
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Post 2013

1-1-2020

Packet analysis for network forensics: A comprehensive survey Packet analysis for network forensics: A comprehensive survey

Leslie F. Sikos
Edith Cowan University, l.sikos@ecu.edu.au

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

 Part of the Physical Sciences and Mathematics Commons

10.1016/j.fsidi.2019.200892
Sikos, L. F. (2020). Packet analysis for network forensics: a comprehensive survey. Forensic Science International:
Digital Investigation, 32, Article 200892. https://doi.org/10.1016/j.fsidi.2019.200892
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworkspost2013/7605

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/288617304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F7605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F7605&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.fsidi.2019.200892
https://doi.org/10.1016/j.fsidi.2019.200892

Packet analysis for network forensics: A comprehensive survey

Leslie F. Sikos
Edith Cowan University, Australia

a r t i c l e i n f o

Article history:
Received 16 May 2019
Received in revised form
27 August 2019
Accepted 1 October 2019
Available online xxx

Keywords:
Packet analysis
Deep packet inspection
Network forensics
Packet sniffer
Wireshark
Pcap
Digital evidence
Network monitoring
Intrusion detection

a b s t r a c t

Packet analysis is a primary traceback technique in network forensics, which, providing that the packet
details captured are sufficiently detailed, can play back even the entire network traffic for a particular
point in time. This can be used to find traces of nefarious online behavior, data breaches, unauthorized
website access, malware infection, and intrusion attempts, and to reconstruct image files, documents,
email attachments, etc. sent over the network. This paper is a comprehensive survey of the utilization of
packet analysis, including deep packet inspection, in network forensics, and provides a review of AI-
powered packet analysis methods with advanced network traffic classification and pattern identifica-
tion capabilities. Considering that not all network information can be used in court, the types of digital
evidence that might be admissible are detailed. The properties of both hardware appliances and packet
analyzer software are reviewed from the perspective of their potential use in network forensics.

© 2019 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction to packet analysis in network forensics

The ever-increasing popularity of online services urges security
experts and law enforcement agencies to find new ways of inves-
tigating cybercrimes and finding evidence admissible in court.
Online services transfer large amounts of data over communication
networks in a variety of forms, among which network packets are
the most common. These are groups of bits that include data
complemented by control information (Stallings and Case, 2012),
generally referring to a network layer (OSI Layer 3) protocol data
unit. They represent the smallest unit of data at a particular point in
time intercepted and logged about network traffic flow traversing
over packet-switched networks,1 consisting of control information
(source and destination IP address, error detection codes,
sequencing information) and payload (intended message). A data
unit in OSI Layer 2 (data link layer) is called a frame, which is a
group of bits that includes data with one or more addresses and
other protocol control information (Stallings and Case, 2012). In OSI

Layer 4 (transport layer), the equivalent is called a segment (or
datagram).

Network packets, when captured, stored, and processed effi-
ciently, can be used in forensic investigations andmay even provide
admissible evidence against a suspect in a court case. Note that
throughout this paper, we are going to use the term packet analysis,
irrespective whether the actual content is a frame, packet, data-
gram, or session, unless stated otherwise.

2. Capturing and storing network packets

The communication between network devices are facilitated
using protocols, i.e., mechanisms to identify and establish connec-
tions, and formatting rules and conventions specified for data
transfer. Network data can be analyzed, and network traffic
segregated by type, using purpose-built software. Those protocol
analyzers that are designed for packet analysis are called packet
analyzers (packet sniffers, sometimes network analyzers). These
software tools intercept and log network traffic traversing over a
digital network or a part of a network through the process of packet
capturing. The captured packets can then be analyzed by decoding
the raw data of the packets and visualized via displaying various
fields to interpret the content (Chapman, 2016).

By putting a capable wired network interface controller (NIC) or

E-mail address: l.sikos@ecu.edu.au.
1 A packet-switched network (PSN) is a type of communication network that

groups and sends data in the form of small packets, thereby enabling data/network
packet sending between a source and a destination node over a shared data path
(network channel) between multiple users and/or applications.

