6,565 research outputs found

    Receding-horizon motion planning of quadrupedal robot locomotion

    Get PDF
    Quadrupedal robots are designed to offer efficient and robust mobility on uneven terrain. This thesis investigates combining numerical optimization and machine learning methods to achieve interpretable kinodynamic planning of natural and agile locomotion. The proposed algorithm, called Receding-Horizon Experience-Controlled Adaptive Legged Locomotion (RHECALL), uses nonlinear programming (NLP) with learned initialization to produce long-horizon, high-fidelity, terrain-aware, whole-body trajectories. RHECALL has been implemented and validated on the ANYbotics ANYmal B and C quadrupeds on complex terrain. The proposed optimal control problem formulation uses the single-rigid-body dynamics (SRBD) model and adopts a direct collocation transcription method which enables the discovery of aperiodic contact sequences. To generate reliable trajectories, we propose fast-to-compute analytical costs that leverage the discretization and terrain-dependent kinematic constraints. To extend the formulation to receding-horizon planning, we propose a segmentation approach with asynchronous centre of mass (COM) and end-effector timings and a heuristic initialization scheme which reuses the previous solution. We integrate real-time 2.5D perception data for online foothold selection. Additionally, we demonstrate that a learned stability criterion can be incorporated into the planning framework. To accelerate the convergence of the NLP solver to locally optimal solutions, we propose data-driven initialization schemes trained using supervised and unsupervised behaviour cloning. We demonstrate the computational advantage of the schemes and the ability to leverage latent space to reconstruct dynamic segments of plans which are several seconds long. Finally, in order to apply RHECALL to quadrupeds with significant leg inertias, we derive the more accurate lump leg single-rigid-body dynamics (LL-SRBD) and centroidal dynamics (CD) models and their first-order partial derivatives. To facilitate intuitive usage of costs, constraints and initializations, we parameterize these models by Euclidean-space variables. We show the models have the ability to shape rotational inertia of the robot which offers potential to further improve agility

    Detect-and-Track: Efficient Pose Estimation in Videos

    Full text link
    This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection and video understanding. Our method operates in two-stages: keypoint estimation in frames or short clips, followed by lightweight tracking to generate keypoint predictions linked over the entire video. For frame-level pose estimation we experiment with Mask R-CNN, as well as our own proposed 3D extension of this model, which leverages temporal information over small clips to generate more robust frame predictions. We conduct extensive ablative experiments on the newly released multi-person video pose estimation benchmark, PoseTrack, to validate various design choices of our model. Our approach achieves an accuracy of 55.2% on the validation and 51.8% on the test set using the Multi-Object Tracking Accuracy (MOTA) metric, and achieves state of the art performance on the ICCV 2017 PoseTrack keypoint tracking challenge.Comment: In CVPR 2018. Ranked first in ICCV 2017 PoseTrack challenge (keypoint tracking in videos). Code: https://github.com/facebookresearch/DetectAndTrack and webpage: https://rohitgirdhar.github.io/DetectAndTrack

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Shrimp feed formulation via evolutionary algorithm with power heuristics for handling constraints

    Get PDF
    Formulating feed for shrimps represents a challenge to farmers and industry partners. Most previous studies selected from only a small number of ingredients due to cost pressures, even though hundreds of potential ingredients could be used in the shrimp feed mix. Even with a limited number of ingredients, the best combination of the most appropriate ingredients is still difficult to obtain due to various constraint requirements, such as nutrition value and cost. This paper proposes a new operator which we call Power Heuristics, as part of an Evolutionary Algorithm (EA), which acts as a constraint handling technique for the shrimp feed or diet formulation. The operator is able to choose and discard certain ingredients by utilising a specialized search mechanism. The aim is to achieve the most appropriate combination of ingredients. Power Heuristics are embedded in the EA at the early stage of a semirandom initialization procedure. The resulting combination of ingredients, after fulfilling all the necessary constraints, shows that this operator is useful in discarding inappropriate ingredients when a crucial constraint is violated

    Modeling economic systems as locally-constructive sequential games

    Get PDF
    Real-world economies are open-ended dynamic systems consisting of heterogeneous interacting participants. Human participants are decision-makers who strategically take into account the past actions and potential future actions of other participants. All participants are forced to be locally constructive, meaning their actions at any given time must be based on their local states; and participant actions at any given time affect future local states. Taken together, these essential properties imply real-world economies are locally-constructive sequential games. This paper discusses a modeling approach, Agent-based Computational Economics, that permits researchers to study economic systems from this point of view. ACE modeling principles and objectives are first concisely presented and explained. The remainder of the paper then highlights challenging issues and edgier explorations that ACE researchers are currently pursuing

