 

 When the desired weld bead geometries have been determined according to the generated 

adaptive paths, the next step is to determine appropriate welding parameters to produce the 

desired weld beads. To determine the optimal process parameters with the desired bead 

geometry, the following database with wire-feed rate and travel speed as the inputs and bead 

width and bead height as the outputs is established as shown in Figure 7.15. 
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Figure 7.15 The database of weld single bead model. M = 61, and N = 61 as mentioned in Section 

7.3.1. 

Given the outputs, the error(i,j) corresponding to all input combinations are computed as 

the relevant error between the predicted bead geometry and the desired bead geometry. One 

can obtain the following formula 

),...2,1;,...2,1(,),(

22

NjMi
h

hh

w

ww
jierror

d

dj

d

di 








 










 
 ,   (7.5)  

where, wd and hd are the desired bead width and bead height, respectively. Through solving 

for the minimum value of error(i,j), the optimal wire-feed rate and travel speed Fi and Sj are 

found.  

 

7.3.4 Case studies 

 

A. Case study 1 

Figure 7.16 shows a thin-walled structure with a single internal hole and wall thickness 

ranging from 7 mm to 11 mm. Table 7.3 provides the main parameters of the geometry and 

path planning variables. The geometry is decomposed into two domains since it has one hole. 

The maximum and minimum radii for the two domains are listed in Table 7.3. For the given 

bead height h of 2 mm, the bead width ranges from 4.42 mm to 7.76 mm through altering 

wire-feed rate and travel speed. Accordingly, the critical step-over distances, d*
min and d*

max 

are 3.26 mm and 5.73 mm, respectively. By applying Eq.7.4, the path planning variables n1 

and n2 are both solved as 1. Consequently, the adaptive MAT path for the geometry is 

generated as path 1 and path 2 shown in Figure 7.16. Red arrows show the start point 

(randomly set) and the deposition direction.  
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Figure 7.16  Case 1, a thin-walled structure with a single internal hole and varied wall thickness 

Table 7.3 Information for Case 1 geometry and the resulting range of bead width. All units are 

millimetres except for n1 and n2 which are dimensionless variables 

h (R1)min (R1)max (R2)min (R2)max wmin wmax d*min d*max n1 n2 

2 3.45 5.66 3.45 5.66 4.42 7.76 3.26 5.73 1 1 

 

As the adaptive MAT path is generated, the step-over distances along the paths are 

progressively determined as shown in Figure 7.17 and Figure 7.18. Step-over distances vary 

along the length of the deposition path to accommodate the variation in thickness of the 

geometry.  The wire-feed rates and travel speeds for the two paths are also shown in Figure 

7.17 and Figure 7.18. For clarity, the minimum wire feed rate of 2.0 m/min and minimum 

travel speed of 0.4 m/min have been normalised to 1.0.  It can be seen that with the changing 

of step-over distance, both wire-feed rate and travel speed are changed to produce the desired 

bead geometry suitable for the given range of step-over distance.   

 
Figure 7.17 Calculated step-over distance (mm), normalised wire-feed rate, and normalised travel 

speed along the length of deposition path 1 (in mm) 
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Figure 7.18 Calculated step-over distance (mm), normalised wire-feed rate, and normalised travel 

speed along the length of the deposition path 2 (in mm) 

Using the generated paths and the welding process parameters, program code for the 

robotic manipulator and the welding power source is automatically generated. The near-net 

shape component was deposited with 15 layers, as shown in Figure 7.19a. Figure 7.19b 

shows the finished component after surface milling. 

 
Figure 7.19 (a) Deposited near-net shape after 15 layers. (b) Finished part without voids after surface 

milling. 

