128 research outputs found

    Distributed architecture to enhance systems protection against unauthorized activity via USB devices

    Get PDF
    Cyberattacks exploiting Universal Serial Bus (USB) interfaces may have a high impact on individual and corporate systems. The BadUSB is an attack where a USB device’s firmware is spoofed and, once mounted, allows attackers to execute a set of malicious actions in a target system. The countermeasures against this type of attack can be grouped into two strategies: phyiscal blocking of USB ports and software blocking. This paper proposes a distributed architecture that uses software blocking to enhance system protection against BadUSB attacks. This architecture is composed of multiple agents and external databases, and it is designed for personal or corporate computers using Microsoft Windows Operating System. When a USB device is connected, the agent inspects the device, provides filtered information about its functionality and presents a threat assessment to the user, based on all previous user choices stored in external databases. By providing valuable information to the user, and also threat assessments from multiple users, the proposed distributed architecture improves system protection

    Insider Threat Detection on the Windows Operating System using Virtual Machine Introspection

    Get PDF
    Existing insider threat defensive technologies focus on monitoring network traffic or events generated by activities on a user\u27s workstation. This research develops a methodology for signaling potentially malicious insider behavior using virtual machine introspection (VMI). VMI provides a novel means to detect potential malicious insiders because the introspection tools remain transparent and inaccessible to the guest and are extremely difficult to subvert. This research develops a four step methodology for development and validation of malicious insider threat alerting using VMI. Six core use cases are developed along with eighteen supporting scenarios. A malicious attacker taxonomy is used to decompose each scenario to aid identification of observables for monitoring for potentially malicious actions. The effectiveness of the identified observables is validated through the use of two data sets, one containing simulated normal and malicious insider user behavior and the second from a computer network operations exercise. Compiled Memory Analysis Tool - Virtual (CMAT-V) and Xen hypervisor capabilities are leveraged to perform VMI and insider threat detection. Results of the research show the developed methodology is effective in detecting all defined malicious insider scenarios used in this research on Windows guests

    Emulating Industrial Control System Field Devices Using Gumstix Technology

    Get PDF
    Industrial Control Systems (ICS) have an inherent lack of security and situational awareness capabilities at the field device level. Yet these systems comprise a significant portion of the nation\u27s critical infrastructure. Currently, there is little insight into the characterization of attacks on ICS. Stuxnet provided an initial look at the type of tactics that can be employed to create physical damage via cyber means. The question still remains, however, as to the extent of malware and attacks that are targeting the critical infrastructure, along with the various methods employed to target systems associated with the ICS environment. This research presents a device using Gumstix technology that emulates an ICS field device. The emulation device is low-cost, adaptable to myriad ICS environments and provides logging capabilities at the field device level. The device was evaluated to ensure conformity to RFC standards and that the operating characteristics are consistent with actual field devices

    Enabling an Anatomic View to Investigate Honeypot Systems: A Survey

    Get PDF
    A honeypot is a type of security facility deliberately created to be probed, attacked, and compromised. It is often used for protecting production systems by detecting and deflecting unauthorized accesses. It is also useful for investigating the behavior of attackers, and in particular, unknown attacks. For the past 17 years plenty of effort has been invested in the research and development of honeypot techniques, and they have evolved to be an increasingly powerful means of defending against the creations of the blackhat community. In this paper, by studying a wide set of honeypots, the two essential elements of honeypots—the decoy and the captor—are captured and presented, together with two abstract organizational forms—independent and cooperative—where these two elements can be integrated. A novel decoy and captor (D-C) based taxonomy is proposed for the purpose of studying and classifying the various honeypot techniques. An extensive set of independent and cooperative honeypot projects and research that cover these techniques is surveyed under the taxonomy framework. Furthermore, two subsets of features from the taxonomy are identified, which can greatly influence the honeypot performances. These two subsets of features are applied to a number of typical independent and cooperative honeypots separately in order to validate the taxonomy and predict the honeypot development trends

    The Proceedings of 15th Australian Information Security Management Conference, 5-6 December, 2017, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fifteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The papers cover topics from vulnerabilities in “Internet of Things” protocols through to improvements in biometric identification algorithms and surveillance camera weaknesses. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Twenty two papers were submitted from Australia and overseas, of which eighteen were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conference. To our sponsors, also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    High-Fidelity Provenance:Exploring the Intersection of Provenance and Security

    Get PDF
    In the past 25 years, the World Wide Web has disrupted the way news are disseminated and consumed. However, the euphoria for the democratization of news publishing was soon followed by scepticism, as a new phenomenon emerged: fake news. With no gatekeepers to vouch for it, the veracity of the information served over the World Wide Web became a major public concern. The Reuters Digital News Report 2020 cites that in at least half of the EU member countries, 50% or more of the population is concerned about online fake news. To help address the problem of trust on information communi- cated over the World Wide Web, it has been proposed to also make available the provenance metadata of the information. Similar to artwork provenance, this would include a detailed track of how the information was created, updated and propagated to produce the result we read, as well as what agents—human or software—were involved in the process. However, keeping track of provenance information is a non-trivial task. Current approaches, are often of limited scope and may require modifying existing applications to also generate provenance information along with thei regular output. This thesis explores how provenance can be automatically tracked in an application-agnostic manner, without having to modify the individual applications. We frame provenance capture as a data flow analysis problem and explore the use of dynamic taint analysis in this context. Our work shows that this appoach improves on the quality of provenance captured compared to traditonal approaches, yielding what we term as high-fidelity provenance. We explore the performance cost of this approach and use deterministic record and replay to bring it down to a more practical level. Furthermore, we create and present the tooling necessary for the expanding the use of using deterministic record and replay for provenance analysis. The thesis concludes with an application of high-fidelity provenance as a tool for state-of-the art offensive security analysis, based on the intuition that software too can be misguided by "fake news". This demonstrates that the potential uses of high-fidelity provenance for security extend beyond traditional forensics analysis

    Analysis of CSIRT/SOC Incidents and Continuous Monitoring of Threats

    Get PDF
    Security Operations Centers (SOC) contain a wealth of data which, if properly classified and tagged upfront, can yield a wealth of real-time information about your organizations IT Security posture, risks, and threats. These include answers to relevant and actionable questions such as: What are our biggest threats? Who is attacking us and what do they want? What controls are working or not working? How effective was the new technology we just implemented? What is our ROI

    Packet analysis for network forensics: A comprehensive survey

    Get PDF
    Packet analysis is a primary traceback technique in network forensics, which, providing that the packet details captured are sufficiently detailed, can play back even the entire network traffic for a particular point in time. This can be used to find traces of nefarious online behavior, data breaches, unauthorized website access, malware infection, and intrusion attempts, and to reconstruct image files, documents, email attachments, etc. sent over the network. This paper is a comprehensive survey of the utilization of packet analysis, including deep packet inspection, in network forensics, and provides a review of AI-powered packet analysis methods with advanced network traffic classification and pattern identification capabilities. Considering that not all network information can be used in court, the types of digital evidence that might be admissible are detailed. The properties of both hardware appliances and packet analyzer software are reviewed from the perspective of their potential use in network forensics
    • …
    corecore