1,842 research outputs found

    A Customized 3D GPU Poisson Solver for Free Boundary Conditions

    Full text link
    A 3-dimensional GPU Poisson solver is developed for all possible combinations of free and periodic boundary conditions (BCs) along the three directions. It is benchmarked for various grid sizes and different BCs and a significant performance gain is observed for problems including one or more free BCs. The GPU Poisson solver is also benchmarked against two different CPU implementations of the same method and a significant amount of acceleration of the computation is observed with the GPU version.Comment: 10 pages, 5 figure

    BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images

    Full text link
    In cryo-electron microscopy (EM), molecular structures are determined from large numbers of projection images of individual particles. To harness the full power of this single-molecule information, we use the Bayesian inference of EM (BioEM) formalism. By ranking structural models using posterior probabilities calculated for individual images, BioEM in principle addresses the challenge of working with highly dynamic or heterogeneous systems not easily handled in traditional EM reconstruction. However, the calculation of these posteriors for large numbers of particles and models is computationally demanding. Here we present highly parallelized, GPU-accelerated computer software that performs this task efficiently. Our flexible formulation employs CUDA, OpenMP, and MPI parallelization combined with both CPU and GPU computing. The resulting BioEM software scales nearly ideally both on pure CPU and on CPU+GPU architectures, thus enabling Bayesian analysis of tens of thousands of images in a reasonable time. The general mathematical framework and robust algorithms are not limited to cryo-electron microscopy but can be generalized for electron tomography and other imaging experiments

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    A GPU based real-time software correlation system for the Murchison Widefield Array prototype

    Full text link
    Modern graphics processing units (GPUs) are inexpensive commodity hardware that offer Tflop/s theoretical computing capacity. GPUs are well suited to many compute-intensive tasks including digital signal processing. We describe the implementation and performance of a GPU-based digital correlator for radio astronomy. The correlator is implemented using the NVIDIA CUDA development environment. We evaluate three design options on two generations of NVIDIA hardware. The different designs utilize the internal registers, shared memory and multiprocessors in different ways. We find that optimal performance is achieved with the design that minimizes global memory reads on recent generations of hardware. The GPU-based correlator outperforms a single-threaded CPU equivalent by a factor of 60 for a 32 antenna array, and runs on commodity PC hardware. The extra compute capability provided by the GPU maximises the correlation capability of a PC while retaining the fast development time associated with using standard hardware, networking and programming languages. In this way, a GPU-based correlation system represents a middle ground in design space between high performance, custom built hardware and pure CPU-based software correlation. The correlator was deployed at the Murchison Widefield Array 32 antenna prototype system where it ran in real-time for extended periods. We briefly describe the data capture, streaming and correlation system for the prototype array.Comment: 11 pages, to appear in PAS

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201
    • …
    corecore