82 research outputs found

    Hybrid machine learning models for forecasting surgical case volumes at a hospital

    Get PDF
    Abstract Recent developments in machine learning and deep learning have led to the use of multiple algorithms to make better predictions. Surgical units in hospitals allocate their resources for day surgeries based on the number of elective patients, which is mostly disrupted by emergency surgeries. Sixteen different models were constructed for this comparative study, including four simple and twelve hybrid models for predicting the demand for endocrinology, gastroenterology, vascular, urology, and pediatric surgical units. The four simple models used were seasonal autoregressive integrated moving average (SARIMA), support vector regression (SVR), multilayer perceptron (MLP), and long short-term memory (LSTM). The twelve hybrid models used were a combination of any two of the above-mentioned simple models, namely, SARIMA–SVR, SVR–SARIMA, SARIMA–MLP, MLP–SARIMA, SARIMA–LSTM, LSTM–SARIMA, SVR–MLP, MLP–SVR, SVR–LSTM, LSTM–SVR, MLP–LSTM, and LSTM–MLP. Data from the period 2012–2018 were used to build and test the models for each surgical unit. The results indicated that, in some cases, the simple LSTM model outperformed the others while, in other cases, there was a need for hybrid models. This shows that surgical units are unique in nature and need separate models for predicting their corresponding surgical volumes. View Full-Text Keywords: time series, seasonal autoregressive integrated moving average, machine learning, hybrid model, demand, hospital, surgical unitpublishedVersio

    Forecasting Patient Flows with Pandemic Induced Concept Drift using Explainable Machine Learning

    Full text link
    Accurately forecasting patient arrivals at Urgent Care Clinics (UCCs) and Emergency Departments (EDs) is important for effective resourcing and patient care. However, correctly estimating patient flows is not straightforward since it depends on many drivers. The predictability of patient arrivals has recently been further complicated by the COVID-19 pandemic conditions and the resulting lockdowns. This study investigates how a suite of novel quasi-real-time variables like Google search terms, pedestrian traffic, the prevailing incidence levels of influenza, as well as the COVID-19 Alert Level indicators can both generally improve the forecasting models of patient flows and effectively adapt the models to the unfolding disruptions of pandemic conditions. This research also uniquely contributes to the body of work in this domain by employing tools from the eXplainable AI field to investigate more deeply the internal mechanics of the models than has previously been done. The Voting ensemble-based method combining machine learning and statistical techniques was the most reliable in our experiments. Our study showed that the prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts. The implications of this study are that proxy variables can effectively augment standard autoregressive features to ensure accurate forecasting of patient flows. The experiments showed that the proposed features are potentially effective model inputs for preserving forecast accuracies in the event of future pandemic outbreaks

    Modelling monthly influenza cases in Malaysia

    Get PDF
    The increasing trend in the number new cases of influenza every year as reported by WHO is concerning, especially in Malaysia. To date, there is no local research under healthcare sector that implements the time series forecasting methods to predict future disease outbreak in Malaysia, specifically influenza. Addressing the problem could increase awareness of the disease and could help healthcare workers to be more prepared in preventing the widespread of the disease. This paper intends to perform a hybrid ARIMA-SVR approach in forecasting monthly influenza cases in Malaysia. Autoregressive Integrated Moving Average (ARIMA) model (using Box-Jenkins method) and Support Vector Regression (SVR) model were used to capture the linear and nonlinear components in the monthly influenza cases, respectively. It was forecasted that the performance of the hybrid model would improve. The data from World Health Organization (WHO) websites consisting of weekly Influenza Serology A cases in Malaysia from the year 2006 until 2019 have been used for this study. The data were recategorized into monthly data. The findings of the study showed that the monthly influenza cases could be efficiently forecasted using three comparator models as all models outperformed the benchmark model (NaĂŻve model). However, SVR with linear kernel produced the lowest values of RMSE and MAE for the test dataset suggesting the best performance out of the other comparators. This suggested that SVR has the potential to produce more consistent results in forecasting future values when compared with ARIMA and the ARIMA-SVR hybrid model

    Modelling lock-down strictness for COVID-19 pandemic in ASEAN countries by using hybrid ARIMA-SVR and hybrid SEIR-ANN

    Get PDF
    ASEAN, include Indonesia, Malaysia, Philippines, Singapore, and Thailand, are the countries with ongoing transmission of SARS-COV-2, the virus that causes COVID-19. The confirmed cases in Indonesia and Philippines are the highest ranks among other ASEAN countries such as Malaysia, Thailand, and Singapore. To reduce the spread of the pandemic COVID-19, each country has implemented the lock-down policy differently, depending on its economic situation. Therefore, the study of the impact of lock-down across the world, particularly in ASEAN countries, is still relevant to do. In this study, we developed the lock-down model in ASEAN countries by using hybrid ARIMA-SVR and hybrid SEIR-ANN. The first hybrid is based on the time series model ARIMA, with the revision of the error is by using SVR. The second hybrid is based on the classical model of infectious diseases, SEIR, which we revise on the prediction part by using ANN. The hybrid is intended to revise the individual prediction model. The data collected per country was started from January 20, 2020 to August 5, 2020. The periods of lock-down in this study are divided into three, namely no lock-down, implemented lock-down, and the new normal periods. The strictness levels of lock-down were predicted for 60 days ahead. The results showed that the hybrid ARIMA-SVR had smaller RMSE compared with individual ARIMA, similarly, hybrid SEIR-ANN predicted S, E, I, and R more accurately compared with individual SEIR model. It has been also found that the lock-down was most effectively implemented in Thailand, Singapore, and Malaysia, whereas Indonesia and Philippines were inefficient countries to enforce the restriction. It is indicated by the number of cases increased significantly during the restriction periods in both countries