In order to check the potential internal defects, the finished component was cut into two 

pieces as shown in Figure 7.20a. The cross section A is parallel to the building direction and 

the cross section B is perpendicular to the building direction. Close up of the cross sections 

are shown in Figure 7.20b and Figure 7.20c. It can be seen that the deposited part is 100% 

solid and free of porosity.  
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Figure 7.20 Examination of the internal cross sections. (a) Cut parts of the case one; the cross section 

A is parallel to the building direction and the cross section B is perpendicular to the building 

direction. (b) Close up of the cross section A. (c) Close up of the cross section B.” 

 

 

B. Case study 2 

 

Figure 7.21 shows an example of a solid structure without holes. The geometry has a 

length of 100 mm while the width ranges from 25 mm to 50 mm as described in Figure 7.21. 

Table 7.4 provides the geometrical parameters that were determined by the adaptive MAT 

path planning algorithm. The deposition path comprised of three closed loops with varied 

step-over distances. The red arrows in Figure 7.21 indicate the start points and the travel 

directions. For each layer, deposition was performed from the centre towards the boundary of 

the geometry. Figure 7.22 shows the step-over distance and the non-dimensional wire-feed 

rate and travel speed for the outermost path.  

 
Figure 7.21 Case 2, a solid structure without holes. 

Table 7.4 Information of Case 2 geometry and the resulting range of bead width. All units are 

millimetres expect for n which is a dimensionless variable 
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h Rmin Rmax wmin wmax d*min d*max n 

2.5 16.15 21.69 5.90 10.28 4.35 7.59 3 

 

 
Figure 7.20 Calculated step-over distance (mm), normalised wire-feed rate, and normalised travel 

speed along the length of the deposition path 3 (in mm)  

Although there is a large variation of geometry width from 25 mm to 50 mm, the 

component has been deposited through using only three closed paths with varying step-over 

distances. After deposition of 10-layers, the near-net shape component is shown in Figure 

7.23a. The track of the deposition path can be seen from the upper surface of the shape. 

Figure 7.23b shows the finished part after post-process milling, free of internal voids or gaps.   

 
Figure 7.21 (a) Deposited near-net shape after 15 layers. (b) Finished part without voids after surface 

milling.  

 

7.3.5 Discussions 

The two case studies have provided examples of components having either thin-walled 

structures of varying thickness, or a solid structure with a large variation in across-layer 
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width. Both geometries provide significant challenges for the WAAM process, which has 

several requirements that should be met for optimum results: 

1. Continuous deposits formed in closed loops to minimise start/stops that can give rise 

to height errors over multiple layers; 

2. Continuous closed loop deposits at the component boundaries, to minimise the waste 

material that need to be removed by finish machining; 

3. No cross-over of weld paths that create large localised variations in build height; 

4. Adaptive step-over distance of the weld beads to avoid the formation of voids while 

producing a smooth upper surface for each layer and simultaneously conforming to 

the component boundaries; 

5. Adaption of welding parameters to produce deposits of variable width at consistent 

height, to accommodate the adaptive step-over distance. 

 

The automated path design, welding parameter selection, program code generation, and 

final deposition of the above two components indicates that the proposed adaptive MAT path 

planning algorithm is capable of generating continuous paths that can accommodate 

geometries with significant variations in wall thickness, while operating within the 

capabilities of the arc-wire welding process. The resulting deposition using the generated 

path produces components that are internally void-free and have good geometrical accuracy 

requiring minimal post-process milling. Although not exercised in these case studies, there 

are situations where the adaptive MAT process is not able to produce paths that conform to 

the component boundaries because of limitations of the welding process to deposit beads of 

sufficiently variable width. In such cases, the path generation algorithm defaults to using the 

non-adaptive MAT method. The component can still be produced automatically, but the 

component surface is less regular due to start/stops that must be performed at the boundary, 

and this would require more waste material to be removed to obtain the desired shape. This 

default situation is performed automatically, and hence contributes to the ultimate goal of 

producing a practical, computationally efficient and highly automated WAAM system for 

industrial application. 

