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 The drug supply chain is inherently complex. The challenge is not only the 

number of stakeholders and the supply chain from producers to users but 

also production and demand gaps. Downstream, drug demand is related to 

the type of disease outbreak. This study identifies the correlation between 

drug supply chain management and the use of predictive parameters in 

research on the spread of disease, especially with machine learning methods 

in the last five years. Using the Publish or Perish 8 application, there are  

71 articles that meet the inclusion criteria and keyword search requirements 

according to Kitchenham's systematic review methodology. The findings can 

be grouped into three broad groupings of disease outbreaks, each of which 

uses machine learning algorithms to predict the spread of disease outbreaks. 

The use of parameters for prediction with machine learning has a correlation 

with drug supply management in the coronavirus disease case. The area of 

drug supply risk management has not been heavily involved in the prediction 

of disease outbreaks. 
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1. INTRODUCTION 

The coronavirus disease (COVID-19) pandemic event sparked research on forecasting the spread of 

disease outbreaks to a greater extent than in the past. The danger of COVID-19 urges the fulfillment of the 

need for COVID-19 drugs. The challenge for drug manufacturers and supply chain management is to meet 

the large and sudden demand for drugs [1]. The endpoint of drug supply chain management is on the side of 

the pharmacy user or patient. According to food and drug administration (FDA) [2], a long drug supply chain 

will complicate drug supply management and even become one of the triggers for drug shortages.  

Singh et al. [3] revealed that the pharmaceutical supply chain has a complexity that involves various 

stakeholders ranging from manufacturers, distributors, customers, information service providers, and the 

government as a regulatory agency. In addition, supply chains face environmental uncertainty, capacity 

planning, and inventory management [4]. Responding to the complexity of the drug supply chain,  

Lozano-Diez et al. [5] suggest taking advantage of technological developments. 

The use of technology is not only in production planning, distribution processes, and storage. There 

must be integral management from upstream to downstream, namely primary manufacturing, secondary 

manufacturing, distribution centers, wholesalers, and retailers/hospitals [6], [7]. In this industrial era 4.0, all 

https://creativecommons.org/licenses/by-sa/4.0/
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factors in supply chain activities are interrelated and should be integrated [6]. Downstream supply chain 

activities identifying and fulfilling user demands are directly related to activities in the distribution and 

manufacturing department [8]. Meanwhile, Karmaker and Ahmed [1] mentioned five indicators of drug 

supply resilience in drug supply activities: supply chain risk orientation, visibility, flexibility, supply agility, 

and collaboration. Indicators of drug supply resilience require a significant catalyst, namely information 

sharing. By sharing information, predictions based on field data become a source of drug demand forecasting 

and integration of supply processes. The downstream drug demand prediction determines all drug supply 

policies from upstream to downstream [9]. 

Predicting downstream drug demand to support drug supply management is a challenging task. 

There are many parameters and uncertainties from medical and non-medical variables. Identification of 

disease characteristics and patient care needs have dynamics of rapid change. Stakeholders involved in the 

drug supply chain must consider ambiguity and uncertainty from the user demand side [10], [11]. The 

COVID-19 pandemic is an example of the complexity of the uncertainty faced in the supply of medicines. 

Learning from the COVID-19 case reminds the correlation between the accuracy of predictions of epidemic 

cases in determining interventions, control strategies, and integrated decision-making [12]. Manufacturers 

and distributors expect downstream information to assist decision-makers in supply chain and patient 

healthcare decisions [13]. Thus, early detection of outbreaks helps stakeholders to plan drug production and 

distribution [14]. 

The development of machine learning technology in demand forecasting makes it possible to predict 

the spread of disease outbreaks by considering the external variables of drug distribution and availability in 

pharmaceutical units. The encounter of various data provides jobs for machine learning algorithms to 

uncover hidden patterns and the necessary knowledge from extensively stored information [15]. Furthermore, 

Muñoz et al. [13] stated that artificial neural networks in various supply chains use different variables to 

extract knowledge. In supply chain forecasting, the development of neural network techniques tends to be 

selected when anticipating market changes. 

When neural networks can predict new cases or disease progression Sutariya et al. [16], Wieczorek 

et al. [17], Merkuryeva et al. [18] said that the discussion of drug demand prediction models continues to 

evolve to improve accuracy. Improving prediction accuracy will help drug supply planning and distribution 

management to prevent drug shortages. He added that predictions would be more accurate if they were closer 

to the drug demand point [18]. Thus, the method for developing accurate predictions of the spread of 

epidemics does not ignore that drug supply management uses predictions as the basis for planning. A primary 

drug supply management interest is the planning and distribution process of drug supply to prevent drug 

shortages. The research challenge is approaching the prediction of drug supply amid uncertainty about the 

spread of disease using machine learning methods to determine the performance of drug supply management. 

To the best of our knowledge, drug demand prediction activities with machine learning have not been an  

in-depth discussion in research related to drug supply management. The literature study aims to analyze the 

correlation between machine learning prediction parameters and drug supply chain management in disease 

transmission research over the last five years.  

Next, the paper outlines in part 2 a brief theory of machine learning, drug supply chains, and 

disease outbreaks. Section 3 presents the method used in this literature study. Section 4 presents the 

results and discussion of the literature study. Finally, in Section 5, the conclusions answer the research 

questions. 

 

 

2. THEORETICAL BACKGROUND 

2.1.  Overview of machine learning 

Machine learning is a science that mimics the way humans learn to process data and use algorithms. 

Machines have adaptive mechanisms that allow learning from experience, examples, and analogies. Learning 

capabilities can improve as system performance improves over time. Learning mechanisms form the basis for 

adaptive systems [19]. 