    Machine learning in drug supply chain management during disease outbreaks: a systematic review

    Get PDF
    The drug supply chain is inherently complex. The challenge is not only the number of stakeholders and the supply chain from producers to users but also production and demand gaps. Downstream, drug demand is related to the type of disease outbreak. This study identifies the correlation between drug supply chain management and the use of predictive parameters in research on the spread of disease, especially with machine learning methods in the last five years. Using the Publish or Perish 8 application, there are 71 articles that meet the inclusion criteria and keyword search requirements according to Kitchenham's systematic review methodology. The findings can be grouped into three broad groupings of disease outbreaks, each of which uses machine learning algorithms to predict the spread of disease outbreaks. The use of parameters for prediction with machine learning has a correlation with drug supply management in the coronavirus disease case. The area of drug supply risk management has not been heavily involved in the prediction of disease outbreaks

    Improving Patient Safety, Patient Flow and Physician Well-Being in Emergency Departments

    Get PDF
    Over 151 million people visit US Emergency Departments (EDs) annually. The diverse nature and overwhelming volume of patient visits make the ED one of the most complicated settings in healthcare to study. ED overcrowding is a recognized worldwide public health problem, and its negative impacts include patient safety concerns, increased patient length of stay, medical errors, patients left without being seen, ambulance diversions, and increased health system expenditure. Additionally, ED crowding has been identified as a leading contributor to patient morbidity and mortality. Furthermore, this chaotic working environment affects the well-being of all ED staff through increased frustration, workload, stress, and higher rates of burnout which has a direct impact on patient safety. This research takes a step-by-step approach to address these issues by first forecasting the daily and hourly patient arrivals, including their Emergency Severity Index (ESI) levels, to an ED utilizing time series forecasting models and machine learning models. Next, we developed an agent-based discrete event simulation model where both patients and physicians are modeled as unique agents for capturing activities representative of ED. Using this model, we develop various physician shift schedules, including restriction policies and overlapping policies, to improve patient safety and patient flow in the ED. Using the number of handoffs as the patient safety metric, which represents the number of patients transferred from one physician to another, patient time in the ED, and throughput for patient flow, we compare the new policies to the current practices. Additionally, using this model, we also compare the current patient assignment algorithm used by the partner ED to a novel approach where physicians determine patient assignment considering their workload, time remaining in their shift, etc. Further, to identify the optimal physician staffing required for the ED for any given hour of the day, we develop a Mixed Integer Linear Programming (MILP) model where the objective is to minimize the combined cost of physician staffing in the ED, patient waiting time, and handoffs. To develop operations schedules, we surveyed over 70 ED physicians and incorporated their feedback into the MILP model. After developing multiple weekly schedules, these were tested in the validated simulation model to evaluate their efficacy in improving patient safety and patient flow while accounting for the ED staffing budget. Finally, in the last phase, to comprehend the stress and burnout among attending and resident physicians working in the ED for the shift, we collected over 100 hours of physiological responses from 12 ED physicians along with subjective metrics on stress and burnout during ED shifts. We compared the physiological signals and subjective metrics to comprehend the difference between attending and resident physicians. Further, we developed machine learning models to detect the early onset of stress to assist physicians in decision-making

    Forecasting ward-level bed requirements to aid pandemic resource planning: Lessons learned and future directions

    Get PDF
    During the COVID-19 pandemic, there has been considerable research on how regional and country-level forecasting can be used to anticipate required hospital resources. We add to and build on this work by focusing on ward-level forecasting and planning tools for hospital staff during the pandemic. We present an assessment, validation, and deployment of a working prototype forecasting tool used within a modified Traffic Control Bundling (TCB) protocol for resource planning during the pandemic. We compare statistical and machine learning forecasting methods and their accuracy at one of the largest hospitals (Vancouver General Hospital) in Canada against a medium-sized hospital (St. Paul's Hospital) in Vancouver, Canada through the first three waves of the COVID-19 pandemic in the province of British Columbia. Our results confirm that traditional statistical and machine learning (ML) forecasting methods can provide valuable ward-level forecasting to aid in decision-making for pandemic resource planning. Using point forecasts with upper 95% prediction intervals, such forecasting methods would have provided better accuracy in anticipating required beds on COVID-19 hospital units than ward-level capacity decisions made by hospital staff. We have integrated our methodology into a publicly available online tool that operationalizes ward-level forecasting to aid with capacity planning decisions. Importantly, hospital staff can use this tool to translate forecasts into better patient care, less burnout, and improved planning for all hospital resources during pandemics

    Machine learning in healthcare : an investigation into model stability

    Full text link
    Current machine learning algorithms, when directly applied to medical data, often fail to provide a good understanding of prognosis. This study provides three pathways to make predictive models stable and usable for healthcare. When tested on heart failure and diabetes patients from a local hospital, this study demonstrated 20% improvement over existing methods.<br /
    • …
    corecore