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi

https://doi.org/10.1016/j.fsidi.2019.200892
1742-2876/© 2019 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Forensic Science International: Digital Investigation 32 (2020) 200892

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:l.sikos@ecu.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2019.200892&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2019.200892
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2019.200892

wireless network interface controller (WNIC) into promiscuous
mode, all received network traffic can be passed to the central
processing unit (CPU) rather than just those frames the controller is
specifically programmed to receive. Available on most Linux dis-
tributions, the Berkeley Packet Filter (BPF) provides a raw interface
to data link layers, making it possible to send and receive raw link-
layer packets. BPF supports packet filtering, such as receiving only
those packets that initiate a TCP connection. Because BPF only
returns the packets that pass the filter, irrelevant packets do not
have to be copied from the operating system to the kernel to be
processed, thereby greatly improving performance. An enhance-
ment of the original BPF is Extended BPF (eBPF), which supports not
only forward jumps, but also backward jumps, thereby allowing
loops. Using global data stores called maps, eBPF can also be used
for aggregating event statistics.

There are various approaches for “tapping into the wire”; which
one to use depends on the networking environment in which the
device whose traffic should be analyzed is located. In thosedrather
rarednetworks that use hubs, a packet sniffer can see all the de-
vices in the network, simply because traffic sent through a hub goes
through every port connected to that hub. In a switched
networking environment, the visibility from a packet sniffer is
limited to the port we plug into. On switched networks, there are
four main ways to capture traffic from a target device: port mir-
roring (port spanning), hubbing out, using a tap, and ARP cache
poisoning (ARP spoofing). Which one to choose depends on the
case: the first one is an option only if we have access to the
command-line or web-based management interface of the switch
on which the target computer is located, the switch supports port
mirroring and have an empty port into which we can plug our
sniffer; the second one needs physical access to the switch the
target device is plugged into; the third one requires a special
hardware tool (network tap) to be connected to the network; and
the fourth one requires information to be collected, such as the IP
address of the analyzer system, the remote system from which we
would like to capture the traffic, and the router from which the
remote system is downstream.

Network packets hold useful information about network activ-
ities, and analyzing them helps in gathering and reporting network
statistics and debug client-server communications. Network packet
capture files store a lot of information about online user activity
that can be useful in network forensics, such as visitedwebsites and
the time spent on browsing them,2 successful and unsuccessful
login attempts, credentials, illegal file downloads, intellectual
property abuse, etc. Packet files not only contain a wealth of in-
formation, but data can be retrieved from them in various group-
ings, such as individual frames, client-server conversations, packet
streams, flows, and sessions. In network forensics, packet analysis
can be used to collect evidence for investigations of digital activ-
ities, and to detect malicious network traffic and behavior,
including intrusion attempts and network misuse, and identify
man-in-the-middle attacks and malware such as ransomware
(Alhawi et al., 2018).

The de facto standard capture format is libpcap (pcap), which is
a binary format that supports nanosecond-precision timestamps.3

Although this format varies somewhat from implementation
to implementation, all pcap files have the general structure shown

in Fig. 1.
The global header contains themagic number (to identify the file

format version and byte order), the GMT offset, the timestamp
precision, the maximum length of captured packets (in octets), and
the data link type. This information is followed by zero or more
records of captured packet data. Each captured packet starts with
the timestamp in seconds, the timestamp in microseconds, the
number of octets of packet saved in file, and the actual length of the
packet.

The successor of pcap is the pcap Next Generation Capture File
Format (pcapng). Rather than being limited to dumping network
packets only, pcapng allows for saving a range of data types using a
generic block format. This format is backward-compatible with the
fields of the libpcap format. The structure of pcapng files, shown in
Fig. 2, is developed by the IETF.

The details of the block structure depends on the block type; the
list of block types includes section header blocks, interface
description blocks, simple and enhanced packet blocks, name res-
olution blocks, interface statistics blocks, systemd journal export
blocks, decryption secrets blocks, and custom blocks. Further types
are under development.

The snoop capture format is defined in IETF RFC 1761.5 Each
snoop file is an array of octets consisting of a fixed-length file
header and one or more variable-length packet records. Each file
header contains a 64-bit identification pattern, a 32-bit version
number, and a 32-bit datalink type.

The RedBack Smartedge pcap format (SE400/800) was designed
for PowerPC-based NetBSD and intelligent packet-forwarding
linecards. This format is based on circuits and extends the pcap
format with additional informations about protocols and circuits.