The machine learning process occurs from self-learning activity without guidance. The existence of 

machine learning supports the field of data development science. Machine learning uses statistics and trained 

algorithms to make classifications and predictions [15]. Machine learning collects and stores enormous 

amounts of information and is constantly growing. That information exists across most application domains, 

such as business, the academic community, medicine, and the public. The machine learning activity extracts 

the collected data into knowledge to support decision-making [20]. There are three areas of machine learning: 

supervised, unsupervised, and reinforcement learning. 
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2.1.1. Supervised learning 

The focus of supervised learning is on accurate predictions. Machine learning works so well that 

previously unseen data reveals new information. Supervised learning begins by labeling the data collected. 

Learning outcomes produce a certain level of performance accuracy. Supervised learning methods are usually 

used for classification, regression, object detection, image captions, and semantic segmentation. A simple 

example, this method can be applied to determine whether the male face is different from the female face. By 

labeling face examples and gender labels, the machine learns to obey the rules for distinguishing male and 

female faces [21], [22]. 

 

2.1.2. Unsupervised learning 

Unsupervised learning classifies the collected data based on comparing the features and 

characteristics of the unlabeled data. The data classification aims to learn a reasonable and concise 

description of data. Meanwhile, learning techniques commonly used are clustering and data 

projection/preprocessing [21], [22]. The ultimate achievement of unsupervised learning focuses on data 

collection in subgroups, patterns, or clusters. 

 

2.1.3. Reinforcement learning 

The learning process allows feedback action to the algorithm. This method uses a dataset with a 

reward or punishment system. Reinforcement learning is a form of learning to map from situations to actions 

that maximize scalar rewards or reinforcement signals. Learning from the experience of certain 

circumstances, the learning agent takes appropriate steps to achieve long-term goals. Reinforcing targeted 

actions aim at long-term rewards. Trial seeking and delayed reward are two of the most important 

distinguishing features of reinforcement learning [21], [22]. 

 

2.2.  Drug supply chain 

The drug supply chain is a complex process with specialized operations. Strict restrictions and 

arrangements are made on supply and delivery channels to customers to prevent drug supply errors [18]. 

Many agents build supply and demand interactions. They participate in the supply process (upstream) and the 

patient care process (downstream). Franco and Alfonso-Lizarazo [23] stated that the pharmaceutical supply 

chain has the following two main elements: supply consists of i) drug manufacturers and distributors; 

demand consists of ii) pharmacies that order drugs from suppliers, maintain drug safety, manage drug 

supplies, and distributing drugs to hospitals; iii) hospitals that provide drugs to patients and order them from 

pharmacies or distributors; and iv) patients requiring treatment and medication Figure 1. 

 

 

 
 

Figure 1. Interaction in the pharmaceutical supply chain [23] 

 

 

Figure 1 shows the echelon and link under consideration in pharmacy and hospital. Decisions about 

ordering drugs from manufacturers and distributors are in these two units, as are decisions about managing 

drug storage and distribution. Lozano-Diez et al. [5] show in Figure 2, the five main areas of risk of failure of 

integrated operations in the case of drug supply in the public sector. Dispensing pharmacy is the meeting 

point of drug production and drug demand. All five areas have the same potential to contribute to failure in 

the drug supply chain process. Interrelated relations between areas will affect the resilience of supply. The 

small gap between demand and supply determines the resilience of the drug supply chain. 

Dispensing position Figure 2 is in the middle, allowing you to know the gap between demand and 

supply from producers. The challenge for dispensing is to convey demand predictions as accurately as 

possible to producers. Dispensing's success in sharing information with distribution units will also provide 
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readiness for drug supply disruptions. Predictive information helps supply chain operations to respond to 

unexpected risks. Zahiri et al. [6] stated that the problem must be local and not stop production at the primary 

producer level. Whereas in the area of demand, the participation of many agents and regulators is an effort to 

maintain drug supply in joint action [5], [6]. 

 

 

 
 

Figure 2. Drug supply process [5] 

 

 

Previously, Anaya-Arenas et al. [24] said that management needs to have a level of preparedness 

and mitigation, response, and recovery in an emergency. A resilient supply chain is able to identify risks, 

ameliorate impacts, and return quickly from human or natural events [25]. A risk manager can run a resilient 

supply chain by designing a pharmaceutical supply chain network and proactively conducting scenario 

analysis to support the development of risk response contingency plans and reactively analyzing impact and 

implementing recovery [26]. Management needs to design a strategy so that drug supply can quickly return to 

its normal position or to a more optimal position. In addition, drug supply management must recognize 

threats, possible losses, and similar incidents that will recur [27]. Management needs information to make 

decisions amidst epistemic and stochastic uncertainties [28]. 

 

2.3.  Disease outbreaks 

A disease becomes an epidemic when an increase in the number of cases of a disease in a local 

community, a given geographic area, or a season is high enough to cause an outbreak. Outbreaks occur when 

an infectious agent spreads directly between people, through exposure to animal reservoirs, insect or animal 

vectors, or other environmental sources. In addition, human behavior almost always contributes to the spread. 

Early detection of the spread of epidemics and reporting to the health office is important to prevent the spread 

of epidemics and minimize negative impacts on public health, society, and the economy [29]. 

To conclude that there is an outbreak in an area, cases occurring in that population require an 

epidemiological investigation (example: rabies, plague, and polio). Diseases that are unprecedented, 

irregular, and rare in a region also require investigation. An increase in the number of cases of the disease 

may occur in a wider geographic area. Epidemic cases can occur due to [30]: 

− Increase in the number or virulence of a new agent, 

− Introduction of new agents into new situations, 

− High mode of transmission, 

− Increased susceptibility of the human body's response, 

− Increased host exposure or new entry points. 

Systematic investigation and risk assessment of acute public health events are necessary to prevent a 

wider spread of the disease. Assessment involves measuring the likelihood of disease occurrence and its 

eventual impact on human society. For infectious diseases, the risk will relate to the size, characteristics, and 

living conditions of the person migrating. Migratory human behavior poses serious epidemic risks and health 

impacts. The risk depends on the previous immune status of the population and the variable threat at the 

destination [31]. For this reason, it is important to consider resources (human, laboratory, logistics, and 

materials) to anticipate an outbreak. Without adequate resources, the health system is weakened and the poor 

are increasingly at risk of outbreaks [32]. 
 