 

7.4 Summary 

Various parts were fabricated to test all the aspects of the process planning in WAAM, 

including mild steel and aluminium alloy-fabricated components. Specifically, section 7.2 
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provided the whole process of additive and subtractive manufacturing of thin-walled 

aluminium component with finished quality. In addition, section 7.3 introduced the 

implementation of adaptive MAT paths in detail. The results show that the WAAM system 

has the capability to achieve high quality, void-free components that are geometrically 

accurate through properly designing the process variables. The developed automated system 

has been proven to be effective for WAAM.  
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Chapter 8  

 

Summary and Future Work 

 

8.1 Contributions 

This study has developed a robotic Wire Arc Additive Manufacturing (WAAM) system 

with an integrated robotic machining process. A fully automated process planning 

methodology was introduced and verified through experimental tests on various metal parts. 

The integrated process planning methodology optimises the deposition efficiency and 

accuracy based on process modelling and a group of innovative algorithms. Detailed 

discussions of each step have been given in Chapters 2, 3, 4, 5, 6, and 7. The general 

contributions of this thesis are summarised as following: 

 

Identification of process planning issues 

The process planning requirements for Robotic Wire Arc Additive Manufacturing 

(WAAM) have been identified. There are three major challenges in producing final finished 

components from CAD models with minimal human intervention: accurate and practical bead 

geometry modelling; multi-direction 3D slicing; and deposition path planning.  

The system starts from 3D CAD models in STL format, and these are sliced into a set of 

layers using a 3D slicing module. Then deposition paths are generated on each of layers 

through a 2D path planning module. Welding parameters associated with each generated 

paths are automatically selected using bead geometry model. Deposition paths together with 

the determined welding parameters are transferred into robot code proceeding to the 

fabrication process. Finally, the produced near-net shapes are machined through robotic post-

process machining, and finished parts with the desired dimensional tolerances are obtained 

accordingly.  

 

Establishment of an artificial neural network bead geometry model 
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The weld bead model controls two of the key slicing and path planning variables, namely 

layer thickness and step-over distance, respectively. In addition, it determines the optimum 

welding parameters corresponding to the desired bead geometry. Welding parameters are 

mainly wire-feed rate, travel speed, and stick-out length for the GMAW process in this study.  

Special attention has been paid to develop an accurate artificial neural network bead 

model, in which the relationships between the welding parameters and bead profiles were 

established. Accordingly, a range of achievable bead height was obtained corresponding to 

the possible selection of layer thicknesses for slicing. In addition, the appropriate welding 

parameters in terms of the desired bead geometry could be determined automatically with the 

help of the ANN model. 

 

Determination of the optimal step-over distance 

In WAAM, the layer-by-layer building strategy incorporates the deposition of a large 

number of single weld beads side by side. Therefore, multi-bead overlapping plays an 

important role in determining the surface quality and dimensional accuracy of the fabricated 

products. 

The tangent overlapping model (TOM) was developed and the optimal step-over distance 

was proposed. It has been found that the optimal step-over distance for producing a smooth 

upper surface is related to the bead width. A detailed experimental verification of the 

proposed TOM has been conducted. 

 

Development of a multi-direction slicing algorithm 

A novel multi-direction slicing algorithm was developed which extends the capability of 

WAAM to fabricate complex models by reducing the use of supports. Differing from the 

previously devised methodologies in the literature, model simplification and the concept of 

decomposition-regrouping are introduced in the workflow. The algorithm has been 

demonstrated as an efficient and flexible method for various types of CAD models in AM 

application. Since each step of the process maintains the integrity of STL format (triangle 

mesh), then intermediate results from each of the modules (such as model simplification, 

volume decomposition, and holes-extraction) can produce standard STL files to be used at 

other downstream CAD/CAM applications that are not limited to AM. 