Further capture formats include the following: InfoVista 5View
capture, the IxCatapult (formerly DCT 2000) trace.out file format,
the Cisco Secure IDS iplog format, the Symbian OS btsnoop format,
the TamoSoft CommView format, the Endace ERF capture format,
the EyeSDN USB S0/E1 ISDN trace format, HP-UX nettl trace, the
K12 text file format, the Microsoft Network Monitor (NetMon)

Fig. 1. The general structure of pcap files. The packet data contains at most the first N
bytes of each packet, where N is the snapshot length (typically smaller than 65,535).

2 In a corporate environment, these can also be retrieved from other sources,
such as firewall logs.

3 This precision is often not available in practice, because the packet capture
implementation in place may support only milliseconds, such as if the timestamp is
added by the kernel or the CPU the capture is offloaded to, or if a packet has been
waiting in a ring buffer.

4 https://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.
githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml

5 https://tools.ietf.org/rfcmarkup?rfc¼1761

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 2008922

https://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml
https://xml2rfc.tools.ietf.org/cgi-bin/xml2rfc.cgi?url=https://raw.githubusercontent.com/pcapng/pcapng/master/draft-tuexen-opsawg-pcapng.xml
https://tools.ietf.org/rfcmarkup?rfc=1761
https://tools.ietf.org/rfcmarkup?rfc=1761

format, the NA Sniffer format, the Network General Sniffer format,
the Network Instruments Observer format, the NetXray format, the
Novell LANalyzer format, the PDML Packet Description Markup
Language file format, the NetScaler Trace format, the RADCOM
WAN/LAN Analyzer format, the Shomiti/Finisar Surveyor format,
the Sniffer Pro format, the Tektronix K12xx.rf5 format, and the
Visual Networks UpTime traffic capture format.

3. Processing network packets and packet flow

Network packets hold more than just communication data and
metadata; files that traversed through a network can be recon-
structed from network packet streams (network carving) (Beverly et
al., 2011) using purpose-designed network carvers or packet ana-
lyzers that support file export from packet capture. This, together
with other options to find traces of network data transfer, makes
packet analysis a primary traceback technique in network forensics.
It can assist in finding traces of nefarious online behavior and
breaches affecting an organization, determining the source of
network security attacks, and acquiring host-based evidence of
malicious actions (Johansen, 2017), although making sense of
encrypted network traffic is far more challenging than the analysis
of unencrypted traffic (van de Wiel et al., 2018). For example,
network traffic classification based on packet analysis and port
numbers alone is infeasible for encrypted VoIP applications, such as
Skype (Alshammari and Zincir-Heywood, 2015), although even
encrypted network traffic can be classified using machine learning
(Dong and Jain, 2019).

Packet sniffing is a method of tapping packet flows, i.e., packets
as they flow across a communication network (Ansari et al., 2003),
and even re-transmitted packets, such as with different TCP prop-
erties. This can be utilized for reconstructing data transferred over
the network, and might even be used as an anti-forensic measure.

3.1. Deep packet inspection

Deep packet inspection (DPI) refers to a type of packet analysis
that goes beyond packet header information and analyzes the
packet payload as well. DPI can be used to identify excessive levels
of non-business traffic in enterprises such as social media use that
need to be filtered or blocked, to detect data streams (Yin et al.,
2018), video traffic (Huang et al., 2012), encrypted BitTorrent
traffic (Carvalho et al., 2009), malicious behavior (Guo et al., 2017),
malicious traffic (Stergiopoulos et al., 2018), intrusions (Parvat and
Chandra, 2015), etc., to detect hosts behind Carrier-Grade NATs by
extracting non-routable IP addresses from peer lists obtained by
crawling the BitTorrent Distributed Hash Table (DHT) (Richter et al.,
2016), to classify malware (Boukhtouta et al., 2016), to analyze
honeypot traffic (Pimenta Rodrigues et al., 2017), to facilitate
forensic-driven security monitoring, and to enable forensic-by-

design industrial systems (Parra et al., 2019). In fact, deep packet
inspection can reveal and record online activities to the extent that
it raises privacy concerns regarding mass surveillance by state and
government agencies (particularly under legislations that require
“wiretap-friendly” online services, such as CALEA in the U.S.),6 even
if the sheer volume of traffic makes it impractical to record all
traces of user activity (Stalla-Bourdillon et al., 2014). On the bright
side, deep packet inspection allows network operators to shape
traffic and control various types of traffic, such as email, VoIP, and
P2P. Companies such as NETSCOUT7 and Sandvine8 provide DPI
services to prioritize network activity, enforce policies, and to help
develop new service plans.