 

3. METHOD 

The literature review methodology proposed by Kitchenham [33] and Kitchenham et al. [34] 

became the reference for this research methodology. The research stages include planning, execution, and 

reporting. Figure 3 shows the process of activities in the literature review. 

 

3.1.  Planning the review 

The initial study identified the need for a review study obtained from research articles that attempted 

to increase the accuracy of drug demand predictions based on historical data and various methods to produce 

high accuracy. In addition, there are indications of drug shortages (large and small scale) in many 
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hospital/pharmacy units. Pharmaceuticals have yet to solve this problem. The research objective was to 

analyze the correlation between machine learning predictive parameters and drug supply chain management 

in disease transmission research. This study arranges research questions to achieve research intently, as 

follows:  

− What disease outbreaks have become research studies in the last five years? 

− What prediction methods are used in research to deal with disease outbreaks? 

− What parameters are considered in the use of prediction methods? 

− What is the influence (correlation) of the research prediction parameters with the field of drug supply 

management? 

This literature study covers more than one field of science (multidisciplinary). The study belongs to 

the field of computer science because of the machine learning methods and algorithms for prediction. In 

terms of a subject area, this study discusses diseases and drugs, which are part of health science. Finally, the 

study talks about the distribution of drugs to consumers, which is in the field of supply chain management. 

Therefore, the literature sources in this research are related to computer science, information systems, and 

pharmacy. This research uses the Publish or Perish 8 application from the digital library: Scopus and the 

National Library of Medicine (PubMed) to ensure the articles used were from accredited sources. The article 

search categories were from journals and conferences published in 2018 to 2022. 
 

 

 
 

Figure 3. Phases of systematic literature review activities 

 

 

3.2.  Conducting the review 

With the help of the Publish or Perish 8 application, search for articles that will become material for 

literature review using search terms in the title/keyword. The library search string used is (“machine 

learning”) AND (“predict” OR “prediction”) AND (“disease outbreaks” OR “endemic”). In the selection 

process, articles are subject to the following inclusion dan exclusion criteria Table 1. 

 

 

Table 1. Inclusion and exclusion criteria 
Inclusion Exclusion 

Only English 

Only Journal and Conference article 

Equivalent journal qualifications Q1, Q2, Q3, Q4 
Date of publication in between 2018-2022 

Papers based on quantitative or qualitative analysis or a 

mix both 

The research subject is not related by the research questions 

Any publication before the year 2018 

Papers with non-academic databases 
The type of study article is not systematic literature review 

Studies with non-full text articles 

Duplicate paper of the same study 

 

 

The selected articles have relevance to answering research questions so that the article criteria 

address at least one disease outbreak, refer to machine learning methods in the process of solving them, and 

see the prediction problem as a need in the drug supply chain as much as possible. Assessment of the quality 

of research articles uses the following questions so that the study articles have library materials with 

complete data answering research questions.  

− Was there a clearly stated research objective? 

− Is the article well designed to achieve its purpose? 

− Were the variables considered in the study identified? 

− Is the discipline clearly defined? 

− Were data collection methods adequately explained? 
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The article management process uses the Mendeley application to facilitate the conducting and data 

extraction. After reading the abstract and full article content, Table 2 shows the process of selecting articles 

by searching relevant bibliographic databases, identifying suitable studies, and extracting the results. 

Searches with keywords in the Scopus and PubMed libraries found 214 study articles. In the conducting 

process, the study removes articles that do not meet the inclusion and exclusion criteria Table 1. The most 

common cases of duplication of simultaneous publications are on Scopus and PubMed. At this selection 

stage, there were 96 articles that had abstract content in accordance with the purpose of this literature review. 

After reading the contents of the articles in more detail, there are 71 selected articles.  

 

 

Table 2. The outcome process of selecting, conducting, and studying relevance 
Sources Found Candidate (Title+abstract) Selected 

Scopus 140 65 50 

PubMed 74 31 21 

 

 

3.3. Reporting the review 

Researchers used a qualitative study approach. Concern over the issues of drug shortages, drug 

supply, and the development of drug demand predictions encourage researchers to approach each study 

material with a line of argument synthesis. The main issues in the research questions are identified and 

tabulated in a table and descriptions. Finally, this multidisciplinary study selected publications in Scopus-

indexed international journals. 

 

 

4. RESULTS AND DISCUSSION 

This section reports the results of a systematic literature review study. The first part will briefly look 

at the general description of the selected articles. The general description of the selected articles provides a 

viewpoint of the feasibility of the articles for review. Furthermore, the discovery of outbreaks over the past 

five years, methods of predicting outbreaks, and prediction parameters are the subject of discussion on how 

predictive research results support drug supply management. 

 

4.1. Overview of selected articles 

There are 71 selected articles from the Scopus and PubMed digital library databases. The percentage 

of the number of articles from the Scopus is greater than that of the PubMed because this literature review 

study focuses on machine learning Figure 4. During the conducting process, there were many copies of 

published articles on Scopus and PubMed. The possibility occurs because the topic is multidisciplinary. Any 

research result working on machine learning methods will publish an article in the science field. The 

possibility of the same research in medical journals occurs when the research discussion is in the medical 

journal. Researchers must read all the article to find out the research discussion area. 

 

 

 
 

Figure 4. Comparison of articles found in the Scopus and PubMed databases by keyword 

 

 

There are 24 author countries gathered in this study, but the number of author countries with more 

than one (1) article is 12 countries Figure 5. The composition of the author’s country representation can also 
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represent various parts of the world. The results of the selection of articles are representative enough to 

provide a view that the topic of using learning machines in the midst of an outbreak is a topic that is currently 

receiving the attention of researchers. China, England, and America still dominate research in this field. The 

number of developing countries that have conducted this research indicates that they are facing problems that 

are not much different. 