 

Development of MAT-based path planning methods 
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Medial axis transformation (MAT) –based paths were developed. MAT-based paths are 

particularly suitable for WAAM to fabricate void-free components through deposition of 

material starting from the centre and then progressing towards the boundary of the layer 

geometry. In addition, adaptive MAT paths were developed which varies the deposition 

width automatically to accommodate the changing geometry of the layer while maintaining 

continuous closed paths, especially at the external boundary. The adaptive MAT path enables 

the void-free deposition with minimum post-process machining. 

 

 

8.2 Future work 

Research and development of WAAM for metal components is interdisciplinary, 

integrating materials science, thermo-mechanical engineering, and process planning. This 

thesis provides a preliminary investigation on the development of an automated 

manufacturing system. Significant research and further understanding are required in aspects 

of process control and optimisation (particularly control residual stresses and distortions), and 

also automated process planning (3D slicing, path planning, and integrated milling). 

Combining the opinions proposed by other experts in the AM research field [8, 22, 110-115], 

the following is a summary of issues that are of particular significance for the future 

development of WAAM technology. 

 

Material quality 

High deposition rate is a remarkable advantage of wire-feed AM technology, but 

unfortunately it is accompanied by high heat input resulting in residual stresses and 

distortion. The control of residual stresses and distortion is a major concern especially for 

large-scale WAAM processes. To identify the optimum strategy for minimising residual 

stresses and distortion, both experiments and simulations are required. Significant 

investigations should focus on how stress evolution is influenced by process parameters (e.g. 

energy power, wire-feed rate, travel speed, wire diameter, etc.), cooling rates, preheating 

temperatures, and deposition patterns and sequences. Only when the residual stresses and 

distortions be eliminated or reduced, the components with good quality and accuracy could 

be achieved.  

In this thesis, the mild steel and aluminium alloys have been used for deposition. Other 

materials, especially titanium alloys which are widely used in aerospace, are required to be 
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investigated using robotic WAAM. With regard to AM of titanium, more attention will need 

to be paid to gas shielding to avoid oxidation. It is expected that robotic post-process 

machining of titanium alloys will also present a unique set of challenges for producing 

acceptable surface finish while maintaining an economically viable cutting tool life.  

 

Design  

To date, WAAM is still only applied to simple structures. Real engineering components 

are more complex. A multi-direction deposition system which enhances the capability of the 

AM is required. However, the majority of existing 3D slicing strategies are applicable only to 

a subset of possible part geometries. More emphasis should be placed on multi-direction AM 

to develop robust algorithms capable of automatically slicing any 3D model in a manner that 

produce support-less and collision-free layered deposition.  

Path planning for WAAM technology is made more complex when particular attention is 

paid to residual stress evolution and the dimensional relationship between the weld bead and 

the part geometry. The investigation of the evolution of residual stresses may guide the path 

planning methodology in terms of patterns and sequences. For components with complex 

geometry, the dimension related issue (especially the limited range of weld bead dimensions) 

is another challenge for automatic path planning.  

 

Monitoring and Process control 

The capability to achieve predictable and repeatable operations is important for WAAM. 

Since the deposition process has been shown to be extremely sensitive to process variations, a 

system for on-line monitoring and control of the deposition process is necessary. Although 

some preliminary studies have been reported on the control of the deposition process [35, 

116, 117], more emphasis is required on this research area to increase the stability of the 

deposition process.  

 

From near to net-shape  

Due to limited accuracy, “stair-stepping” effect, and uneven surface finish, integrated 3D 

milling system is necessary for WAAM when high accuracy components are desired. For 

some complex components, 3D milling after the deposition of the entire component would be 

impossible due to the occurrence of tool collision. Periodic milling after deposition of each 

layer, or a number of layers, is one possible method for producing high accuracy components. 

However, this approach is time-consuming and potentially wasteful of materials. An effective 
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milling strategy will need to be developed from the geometry information of the original 3D 

components.  