3.2. Using artificial intelligence in packet analysis

Formal knowledge representation is applied in network foren-
sics in the form of ontologies to automate the processing of
network packet sequences (Sikos, 2018). Purpose-built ontologies,
such as the Packet-Centric Network Ontology (PACO) (Ben-Asher et
al., 2015) and the Packet Analysis Ontology (PAO)9 (Sikos, 2019),
can capture the semantics of actual network packets, and provide
terms to formally describe background knowledge in a machine-
interpretable form. The datasets that utilize these definitions and
codified expert knowledge, together with reasoning rules, can be
used to infer new statements and make implicit network knowl-
edge explicit.

To decrease the rate of false positives when detecting malicious
traffic using Snort, Shah and Issac (2018) applied machine learning,
and implemented a plugin. This plugin decodes packet data, clas-
sifies network packets, uses SVM, decision tree, a combination of
SVM and fuzzy logic, and optimized SVM with firefly, to differen-
tiate between legitimate and malicious traffic, and reduce the rate
of false positive alarms.

Deep packet inspection combined with semi-supervised ma-
chine learning is suitable for efficiently classifying flows to identify
audio, video, and interactive data, thereby facilitating fine-grained
adaptive QoS traffic engineering (Yu et al., 2018). A periodic
retraining using a dynamic flow database enables the classifier to
adapt to rapidly and constantly changing network traffic
characteristics.

The deep learning-based approach of Lotfollahi et al. (2019),
called Deep Packet, integrates feature extraction and classification.
It can characterize network traffic into classes such as FTP and P2P
using two deep neural network structures, stacked autoencoder

Fig. 2. The basic block structure of pcapng files.4

6 Communications Assistance for Law Enforcement Act.
7 https://www.netscout.com
8 https://www.sandvine.com
9 https://purl.org/ontology/pao/

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 200892 3

https://www.netscout.com
https://www.sandvine.com
https://purl.org/ontology/pao/

(SAE) and convolutional neural network (CNN), and can identify end-
user applications such as Skype and BitTorrent. The Deep Packet
approach can not only identify encrypted traffic, but can also
distinguish between VPN and non-VPN network traffic.

3.2.1. Optimizing and offloading packet processing
Hardware acceleration and offloading for network packet pro-

cessing is available via application-specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), and graphics
processing units (GPUs). For example, FortiGate’s FortiASIC NP6
supports offloading of most IPv4 and IPv6 traffic, IPsec VPN
encryption, CAPWAP traffic, and multicast traffic.

3.3. Programming packet processing applications

Performing network packet analysis, and deep packet inspec-
tion in particular, with speeds in the Gbps range requires special-
ized hardware, which is typically programmed in Assembly or C
(Duncan and Jungck, 2009). An alternative approach is to use the
purpose-designed packetC programming language with a parallel
packet processing model. This language provides high-level con-
structs to express coding solutions for packet processing applica-
tions. Compared to C, it simplifies and constrains type declarations
to prevent unforeseen type conflicts, avoids type coercions or
promotions to prevent unexpected data truncations or expansions,
and supports a strong typing model with restrictive type casting to
prevent unexpected side effects (Jungck et al., 2011).

4. Packet data as digital evidence

The capture, analysis, and backtracing of network packets
constitute a considerable part of network forensics (Nikkel, 2005).
Network packets are sources of network evidence, and together
with data from remote network services, form live network evidence
sources. Depending on the online content, network packets have a
finite, non-zero acquisition window during which evidential data
can be observed or acquired. On the one hand, some argue that
using packets as evidence can be problematic in case they are
spoofed (Kim et al., 2015). On the other hand, network packets can
complement firewall logs and network monitoring software
extremely well, and can be considered the ultimate forensic evi-
dence (Hurd, 2018).