 

 

 
 

Figure 5. Composition of research countries with more than one (1) article 

 

 

4.2. Disease outbreaks that have been a research study in the last five years 

Of the 32 types of disease detected from the study, an outbreak study with more than two articles 

only had eight (8) types of disease. Figure 6 shows the eight types of epidemic disease that can be categorized 

into three disease categories, namely: i) epidemics with disease vectors in the form of mosquitoes (dengue fever, 

malaria, chikungunya, and zika); ii) outbreaks caused by viruses that attack the respiratory tract (influenza and 

COVID-19); and iii) outbreaks are caused by bacteria, viruses, and environmental contamination (foodborne 

food and diarrhea). Each category is marked with the same pattern in Figure 6. 

 

 

 
 

Figure 6. Number and distribution of diseases in case studies 

 

 

The three categories of disease outbreaks identified can occur in one country, several adjacent 

countries, and a wider area. Each country or continent region has different demographic, socio-cultural, 

economic community characteristics that are of great concern to researchers. The severity of the outbreak is 

also a concern for researchers, thus encouraging them to participate in preventing or inhibiting the rate of 

spread of outbreaks with research on predicting the spread of outbreaks. 
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4.3. Predictive methods used in research to address disease outbreaks 

In this literature study, the trend method approach is taken from the methods discussed in more than 

two (2) articles that conduct studies of certain disease outbreaks. Table 3 (see in Appendix) shows the eight 

outbreaks identified using machine learning algorithms according to the cases each one faces [35]–[91]. An 

interesting phenomenon is when more than one outbreak uses the same machine-learning method. There are 

indications that the use of machine learning is by the objectives to be achieved by research, but also (needs to 

be investigated more deeply) parameters that are not much different are used as parameters in learning. 

Based on the three outbreak categories in this study, the commonly used machine learning 

techniques are as follows: i) epidemics with disease vectors in the form of mosquitoes (dengue fever, malaria, 

chikungunya, and zika) using decision trees, regression, support vector regression (SVM), boosting 

algorithm, neural network; ii) outbreaks caused by viruses that attack the respiratory tract (Influenza and 

COVID-19) using naïve Bayes, SVM, boosting algorithm, decision tree learning, k-nearest neighbors (KNN), 

regression, neural network; iii) outbreaks are caused by bacteria, viruses, and environmental contamination 

using Bayesian Regression models, linear regression models, convolutional neural networks (CNNs), long 

short-term memory networks (LSTMs) and SVMs. Different approaches can complement the limitations of 

previous research or improve what is still lacking, such as increasing accuracy in supervised learning. 

In the case of technique selection, Benedum et al. [76] developed machine learning (ML), regression, 

and time series models to predict dengue rates over weekly time periods. The data for the forecast uses weekly 

dengue fever outbreak monitoring data and available weather data. Meanwhile Jain et al. [74] considers the use 

of parameters of meteorological data, clinical, disease surveillance lag variables, socioeconomic, and spatial 

dependence coding on dengue transmission. In one-month intervals, they developed generalized additive 

models (GAMs) to synchronize the relationship between predictors and clinical data of dengue hemorrhagic 

fever (DHF). Both of these studies sufficiently show that the use of techniques is always related to the 

parameters. Comparison between ML techniques to obtain high accuracy needs to consider the level of 

parameter development. 

An interesting study was conducted by Raizada et al. [75], when they combined machine learning 

algorithms for prediction studies of mosquito vector-borne disease outbreaks for all three diseases 

(chikungunya, dengue, and malaria). They built the CNN-multimodal disease outbreak prediction (CNN-

MDOP) algorithm. Future studies can increase the accuracy by 88% by increasing the accuracy of 

demographic data, meteorological data, and disease outbreak prediction. Saha et al. [86] found a challenge to 

elucidate the etiology of meningitis in Bangladesh. At that time, they conducted validation and application 

studies of unbiased metagenomic next-generation sequencing (mNGS) to elucidate the etiology of meningitis 

in Bangladesh. They used cerebrospinal fluid (CSF) specimens from patients admitted to the largest 

children's hospital. In cases of disease of unknown cause (idiopathic), mNGS identified a potential bacterial 

or viral etiology in 40% of supervised machine learning algorithms. In this case, the discovery of disease-

causing knowledge is useful for determining the production and distribution of drugs for healing. 
 

4.4. The parameters to be considered in the use of the prediction method 

With the formation of three categories of disease outbreaks, the characteristics of the disease are 

found in clinical data, patient history, and the spread of disease that is influenced by natural factors. The 

parameters used for the eight types of outbreaks are also not much different. Parameters are determined for 

training because they are involved in determining whether the disease can be dangerous or not. 

Parameter areas that are widely used are related to disease symptoms, disease history, distribution 

patterns, climate-meteorological aspects, demographic information about the outbreak environment, mobility 

behavior of sick people, and real-time data about the rate of disease spread. It needs an in-depth discussion, 

prediction of the spread of disease is not only done for health prediction or knowledge. Accurate predictions 

will correlate with drug supply and availability in pharmaceutical units.  

Complete parameters in the disease spread prediction model are not guaranteed to improve accuracy. 

Environmental aspects, the level of socio-economic awareness of the community, the characteristics of the 

causes of outbreaks, and geographical conditions have dynamic features that will affect the prediction results. 

For Santosh [56], continuous and unprecedented factors must receive attention in designing complex 

predictive models. He proposes not to rely solely on random parameter-driven stochastic or discrete 

indicators. Epidemiological characteristics (of the disease) can form the basis of initial consideration for 

predictive models. According to Pourghasemi et al. [55], the selection of predictor variables was based on a 

literature review and expert knowledge related to disease outbreaks. These considerations are relevant when 

finding several conditions that differ from one area to another.  