    Path planning algorithms for autonomous navigation of a non-holonomic robot in unstructured environments

    Get PDF
    openPath planning is a crucial aspect of autonomous robot navigation, enabling robots to efficiently and safely navigate through complex environments. This thesis focuses on autonomous navigation for robots in dynamic and uncertain environments. In particular, the project aims to analyze the localization and path planning problems. A fundamental review of the existing literature on path planning algorithms has been carried on. Various factors affecting path planning, such as sensor data fusion, map representation, and motion constraints, are also analyzed. Thanks to the collaboration with E80 Group S.p.A., the project has been developed using ROS (Robot Operating System) on a Clearpath Dingo-O, an indoor mobile robot. To address the challenges posed by unstructured and dynamic environments, ROS follows a combined approach of using a global planner and a local planner. The global planner generates a high-level path, considering the overall environment, while the local planner handles real-time adjustments to avoid moving obstacles and optimize the trajectory. This thesis describes the role of the global planner in a ROS-framework. Performance benchmarking of traditional algorithms like Dijkstra and A*, as well as other techniques, is fundamental in order to understand the limits of these methods. In the end, the Hybrid A* algorithm is introduced as a promising approach for addressing the issues of unstructured environments for autonomous navigation of a non-holonomic robot. The core concepts and implementation details of the algorithm are discussed, emphasizing its ability to efficiently explore continuous state spaces and generate drivable paths.The effectiveness of the proposed path planning algorithms is evaluated through extensive simulations and real-world experiments using the mobile platform. Performance metrics such as path length, execution time, and collision avoidance are analyzed to assess the efficiency and reliability of the algorithms.Path planning is a crucial aspect of autonomous robot navigation, enabling robots to efficiently and safely navigate through complex environments. This thesis focuses on autonomous navigation for robots in dynamic and uncertain environments. In particular, the project aims to analyze the localization and path planning problems. A fundamental review of the existing literature on path planning algorithms has been carried on. Various factors affecting path planning, such as sensor data fusion, map representation, and motion constraints, are also analyzed. Thanks to the collaboration with E80 Group S.p.A., the project has been developed using ROS (Robot Operating System) on a Clearpath Dingo-O, an indoor mobile robot. To address the challenges posed by unstructured and dynamic environments, ROS follows a combined approach of using a global planner and a local planner. The global planner generates a high-level path, considering the overall environment, while the local planner handles real-time adjustments to avoid moving obstacles and optimize the trajectory. This thesis describes the role of the global planner in a ROS-framework. Performance benchmarking of traditional algorithms like Dijkstra and A*, as well as other techniques, is fundamental in order to understand the limits of these methods. In the end, the Hybrid A* algorithm is introduced as a promising approach for addressing the issues of unstructured environments for autonomous navigation of a non-holonomic robot. The core concepts and implementation details of the algorithm are discussed, emphasizing its ability to efficiently explore continuous state spaces and generate drivable paths.The effectiveness of the proposed path planning algorithms is evaluated through extensive simulations and real-world experiments using the mobile platform. Performance metrics such as path length, execution time, and collision avoidance are analyzed to assess the efficiency and reliability of the algorithms