Packet capture files can be used to extract potential forensic
evidence from network data, such as via the Highly Extensible
Network Packet Analysis (HENPA) framework (Broadway et al.,
2008). The information extracted from network packets can be
used as evidence either directly or indirectly. For example, some
information contained in the packets, including the sender and
receiver IP addresses, port numbers, etc., along with the transferred
data, can be used directly as evidence. Inferred, indirect informa-
tion derived from multiple packets that can be used as evidence
include patterns such as large streams of ICMP packets send from a
particular host to another one in a short period of time, which
might indicate a denial-of-service (DoS) attack.

The utilization of packet analysis to its full potential relies on full
packet capture,10 which requires a full telecommunication inter-
ception warrant or equivalent (Turnbull and Slay, 2007). Examples
of corresponding legislations that detail the requirements for these
include ETSI’s Council Resolution of 17 January 1995 on the Lawful

Interception of Telecommunications,11 the Australian Telecommuni-
cations (Interception and Access) Act12 and the Surveillance Devices
Act.13 If the necessary warrant is obtained and full packet capture is
performed (which is often not feasible due to network bandwith
constraints), security engineers can play back all the traffic on a
network (Rounsavall, 2017).

Because packet capture files often contain sensitive data, such as
personal data of network users, information about the internal
structure of an enterprise network, etc., privacy restrictions,
policies, and laws make it impossible to share packet capture files.
There are approaches and solutions to automatically scramble
network packet capture data while preserving binary integrity,
such as SafePcap,14 which complies with the Europen Union’s
General Data Protection Regulation (GDPR)15 and NIST’s NISTIR 8053
“De-Identification of Personal Information.”16 SafePcap performs data
modifications in a break-proof manner by recalculating the lengths,
checksums, offsets and all other services for all affected packets and
protocol layer fields on the fly.

A full packet capture is imperative when investigating what has
happened in a network at a particular point in time and who was
actually involved in an online activity, because the IP address of a
suspect’s computer alone cannot serve as the basis of forensic in-
vestigations due to the dynamic nature of IP addresses, and because
they often cannot be linked directly to an individual (Clarke et al.,
2017) and often not even to an exact geographical location
(Afanasyev et al., 2011). Nevertheless, following the TCP stream of
the simultaneous use of SMTP and a particular IP address can
identify the address associated with the From tag of the email
header. Furthermore, email headers contain the name of the
sender, which may reveal the suspect’s real name. Emails sent by
the user can be reconstructed, including any attachments. The
manufacturer of a suspect’s computer can be identified with a high
certainty based on the Organizational Unique Identifier (OUI) part
of the device’s MAC address,17 although this cannot be used in
many cases, particularly in corporate networks. Based on the packet
data, it can be determined when the suspect logged in to the
network. If the password of the suspect was encoded in Base64, it
can be converted to UTF-8 to reveal the actual password that was
used to log in. Ultimately, such information can help build a profile
of the suspect’s identity.

Supporting evidence can be efficiently collected from stored
packet information by recreating the original metadata, files, or
messages sent or received by a user (Manesh et al., 2011). The
analysis of file and software downloads can help identify drive-by
downloads leading to malware infections (Ndatinya et al., 2015).
Malicious online activities may be identified based on common
traits of SQL queries used for attacks on TCP, such as SYN flood
attacks, XMAS scans, and SYN/FIN attacks (Kaushik et al., 2010).
What level of forensic evidence can be obtained depends on the
tradeoff set between packet file details and network throughput
(Ning et al., 2013).

Attackers might try to hide attacks by forging packets (Kim and
Kim, 2011). Nevertheless, in many cases, the origin of packets can
be traced back with techniques such as link testing (e.g., controlled
flooding (Burch and Cheswick, 2000) or input debugging (Stone,
2000)), ICMP traceback (Bellovin and Leech, 2000), hash-based IP
traceback (Snoeren et al., 2001), single-packet IP traceback (Snoeren

10 Flow records, particularly when machine learning is employed, can be used for
traffic classification comparably well (Dong and Jain, 2019).
11 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.1996.329.01.
0001.01.ENG&toc=OJ:C:1996:329:TOC

12 https://www.legislation.gov.au/Series/C2004A02124
13 https://www.legislation.gov.au/Series/C2004A01387
14 https://omnipacket.com/safepcap
15 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri¼CELEX%3A32016R0679
16 https://csrc.nist.gov/publications/detail/nistir/8053/final
17 The first half (first 24 bits) of the MAC address.