From Table 4 (see in Appendix) the parameter column shows several indications of data collection 

from government health institutions and other trusted health organizations/associations. Recent developments 

and disease outbreak predictions take data from web searches Google Trends and social media such as 
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Twitter and Weibo. Dissemination of information from patients, families, and people affected by the 

outbreak on the internet media can be a source of information in predicting disease outbreaks. Identification 

of “sick posts” by social media users reporting symptoms and diagnoses for either themselves or others 

regarding the COVID-19 outbreak can be classified by machine learning [53]. The prediction results using 

the social networking site (SNS) model in tracking disease outbreaks can detect COVID-19 accurately, as an 

initial stage, before official information from the outbreak information center [54]. It is similar to taking data 

from the main topic of each news article. Subsequent research has led to the identification of news articles 

and related events that refer to the symptoms of the disease in question [35], [36]. 

 

4.5. Correlation of research prediction parameters with drug supply management area 

Each outbreak has its own characteristics according to the disease vector and its spread. These 

characteristic differences affect the determination of parameter weights which can improve prediction 

accuracy. The discussion of determining close predictive parameters on outbreak characteristics requires 

further research. However, the third column of Table 4 shows the relationship between the parameters used in 

the drug supply management area. Based on drug supply chain theory and the five integrated operational 

failure risk areas in the case of public sector drug supply (Figures 1 and 2), we identify the parameters used 

in the prediction of the eight outbreaks into supply chain management areas: planning, production, 

distribution, storage, and risk of supply chain. 

Table 5 shows the correlation of the predicted spread of eight outbreaks using predictive parameters 

that relate to at least two areas of drug supply management. In influenza outbreaks, predictive parameters 

showed correlations in determining the amount and type of drug production and distribution, management of 

drug storage, and planning of type and distribution pattern. However, in this literature study, articles 

predicting the spread of influenza outbreaks have not found parameters that discuss the risk of drug supply. 

In the case of COVID-19, Table 5 shows that the researchers developed the most extensive 

parameters. The spread of COVID-19 and the high death toll have prompted a large-scale study. The 

correlation between the parameters used and the area of drug supply management indicates a large study. 

There is a sizable difference in research between COVID-19 and other outbreak cases. In cases of others 

outbreaks, there are not many prediction parameters that consider the risk areas of drug supply. 

 

 

Table 5. Parameter used to eight types of diseases 
Diseases Planning Production Distribution Storage Risk of Supply Chain 

Influenza     0 

COVID-19      

Diarrhea  0 0 0  

Foodborne Disease  0   0 

Dengue fever     0 

Chikungunya 0    0 
Malaria     0 

Zika     0 

=parameters are in the areas of drug supply management 
0=parameters are not in the areas of drug supply management 

 

 

4.6. Practical implications and limitations 

The correlation of research prediction parameters to drug supply management has practical 

implications for predictions by machine learning and drug supply management. In terms of developing 

machine learning, increasing the accuracy of predicting drug demand is developing by taking data from 

social media and real-time media for monitoring the spread of outbreaks [35], [36], [43], [45], [46], [54], 

[57], [90]. The development of drug demand prediction parameters supports the development of drug 

distribution chain models. Predicting the spread of outbreaks in an area is a consideration for the resilience of 

the drug supply chain. Parameters of the outbreak spread can be an early indication of the need for a drug 

supply model on a national and regional scale. 

The spread of the COVID-19 outbreaks and the dangers to human health have triggered the use of 

deep learning machine technology by no longer relying on historical disease and patient data. The basic 

prediction parameters from disease characteristic data, patient distribution data, data from trusted 

government/private health institutions, data related to climatological-meteorological conditions, and socio-

demographics of the developing community to traffic data related to epidemic diseases. For drug 

manufacturers, data on developments to predict the spread of disease form the basis for planning drug 

production and distribution. Predicting drug demand by observing the real-time conditions where an outbreak 

occurs or is likely to expand will add value to the accuracy of the prediction. In more depth, future research 

can examine the predictive parameters of types of diseases with high mortality values in a region. 
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The role of machine learning in predicting the spread of disease outbreaks triggers the integrated 

drug supply management process. We can take the example of demographic parameters in predictions. 

Mobility and population density will affect the forecasting of disease outbreaks [56], [72]. From the 

prediction results with demographic parameters, drug supply management cannot ignore the risk factors of 

the supply chain. In the case of parameters, changes in social and economic characteristics for types of 

foodborne diseases and diarrhea can be significant in predictions. Dynamic changes in the field can affect 

prediction accuracy and drug supply management. Practical implications, changes in the direction of research 

from the smooth distribution of drugs and predictions of drug demand need to find common ground towards 

integrated drug supply information management. 

This study attempts to place predictive parameters as a factor integrating drug demand prediction 

research in drug supply management. The limitation of this study is that it does not provide specific 

recommendations or solutions to improve drug supply chain management or predict disease outbreaks due to 

the extensive discussion on disease outbreaks in general. In future research, predictive parameter research 

using the machine learning method of a disease outbreak in a region can be one of the factors in developing 

drug supply management. 

 

 

5. CONCLUSION 

This literature study found three categories of epidemic causes with eight types of diseases, namely  

i) mosquitoes as disease vectors (dengue fever, malaria, chikungunya, and zika); ii) viruses that attack the 

respiratory tract (influenza and COVID-19); and iii) bacteria, viruses, and environmental pollution (foodborne 

food and diarrhea). The character of the vector carrying the disease also determines the characteristics of the 

spread of the disease and the prediction method used. The use of machine learning methods to predict the spread 

of disease during epidemics is still within the technical scope of using combination/hybrid/ensemble methods. 

No single approach method has high accuracy. Disease characteristics and external (non-clinical) factors 

determine the prediction method used. In addition to clinical and non-clinical characteristic parameters, public 

data via social media tends to attract researchers' interest. 