 

Manufacturing error analysis  

In WAAM, manufacturing errors arise due to approximation of geometries during slicing 

and deposition path generation, as well as the finite weld bead deposit size. Predictive models 

that are capable to analysis the manufacturing error are required in order to improve the 

accuracy of the fabricated components. During the deposition process, online monitoring of 

the manufacturing error is also significant. When defects are detected, the deposition process 

needs to be suspended and corrective action taken to avoid wastage of both time and 

materials.  
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Appendix 

 

A. Continuous path generation algorithm 

This paper presents an algorithm to automatically generate continuous tool-paths for 

robotic wire and arc additive manufacturing (WAAM) process for a large class of geometries, 

especially solid geometries. The algorithm for generating deposition paths is provided as 

following. 

The algorithm firstly decomposes 2D geometries into a set of convex polygons based on a 

divide-and-conquer strategy. Then, for each convex polygon, an optimal scan direction is 

identified and a continuous tool-path is generated using a combination of zigzag and contour 

pattern strategies. Finally, all individual sub-paths are connected to form a closed curve. 

 

Decomposition of 2D geometries into convex polygons 

STereoLithography (STL) is a commonly used file format for describing the 3D geometry 

of a component suitable for fabrication using AM. From this format, 2D slices can be readily 

generated. The decomposition of these 2D slices into simpler convex polygons, or monotone 

polygons, will make the implementation of path generation much easier. Many approaches 

have been developed for decomposing polygons, as described in the survey by Keil [118]. In 

this research, a divide-and-conquer method is used for decomposing the geometries.  

The decomposition method is explained through a flowchart, as shown in Figure A.1. 

After slicing the input 3D CAD model, 2D geometries are obtained. Since STL is a 

tessellation language, the sliced 2D geometries are a set of polygons.  
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Figure A.1 The flowchart of the developed polygon decomposition method 

The polygon analysis modular in Figure A.1 consist five steps.  

Step 1: Identify the relationships among the polygons. The sliced 2D geometries may 

contain a number of polygons, either as internally nested shapes or independent entities. 

Using the concept of “Depth Tree” [96], the depth of a polygon refers to the number of cycles 

that enclose it. For example, in Figure A.2 (a), there is only one polygon and it has depth of 

“0”, according to the definition of “Depth Tree”, while in Figure A.2 (b) polygon 1 and 

polygon 2 have depths of “0” and “1”, respectively. Polygons that have even depth numbers 

are external cycles and those that have odd depth numbers are internal cycles. The details of 

this method can be found in [86].  

Step 2: Order all vertices. In this study, the vertices of external cycles are ordered in 

clockwise direction, while those vertices of internal cycles are ordered in anti-clockwise 

direction. As shown in Fig. 3 (a) and (b), all vertices are ordered basing on these rules.  

Step 3: Calculate the interior angles of all vertices. Assuming a polygon consists of n 

vertices, V1, V2, … Vn, the interior angle φi at Vi can be calculated from Eq.(1) and (2) 
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where, φi ranges from 0 to 2π and e

is the unit vector in the buildup direction. Both equations 

are needed to determine the quadrant of the angle. 

Step 4: Identify notches. A notch is defined as a vertex whose interior angle is larger than 

π. A polygon has at least one notch is called a non-convex polygon; otherwise it is a convex 

polygon. The process of decomposing a non-convex polygon to convex polygons can be 

considered to be the process of eliminating notches. For example, the polygon in Figure 

A.2(a) is a non-convex polygon since the vertices V2, V5, V6 and Vi are notches. 

Step 5: Eliminate notches. The next step for polygon decomposition is to eliminate the 

identified notches. All the notches are sorted by their interior angle. The notch that has the 

greatest interior angle is set to be the reference notch, which is targeted for elimination. As 

shown in Figure A.3, assuming Vi, is the reference notch, two radial lines are generated by 

extending vectors ii VV 1  and ii VV 1  to intersect with other part of the geometry at points Ai 

and Bi. There are three different cases along the geometry edges from Ai to Bi. Case 1: there 

are no vertices between Ai and Bi; Case 2: there are notches between Ai and Bi; Case 3: there 

are vertices between Ai and Bi but none of them are notches.  