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 2008924

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.1996.329.01.0001.01.ENG&toc=OJ:C:1996:329:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.1996.329.01.0001.01.ENG&toc=OJ:C:1996:329:TOC
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.1996.329.01.0001.01.ENG&toc=OJ:C:1996:329:TOC
https://www.legislation.gov.au/Series/C2004A02124
https://www.legislation.gov.au/Series/C2004A01387
https://omnipacket.com/safepcap
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://csrc.nist.gov/publications/detail/nistir/8053/final

et al., 2002; Murugesan et al., 2018), coordinated packet traceback
(Sy and Bao, 2006), packet marking (such as by reconstructing the
attack path (node-append, node sampling, or edge sampling
(Savage et al., 2001)), using an ID storing scheme (k-fragmentation
(Savage et al., 2001), k-segmentation (Xiang et al., 2008), or hash
digest (Song and Perrig, 2001))), or via the combination of packet
marking and logging (Gong and Sarac, 2005; Al-Duwairi and
Govindarasu, 2006).

5. Network packet analyzers

Generally, each packet analyzer performs four steps to process
packets (Yang et al., 2018):

1. Open a packet capture socket: select a network device and open it
for live capture, retrieve the network address and subnet mask,
convert the packet filter expression into a packet filter binary,
and assign the packet filter to the socket

2. Packet capture loop: determine the datalink type and start the
packet capture

3. Parse and display packets: set a character pointer to the begin-
ning of the packet buffer and move it to a particular protocol
header by the size of the header preceding it in the packet, and
map the header to the appropriate header structure (IP, TCP,
UDP, ICMP, etc.) by casting the character pointer to a protocol-
specific structure pointer

4. Terminate the capturing process: send interrupt signals and close
the packet capture socket

Packet analyzers are designed for various purposes and differ in
terms of capabilities and features, hardware resource utilization,
processing speed (Goyal and Goyal, 2017), supported protocols,
user-friendliness, supported operating systems, supported network
types, interface, license, and implementation type. Many packet
analyzers support both live capture and offline analysis. The deep
inspection of packets and the analysis of various types of network
traffic are available only in those analyzers that support hundreds
of protocols. Those packet analyzers that intercept traffic on wire-
less networks are called wireless analyzers (WiFi analyzers), e.g.,
Aircrack-ng,18 and Kismet.19 For Bluetooth, there is a purpose-built
packet sniffer called FTS4BT.20

Some tools support data carving, capture file quality assessment,
anomaly detection, protocol encapsulation, and flexible packet
aggregation. The list of supported file formats varies between
packet analyzers, and some tools even provide on-the-fly gzip
decompression.21

The analyzers that come with a GUI feature typically have a
packet browser to visualize the packet content, and various display
filters to show only the information relevant for a particular task,
rather than everything captured. Some packet analyzers can
differentiate between frame types, and visualize them using color
schemes.

In terms of licensing, packet analyzers are either open source,
freeware, or commercial. Common license types associated with
packet analyzers include the GNU General Public License22 and
proprietary licenses.

There are both hardware appliances and software imple-
mentations for packet analysis, although software tools are far

more common than hardware implementations.

5.1. Hardware devices for packet analysis

Notable hardware packet analyzers include the Fluke Lanmeter
series (now discontinued), PNtMS (Rahman et al., 2009), the packet
analyzer of Thomas et al. (2011), KPAT (Wang et al., 2014), the
embedded packet logger of Jandaeng (2016), the Cisco Security
Packet Analyzer appliances,23 SolarFlare’s SolarCapture appli-
ances,24 Corvil’s hardware appliances,25 IPCopper’s packet capture
appliances,26 RSA Netwitness,27 Arbor Ellacoya e100,28 Sandvine’s
PacketLogic platforms,29 the ExtraHop Discover Appliances,30 and
LiveAction’s LiveCapture (formally Omnipliance Ultra) devices.31

Some of these appliances are physical (embedded or dedicated),
others are bare-metal, virtualized, or hybrid.