This study also reveals that predictive results can support drug planning, production, distribution, 

and storage. Meanwhile, there are not many studies using predictive results to assess risk factors for drug 

supply. This research contribution identifies a strong correlation between the learning parameters of the 

COVID-19 outbreak in machine learning and the field of drug supply management.  

This literature review can be a starting point for further studies focusing on the latest methods in 

prediction for various disease categories that will assist future research. Comparative research on prediction 

methods and parameter determination tests in the risk area of drug supply to what extent provides increased 

prediction accuracy. Likewise, the effectiveness and efficiency of the prediction approach will be the 

attractiveness of its application to various types of diseases. The achievement of effectiveness and efficiency 

has led to research into integrated drug supply systems and deep-learning hybrid methods. 
 

 

APPENDIX 
 

 

Table 3. Methods of approaches to eight types of diseases 
Epidemic of a 

disease (number of 

case articles) 

Selected 

articles 

Approach method* 

Influenza (15) [35]–[49] − Convolutional neural network (CNN), long short-term memory network (LSTM), least 

absolute shrinkage and selection operator (LASSO) 

− Bayesian, ProMED, the program for monitoring emerging diseases, and HealthMap 

− The dynamic network marker/biomarker (DNM/DNB) method 

− The cross industry standard process for data mining (CRISP–DM), Boolean weighting,  

term frequency weighting (TF), inverse document frequency weighting (IDF), and  

TF-IDF, FastText, random forest (RF), naïve Bayes, support vector regression (SVM), C 4.5 
decision tree (DT), k-nearest neighbors (KNN), and AdaBoost, linear regression model 

− Auto-regressive integrated moving average (ARIMA), RF, SVM, and extreme gradient 

boosting (XGBoost) 

− Feedforward neural network (FFNN), beta regression, box Jenkins model, multivariate 

adaptive regression splines, variable selection, Bayesian model averaging 

− Improved particle swarm optimization algorithm to optimize the parameters of support 

vector regression (IPSO-SVR) 

− Linear autoregression (AR), linear network autoregression, random forest, training and 

hyperparameter selection 

− LSTM, the Pearson correlation coefficient (PCC) 
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Table 3. Methods of approaches to eight types of diseases (continue) 
Epidemic of a 

disease (number of 

case articles) 

Selected 
articles 

Approach method* 

Influenza (15) [35]–[49] − The augmented regression with general online data (ARGO) model, the net model, the 

autoregressive model 

− RF and SVM, multi-layer perceptron (MLP) models, logistic regressor (LR) models, 

medical statistics 

− The classification and regression tree-decision tree (CART-DT) algorithm, SVM and 

backward propagation (BP) neural network, combining CART, XGBoost, and LightGBM 

− LASSO regression, analysis retrospective 

COVID-19 (17) [41], [44], 
[50]–[64] 

− Distributed machine learning and blockchain, neural network 

− DT, extra trees, KNN, multilayer perceptron, SVM, RF 

− Curve-fitting models, agent-based models, susceptible-exposed-infectious-removed or 

susceptible, infected, and recovered (SEIR/SIR) models 

− Spatial modeling, risk mapping, and change detection of COVID-19, RF, machine 

learning technique (MLT), LASSO algorithm 

− The time series forecasting method, ML approach, WEKA 

− Mathematical approaches based on susceptible, infected, and recovered (SIR) cases and 

susceptible, exposed, infected, quarantined, and recovered (SEIQR) cases models, 
prophet algorithm, Broyden–Fletcher–Goldfarb–Shanno (BFGS), conjugate gradients 

(CG), limited memory bound constrained BFGS (L-BFGS-B), and Nelder–Mead 

− A geographic information system (GIS)-based machine learning algorithm (MLA), SVM, 

− ARIMA, FFNN, MLP, and LSTM 

− Genomic features, analysis of variance (ANOVA), LASSO, ridge regression shrinkage 

− A hybrid architecture including CNN, LSTM, convolutional autoencoder (CAE) 

− LSTM, CNN, decision tree 

− Logistic regression (LR), SVM, XGBoost, MLP 

− Natural language processing (NLP), TF-IDF, Glove, and FastText, SVM, XgBoost, LR, 

and RF, SVR, Prophet, and deep learning models like LSTM 

− RF, FFNN, Transfer: TrAdaBoost algorithm, ML algorithms 

− RF and SVM models, deep neural network (DNN) in the form of MLP models. Logistic 

regressor (LR), medical statistics 

− ML, linear regression model 

− SVM, KNN, dan naïve Bayes (NB), N-gram; TF-IDF 

Diarrhea (3) [65]–[67] − CNNs, LSTM, a traditional ML, SVM 

− SVMs, LSTM, CNNs, relevance estimation and value calibration (REVAC) 

Foodborne Disease 
(4) 

[68]–[71] − LASSO, XGBoosting 

− XGBoost, multigraph structured LSTM network 

− The language model BERTweet, a variant of bidirectional encoder representations from 

transformers (BERT)-Twitter 

− Bayesian regression model, linear regression model, ElasticNet regression model, support 

vector machine regression (SVR) model, gradient boosting regression (GBR) model 

Dengue fever (14) [41], [72]–

[84] 
− Generalized additive models (GAM); quasi-poisson regression; distributed lag non-

linear models (DLNM) 

− Predictive flushing-mosquito model (PLUM), univariate flagging algorithm (UFA), 

statistic model 

− LSTM, transfer learning (TL) 

− Decision trees (CART), MLP, SVM (linear, polynomial, radial basis function (RBF)), 

and Bayes network (TAN) 

− The ARIMA, RF, and ANN models 

− DT, DNN, and the logistic regression 

− Bayes network (BN), SVM, RBF tree, decision table and naive Bayes 

− ML, regression, and time series models to forecast 

− Local-in-time SVM classifiers, SVMs, a binary classifier 

− SVM, leave-time-out cross validation (LTO-CV) 