 

 

(a)      (b) 

Figure A.2 Simple polygon without (a) and with inside island (b)  
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Figure A.3 Three different routines for eliminating the reference notch  

Three different routines, notch-line decomposition, notch-notch decomposition, and 

notch-vertex decomposition are used respectively. In notch-line decomposition, “line” means 

the bisector line of Vi, as shown in Figure A.3, ViCi is set to be the partitioning line. In notch-

notch decomposition, if there is more than one notch, choose the notch that is nearest to the 

bisector line of Vi as the end point of the partitioning line, or else connect the reference notch 

and the only existing notch in the scan zone to be the partitioning line, such as V2V5 in Figure 

A.3. In notch-vertex decomposition, if there is more than one vertex, choose the vertex that is 

nearest to the bisector line of Vi as the end point of the partitioning line, or else connect the 

reference notch and the only existing vertex in the scan zone to be the partitioning line, such 

as V6Vn in Figure A.3.  

The polygon can be decomposed by splitting the notches using only notch-line routines. 

However, the proposed notch elimination method provides an optimal solution. The notch-

notch routine eliminates two notches each time, which will generate a minimal number of 

convex polygons. The notch-vertex routine generates convex polygons with less edges 

compared to the notch-line routine, which makes the subsequent steps of path generation 

more effective.  

The flowchart in Figure A.1 shows the recursive use of geometry decomposition modules. 

The overall decomposition process is terminated when the number of notches in a 2D 

geometry is equal to zero. The step-by-step process of generating output convex polygons for 
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the simple polygon with an inside island is shown in Figure A.4. This algorithm is able to 

handle most 2D geometries, except for cases where there are many circular holes inside the 

geometry. Monotone polygon decomposition would be more suitable in such cases. 

 

Figure A.4 Step-by-step processes of polygon decomposition 

 

Path generation for a single convex polygon 

For a convex polygon, filling the interior area using a zigzag path is an efficient strategy. 

To improve the geometrical accuracy, the outline of the convex polygon is fabricated using 

the contour method. Since a better surface finish can be obtained if there are less welding 

passes, the interior zigzag pattern and external contour are connected to a continuous path 

without starting-stopping. In order to minimize the numbers of tool-path elements, an optimal 

filling direction of zigzag pattern in the convex polygon should be identified. Taking the 

convex polygon labelled “4” in Figure A.4(e) as an example, the step-by-step algorithm for 

generating tool-path is described below. 

Step 1: Identify the optimal zigzag direction. This problem can be restated as finding the 

direction where the convex polygon has the minimum height [94]. Lemma 1 explains that the 

optimal zigzag direction for a convex polygon must be parallel to one of its edges. 

 

Lemma A.1. Let P be a convex polygon, and S be an enveloping rectangle for P. For S to 

have the shortest height, i.e. a minimal number of weld passes is needed to fill S, there must 

be two vertices of P that lie on one of the long edges of S. 

 

Proof. As shown in Figure A.5, a convex polygon P is enclosed with a rectangle S, 

ABCD. Let AB and CD represent the long edges of the enveloping rectangle S. Let H stands 

for the distance between AB and CD. The problem of finding the optimal inclination of S can 

be considered to solve the minimum value of H. We assume the vertices Vn and Vm lie on AB 

and CD respectively. The distance between vertices Vn and Vm has the constant value of L. 