    Active and Physics-Based Human Pose Reconstruction

    Get PDF
    Perceiving humans is an important and complex problem within computervision. Its significance is derived from its numerous applications, suchas human-robot interaction, virtual reality, markerless motion capture,and human tracking for autonomous driving. The difficulty lies in thevariability in human appearance, physique, and plausible body poses. Inreal-world scenes, this is further exacerbated by difficult lightingconditions, partial occlusions, and the depth ambiguity stemming fromthe loss of information during the 3d to 2d projection. Despite thesechallenges, significant progress has been made in recent years,primarily due to the expressive power of deep neural networks trained onlarge datasets. However, creating large-scale datasets with 3dannotations is expensive, and capturing the vast diversity of the realworld is demanding. Traditionally, 3d ground truth is captured usingmotion capture laboratories that require large investments. Furthermore,many laboratories cannot easily accommodate athletic and dynamicmotions. This thesis studies three approaches to improving visualperception, with emphasis on human pose estimation, that can complementimprovements to the underlying predictor or training data.The first two papers present active human pose estimation, where areinforcement learning agent is tasked with selecting informativeviewpoints to reconstruct subjects efficiently. The papers discard thecommon assumption that the input is given and instead allow the agent tomove to observe subjects from desirable viewpoints, e.g., those whichavoid occlusions and for which the underlying pose estimator has a lowprediction error.The third paper introduces the task of embodied visual active learning,which goes further and assumes that the perceptual model is notpre-trained. Instead, the agent is tasked with exploring its environmentand requesting annotations to refine its visual model. Learning toexplore novel scenarios and efficiently request annotation for new datais a step towards life-long learning, where models can evolve beyondwhat they learned during the initial training phase. We study theproblem for segmentation, though the idea is applicable to otherperception tasks.Lastly, the final two papers propose improving human pose estimation byintegrating physical constraints. These regularize the reconstructedmotions to be physically plausible and serve as a complement to currentkinematic approaches. Whether a motion has been observed in the trainingdata or not, the predictions should obey the laws of physics. Throughintegration with a physical simulator, we demonstrate that we can reducereconstruction artifacts and enforce, e.g., contact constraints

    Compilation and Scheduling Techniques for Embedded Systems

    Get PDF
    Embedded applications are constantly increasing in size, which has resulted in increasing demand on designers of digital signal processors (DSPs) to meet the tight memory, size and cost constraints. With this trend, memory requirement reduction through code compaction and variable coalescing techniques are gaining more ground. Also, as the current trend in complex embedded systems of using multiprocessor system-on-chip (MPSoC) grows, problems like mapping, memory management and scheduling are gaining more attention. The first part of the dissertation deals with problems related to digital signal processors. Most modern DSPs provide multiple address registers and a dedicated address generation unit (AGU) which performs address generation in parallel to instruction execution. A careful placement of variables in memory is important in decreasing the number of address arithmetic instructions leading to compact and efficient code. Chapters 2 and 3 present effective heuristics for the simple and the general offset assignment problems with variable coalescing. A solution based on simulated annealing is also presented. Chapter 4 presents an optimal integer linear programming (ILP) solution to the offset assignment problem with variable coalescing and operand permutation. A new approach to the general offset assignment problem is introduced. Chapter 5 presents an optimal ILP formulation and a genetic algorithm solution to the address register allocation problem (ARA) with code transformation techniques. The ARA problem is used to generate compact codes for array-intensive embedded applications. In the second part of the dissertation, we study problems related to MPSoCs. MPSoCs provide the flexibility to meet the performance requirements of multimedia applications while respecting the tight embedded system constraints. MPSoC-based embedded systems often employ software-managed memories called scratch-pad memories (SPM). Scheduling the tasks of an application on the processors and partitioning the available SPM budget among those processors are two critical issues in reducing the overall computation time. Traditionally, the step of task scheduling is applied separately from the memory partitioning step. Such a decoupled approach may miss better quality schedules. Chapters 6 and 7 present effective heuristics that integrate task allocation and SPM partitioning to further reduce the execution time of embedded applications for single and multi-application scenarios

    TossingBot: Learning to Throw Arbitrary Objects with Residual Physics

    Full text link
    We investigate whether a robot arm can learn to pick and throw arbitrary objects into selected boxes quickly and accurately. Throwing has the potential to increase the physical reachability and picking speed of a robot arm. However, precisely throwing arbitrary objects in unstructured settings presents many challenges: from acquiring reliable pre-throw conditions (e.g. initial pose of object in manipulator) to handling varying object-centric properties (e.g. mass distribution, friction, shape) and dynamics (e.g. aerodynamics). In this work, we propose an end-to-end formulation that jointly learns to infer control parameters for grasping and throwing motion primitives from visual observations (images of arbitrary objects in a bin) through trial and error. Within this formulation, we investigate the synergies between grasping and throwing (i.e., learning grasps that enable more accurate throws) and between simulation and deep learning (i.e., using deep networks to predict residuals on top of control parameters predicted by a physics simulator). The resulting system, TossingBot, is able to grasp and throw arbitrary objects into boxes located outside its maximum reach range at 500+ mean picks per hour (600+ grasps per hour with 85% throwing accuracy); and generalizes to new objects and target locations. Videos are available at https://tossingbot.cs.princeton.eduComment: Summary Video: https://youtu.be/f5Zn2Up2RjQ Project webpage: https://tossingbot.cs.princeton.ed
    corecore