− RF, FFNN, TrAdaBoost algorithm, ML algorithms 

− Statistical analysis, CNN multimodal disease outbreak prediction (CNN-MDOP) 

algorithm 

Chikungunya (3) [75], [85], 

[86] 
− Statistical analysis, CNN-MDOP 

− Latent class cluster analysis (LCCA), Newton-Raphson algorithms 

− Unbiased Ribonucleic acid (RNA) metagenomic next-generation sequencing (mNGS), 

the Idseq bioinformatics pipeline and ML 

Malaria (4) [75], [87]–

[89] 
− RF 

− The k-means clustering, XGBoost, 

− Statistical analysis CNN-MDOP 

− Lag-regression analysis 

Zika (3) [41], [90], 
[91] 

− Backward propagation neural network (BPNN), gradient boosting machine (GBM), RF 

− SVM, semi-supervised learning (SSL), and deep neural network 

− RF, FFNN, TrAdaBoost algorithm, ML algorithms 

 *The approach method used generally does not only take one method of approach, but a combination/hybrid/assemble approach. 
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Table 4. Parameter used to eight types of diseases and correlation in the drug supply chain  
Epidemic of 

a disease 
(number of 

case articles) 

Parameters used Parameter correlation in the drug supply chain 

area 

Influenza 
(15) 

− Symptoms of disease 

− Measures to control epidemic spread, host and environmental 

susceptibility, pathogen transmission, population density, and 
health care capacity 

− Historical disease information in the clinic and new 

discriminant input patterns 

− Sentiment analysis and keyword occurrences related to 

disease 

− Graph of disease visit surveillance data both from the health 

department and patient medical records 

− Records of historical disease symptoms, Google search data, 

meteorological data - Atmospheric data 

− Historical/non-real time data from the Epidemic Center and 

real-time Twitter data 

− Availability of Regional Datasets on the spread of disease 

and social media 

− Word embedding options regarding outbreak, tokenization, 

and time series conversion data 

− Google search activity, real-time weather and local 

information, flu-related Twitter micro-blogs, electronic 

health record data, and disease activity synchronicity history 
across regions 

− Data on symptoms of similar diseases 

− Data on medical records and data on the spread of epidemics 

from government health departments 

− The daily number of influenza incidence and meteorological 

data: temperature, precipitation, wind speed, relative 

humidity, air pressure, daily radiation 

− Keyword search logs 

− Web search queries 

− Dynamics of information related to the 

development of up-to-date and reliable 

outbreak information data: the current 

epidemiological, demographic and 
meteorological situation, and the environment 

(consideration of the amount and type of drug 

production and drug distribution) 

− Update historical data comparing with 

historical drug supply (drug storage and 
distribution considerations) 

− Consideration of the type and quantity of drug 

supply following the epidemic pattern 

(consideration of drug production and supply) 

− External: Twitter, online news articles, and 

Google Flu Trends (GFT) up-to-date and 

reliable data: current epidemiological, 
demographic and environmental situation. 

Early indication of drug demand dynamics in a 

particular area. External information 
accompanies existing data in the health 

department and hospital/pharmacy 

(consideration of planning types of drugs and 
supplies) 

− External: updating the data base on disease 

symptoms and pathology to determine the type 
of drug and the need for similar drugs 

(consideration of the production of the type of 

drug needed) 

COVID-19 

(17) 
− Patient data records 

− Symptoms of disease 

− Characteristics of the disease and level of care of the patient, 

including: i) hospital setting/capacity; ii) test capacity/rate 
(daily); iii) demographics; iv) population density;  

v) vulnerable people; and vi) income versus commodities 

(poverty) 

− 16 variables – active case data, died, and correlations 

between them. Transmission patterns and real demographic, 
climatological, and distribution cluster situations 

− Limited to data on confirmed cases, recovered cases and 

death cases 

− 16 effective factors: minimum temperature of coldest month, 

maximum temperature of warmest month, precipitation in 
wettest month, precipitation of driest month, distance from 

roads, distance from mosques, distance from hospitals, 

distance from fuel stations, human footprint, density of cities, 
distance from bus stations, distance from banks, distance 

from bakeries, distance from attraction sites, distance from 

automated teller machines (ATMs) and density of villages 

− Data on variations, trends and predictions from 2 health 

institutions 

− Disease characteristics (Virus) 

− Data on confirmed cases by time 

− Genome database and reservoir host disease characteristics 

− Embedding hybrid words related to epidemic cases 

− Comparison of patterns/symptoms of similar diseases 

− Data on medical records and data on the spread of epidemics 

− Disease data structure 

− Management of utilization of patient data 

records locally with privacy protection 
(Planning - hospital management 

considerations) 

− Preparedness for disaster mitigation of 

hospitals and pharmaceutical facilities, 

including the capacity of the facilities and the 

specific types of drugs needed (consideration 
of the risk of drug supply) 

− Updates on disease symptoms and pathology 

databases to determine drug types 

(consideration of drug supply and storage 

planning) 

− Data acquisition from several health 

institutions made awareness of the need for 
various stakeholders to build transparency of 

information on the dynamics of public health 

(consideration of planning and development of 

health units and risk management) 

− External: Twitter, Weibo (similar to Twitter); 

update data base of disease symptoms and 

pathology to determine the type of drug. 