The angle θi > 0, and αi > 0, i = 1, 2, 3, and 4. One can obtain the formula,  

H = L·Sin(α1 + θ1)= L·Sin(α2 + θ2)= L·Sin(α3 + θ3)= L·Sin(α4 + θ4),  (A.3) 
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α1 + θ1 = α3 + θ3,          (A.4) 

α2 + θ2 = α4 + θ4,          (A.5) 

α1 + θ1 =π- (α2 + θ2).         (A.6) 

Without discrimination, assume α1 + θ1 ≤ π/2 as shown in Figure A.5, S can be rotated 

anti-clockwise by ∆θ, where  0 ≤ ∆θ ≤ min(θ1, θ3). After rotation, H= L·Sin(α1+ θ1-∆θ). Since 

the sine  function is a monotonically increasing function in the range from 0 to π/2, H reaches 

the minimum value only when ∆θ = min(θ1, θ3). It demonstrated that H reaches the minimum 

value as long as one of θi is equal to zero by rotating the enveloping rectangle S. Therefore, 

two vertices of the polygon must lie on one of the long sides of the enveloping rectangle.  

 

Figure A.5 A case in the proof of Lemma 

Lemma 1 indicates that the optimal filling direction must be parallel to one edge of the 

polygon. Hence, the algorithm for identifying the optimal direction can be described as 

follows. For each polygon edge, calculate the distance from all the vertices to this edge. As 

the path should cover all of the polygon area, the maximum value of the distance should be 

recorded for the referred edge. When the maximum distance for all of the edges have been 

calculated individually, the edge that has the lowest value is selected as the direction 

corresponding to the optimal zigzag direction. 

Step 2: Determine the left chain. The definition of left chain can be found in [91]. In 

Figure A.6 (a), EFA is the left chain.  

Step 3: Offset the left chain (EFA) and generate a new polygon A’BCDE’F’A’.  

Step 4: Generate a zigzag pattern with the calculated optimal direction in the interior area 

of the new polygon. 

Step 5: Form a continuous path, as shown in Figure A.6 (b).  
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Figure A.6 An example of path generation for a convex polygon 

From Step 1 to Step 5, a continuous path with the minimum number of elements can be 

generated for a convex polygon. Implement this approach independently to all of the convex 

polygons generated in Figure A.4 (e). The completed implementation is shown in Figure A.7 

(a).  

 

Path connection 

 

The final step is to connect the sub-paths of each polygon into a closed curve. To improve 

the surface quality, the connecting points between two polygons are set on the outlines of the 

geometries.  

During the decomposition of 2D geometries, the partition lines were used to regenerate 

the sub-polygons. The partition lines can be classified into two groups, merging lines and 

split lines. A merging line merges two polygons into one polygon. As shown in Figure A.4, 

the step from (a) to (b) is a merging process. A split line separates one polygon into two 

polygons. In Figure A.4, steps from (b) to (c), (c) to (d) and (d) to (e) are splitting processes. 

All of the split lines are stored in a new matrix for path connection. Since the split lines 

separate the polygons, connection lines between the separated polygons are generated that 

correspond to each of the split lines. As shown in Figure A.7 (b), the tool-paths in the area of 

the circles were reorganized. The proposed method can automatically generate a final closed-

looped tool-path as shown in Figure A.7 (b). Note that this path planning strategy allows the 

possibility of connecting paths from consecutive layers of the model to form a continuous 

space curve in 3 dimensions, spanning multiple layers. 
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Figure A.7 Final tool-paths connection 
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B. Smallest enclosing crowns 

First, we generate a random permutation unit vectors op1, op2, …, opn. Points of P lie on 

the unit sphere with point o as the centre. Let Pi =(p1, p2, … pn). The points is added one by 

one while the smallest enclosing crown Cj is maintained. 

 

Lemma B.1 Let 3 < i < n, and let Pi and Cj be defined as above. Then we have 

If 𝑃𝑖 ∈ 𝐶𝑗−1, then 𝐶𝑗 = 𝐶𝑗−1, else Pi lies on the boundary of Cj. 

The proof of the lemma was provided in [91].  

 

Algorithm MiniCrown(P) 

Input. A set P of n points on the sphere. 

Output. The smallest enclosing sphere crown for P. 

1. Compute a random permutation p1, p2, …, pn of P. 

2. Let C3 be the smallest enclosing crown for (p1, p2, p3). 

3. For i from 4 to n 

4.     If 𝑃𝑖 ∈ 𝐶𝑗−1 

5.         Then 𝐶𝑗 = 𝐶𝑗−1 

6.         Else Cj = MiniCrownWithPoint((p1, …, pi-1),pi) 

7. Return Cn 

 

The step for determining whether the point pi is contained in the current smallest crown 

Cj is given as follows. 

As shown in Figure B.1, the spherical crown Cj has the bottom circular surface Sj. Bj is 

the current build direction. pij is the projection of pi on the surface Sj. If Cj contains the point 

pi, two conditions should be fulfilled: 

0 ji BOP
; 

jijj RPO 
. 

where, Rj is the radius of the bottom boundary circle of the spherical crown Cj.  
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Figure B.1 Rules for determining whether the point pi is contained in the current smallest crown Cj 

The critical step occurs when pi is not enclosed by Cj-1. A subroutine that finds the 

smallest crown enclosing Pi is required. Using the lemma B.1, pi must lie on the boundary of 

the crown Cj. Let q = pi. The same framework is used once more: we add the points of Pi-1 in 

random order, and maintain the smallest enclosing crown of Pi-1 U (q) under the extra 

constraint that it should have q on its boundary. The addition of a point pj will be facilitated 

by the following fact: when pj is contained in the currently smallest enclosing crown then this 

crown remains the same, and otherwise it must have pj on its boundary. So in the latter case, 

the crown has both q and pj and its boundary. The following subroutine is obtained. 

 

Algorithm MiniCrownWithPoint(P,q) 

Input. A set P of n points on the surface of the sphere, and a point q such that there exists 

an enclosing crown for P with q on its boundary. 

Output. The smallest enclosing crown for P with q on its boundary.  

1. Compute a random permutation p1, …, pn of P. 

2. Let C2 be the smallest crown with q, p1, and p2 on its boundary. 

3. For j from 3 to n 

4.     If 𝑃𝑗 ∈ 𝐶𝑗−1 

5.         Then 𝐶𝑗 = 𝐶𝑗−1 

6.         Else Cj = MiniCrownWith2Point((p1, …, pj-1),pj,q) 

7. Return Cj 

 

To find the smallest enclosing crown for a set under the restriction that two given points 

q1 and q2 lie on its boundary, the same approach need to be used one more time. Thus we add 
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the points in random order and maintain the optimal crown. When the added point pk is inside 

the current crown, nothing need to do and just keep the current crown. When pk is not inside 

the current crown, it must be on the boundary of the new crown. In the latter case three points 

on the crown boundary are obtained, namely, q1, q2, and pk. This means there is only one 

crown left, the unique crown with q1, q2, and pk on its boundary. The detailed routine is 

provided as following. 

 

Algorithm MiniCrownWith2Point(P,q1,q2) 

Input. A set P of n points on the surface of a unit sphere, and two points q1 and q2 such 

that there exists an enclosing crown for P with q1 and q2 on its boundary. 

Output. The smallest enclosing crown for P with q1 and q2 on its boundry. 

1. Compute a random permutation p1, …, pn of P. 

2. Let C1 be the smallest crown with q1, q2, and p1 on its boundary. 

3. For j from 2 to n 

4.     If 𝑃𝑗 ∈ 𝐶𝑗−1 

5.         Then 𝐶𝑗 = 𝐶𝑗−1 

6.         Else Cj= the Crown with q1, q2, and pj on its boundary, Exit for 

7. Return Cj 

 

This finally completes the algorithm for computing the smallest enclosing crown of a set 

of points on a sphere. The validation of the algorithm is similar as that for the smallest 

enclosing discs could be found [91].  
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