Indication of the subsequent distribution of the 
drug in a specific area (drug distribution 

considerations – drug supply readiness) 

− Demand for similar drugs, up-to-date historical 

data for subsequent drug supply data, and 

development of vaccines and new drugs 

(consideration of proper quality drug 
production and prediction of the amount of 

supply to areas recorded by data) 

Diarrhea (3) − Climate variables in different geographic areas: rainfall, 

humidity, evaporation, and temperature climate variables 

− Climate change data: rainfall, humidity, evaporation, and 

temperature 

− Regional-geographical data on disease spread, climate 

change 

− Up-to-date and reliable data: current 

epidemiological, demographic, and 

environmental situation (considerations of drug 
supply planning and risk management) 
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Table 4. Parameter used to eight types of diseases and correlation in the drug supply chain (continue) 
Epidemic of a 

disease 

(number of 

case articles) 

Parameters used Parameter correlation in the drug supply chain 
area 

Diarrhea (3) − Climate variables in different geographic areas: rainfall, 

humidity, evaporation, and temperature climate variables 

− Climate change data: rainfall, humidity, evaporation, and 

temperature 

− Regional-geographical data on disease spread, climate change 

− Up-to-date and reliable data: current 

epidemiological, demographic, and 

environmental situation (considerations of drug 
supply planning and risk management) 

Foodborne 

Disease (4) 
− Information on environmental factors and foodborne diseases 

− Information from case reporting systems, outbreak 

monitoring systems, molecular tracking networks 

− Non-real time data center of the outbreak and real-time 

Twitter 

− Information on foodborne disease risk factors caused by the 

spread of water pollution, sick case data on Weibo, 

geographic location data of the water pollution plants 

− Updating of the disease symptom and pathology 

data base for determining the type of drug 
(consideration of drug production and 

distribution) 

− External: Twitter and Weibo, symptom and 

pathology data base updates for drug 

determination in certain areas (drug distribution 

considerations – drug supply readiness) 

Dengue fever 
(14) 

− Local meteorological data, clinical data, disease surveillance 

lag variables, socioeconomic data and spatial dependence 

coding data on DHF transmission 

− Data on the spread of dengue fever, population density, 

entomology and environment 

− Data on Human dengue cases per month and data on basic 

demographic characteristics (e.g., sex, age, nationality, and 

residential address) and time of occurrence related to the 
disease (e.g., date of onset, diagnosis, and death) 

− Meteorological data: 15 meteorological variables (i.e., 

extreme wind speed, maximum wind speed, average wind 

speed, minimum pressure, maximum pressure, average 

pressure, average water pressure, minimum air temperature, 
maximum air temperature, temperature average air, highest 

average daily temperature, lower average daily temperature, 

average daily precipitation, number of days with 
precipitation, and average relative humidity maximum 

pressure, average pressure, pressure average water, minimum 

air temperature, maximum air temperature, average daily 
highest temperature, average daily precipitation, number of 

days with precipitation, average relative humidity, 

geographical location 

− Baseline patient data, current data of rainfall, sea surface 

temperature, and temperature of outbreak sites 

− Clinical symptoms of dengue, a real-time surveillance 

system, climate variables such as temperature, wind speed, 

humidity and rainfall 

− Data on historic dengue cases, satellite-derived estimates for 

vegetation, precipitation, and air temperature, as well as 
population counts, income inequality, and education 

− Information on laboratory test results, four main variables 

[age, fever, white blood cell (WBC) count, and platelet 

count], compatible with clinical and epidemiological 

knowledge - vector population 

− Data on symptoms of similar diseases 

− Demographical data: positive cases; meteorological data: 

temperature, humidity, rainfall 

− Provision of drugs based on Medical Record 

data (planning considerations in pharmacy 

units) 

− Consideration of the type and quantity of drug 

supply following the epidemic pattern 

(consideration of drug production) 

− Update on disease symptoms and pathology 

data base for determining drug types 
(consideration of drug production and supply in 

pharmaceutical units) 

− Update historical data on the spread of 

epidemics with historical data on drug supply, 

documentation of pharmaceutical unit 
warehouse data and information on the need for 

similar drugs (consideration of drug storage) 

− Up-to-date and reliable data: current 

epidemiological, demographic, and environmental 

situation (considerations of drug planning and 
distribution) 

Chikungunya 

(3) 
− Demographic data: positive cases; meteorological data: 

temperature, humidity, rainfall 

− Data on clinical symptoms and variations in phenotypic 

response 

− Symptoms of disease and patient test results 

− Comparison of recent historical data on the 

spread of epidemics with historical drug supply 

(consideration of stock storage and distribution 

of drugs to certain areas) 

− Update data base on symptoms of disease and 

pathology for determining the type of drug 
(drug production considerations) 

Malaria (4) − Real-time information on transmission dynamics, parasite 

movements and reservoirs of infection 

− Data on malaria incidence and climate variability (rainfall, 

temperature and surface radiation) 

− Demographical data: positive cases; meteorological data: 

temperature, humidity, rainfall 

− Data on disease outbreak characteristics, tropical climate 

variability and associated sea surface temperatures over the 

Pacific and Indian Oceans 

− Consideration of the type and quantity of drug 

supply following the epidemic pattern 
(consideration of drug production) 

− Up-to-date and reliable data: current 

epidemiological, demographic, and environmental 

situation (considerations of drug planning and 

distribution) 

− Comparison of recent historical data on the 

spread of epidemics with historical drug supply 

(consideration of stock storage and distribution 

of drugs to certain areas) 
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Table 4. Parameter used to eight types of diseases and correlation in the drug supply chain (continue) 
Epidemic of 

a disease 
(number of 

case articles) 

Parameters used Parameter correlation in the drug supply chain 

area 

Zika (3) − Meteorological and environmental covariates, 

demographic distribution of mosquitoes, socioeconomic 

factors - human movement and urbanization 

− Data provided by MedIsys. Information on article title, 

description, publication date, original URL, language code, 

category indicating disease name, latitude and longitude 
are displayed as initial data for prediction 

− Comparison of symptoms of similar diseases 

− Consideration of the type and quantity of drug 

supply following the epidemic pattern 

(consideration of drug production) 

− External: the news article data. update data base 

on symptoms of disease and pathology for 

determining the type of drug (consideration of 
drug planning and distribution) 

− Need for similar drugs (consideration of drug 

production and storage) 
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