5.2. Packet analyzer software

Among the packet analyzer software tools, there are purpose-
designed packet analyzers and network tools that provide fea-
tures for packet capture and analysis. Such network tools include
intrusion detection software, proxies, vulnerability assessment
tools, network scanners, and network monitoring tools, which are
used in network forensics (Joshi and Pilli, 2016).

In 1997, the Federal Bureau of Investigation (FBI) implemented
its customizable packet sniffer as part of the system called Carnivore
(which was later renamed to DCS1000). It monitored users’ Internet
traffic, including emails. It was phased out by 2005. In 1998, Gerald
Combs developed Ethereal, a free and open-source packet analyzer,
which was renamed to Wireshark in 2006 (Orebaugh et al., 2006).
Over the years, Wireshark has become one of the most widely used
graphical packet capture and protocol analysis tools (Shimonski,
2013), featuring a highly intuitive GUI for packet analysis
(Sanders, 2017). This GUI has a customizable packet browser that
displays a maximum of three panes simultaneously, including a
packet list and the packet details and packet bytes of the currently
selected packet (see Fig. 3).

The program features coloring rules to differentiate between
inactive and active selected items, marked packets, ignored
packets, follow streams (client and server), and to display valid,
invalid, and warning filters. It also has efficient display filters to
focus on those frames that are relevant for a particular analysis,
such as by showing HTTPS traffic only or network communication
related to a particular IP address. The functions of Wireshark are
also available in a command-line tool called TShark, and Wireshark
provides additional tools for managing packet captures (capinfos,
mergecap, editcap). Due to its versatile functionality, Wireshark is
widely deployed and is in the focus of attention of practitioners and
researchers alike (Mielczarek and Mon, 2015; Das and Tuna, 2017;
Alsmadi et al., 2018; Islam et al., 2018; Bhandari et al., 2017).

Also in 1998, Martin Roesch introduced Snort,32 a free open
source network intrusion detection/prevention system (IDS/IPS),

18 https://www.aircrack-ng.org
19 https://www.kismetwireless.net
20 http://www.fte.com/products/FTS4BT.aspx
21 It is a common practice to compress large capture files using gzip.
22 https://www.gnu.org/licenses/gpl.html

23 https://www.cisco.com/c/en/us/products/collateral/security/security-packet-
analyzer/datasheet-c78-737589.pdf
24 https://solarflare.com/solarcapture/
25 https://www.corvil.com/products/technology/appliances
26 http://www.ipcopper.com/forensic_packet_capture.htm
27 https://community.rsa.com/community/products/netwitness/hardware-setup-
guides
28 http://www.lextel.com/documents/E100Datasheet.pdf
29 https://www.sandvine.com/products/packetlogic
30 https://www.extrahop.com/products/appliances/
31 https://www.liveaction.com/products/live-capture/
32 https://www.snort.org

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 200892 5

https://www.aircrack-ng.org
https://www.kismetwireless.net
http://www.fte.com/products/FTS4BT.aspx
https://www.gnu.org/licenses/gpl.html
https://www.cisco.com/c/en/us/products/collateral/security/security-packet-analyzer/datasheet-c78-737589.pdf
https://www.cisco.com/c/en/us/products/collateral/security/security-packet-analyzer/datasheet-c78-737589.pdf
https://solarflare.com/solarcapture/
https://www.corvil.com/products/technology/appliances
http://www.ipcopper.com/forensic_packet_capture.htm
https://community.rsa.com/community/products/netwitness/hardware-setup-guides
https://community.rsa.com/community/products/netwitness/hardware-setup-guides
http://www.lextel.com/documents/E100Datasheet.pdf
https://www.sandvine.com/products/packetlogic
https://www.extrahop.com/products/appliances/
https://www.liveaction.com/products/live-capture/
https://www.snort.org

which can capture and analyze network traffic. It is now developed
by Cisco Systems, and can perform real-time traffic analysis and
packet logging on IP networks. Snort utilizes detection rules for
various kinds of network traffic, and is proven to be useful in
complex network behavior analysis, such as to help detect
advanced persistent threats (APTs) (Cui et al., 2018). Similar
to Wireshark, Snort is actively developed, and many third-party
plugins are available that extend its features, such as VisSRA,
which visualizes Snort rules and alerts (Hong et al., 2012).

In 1999, Eddie Kohler (at MIT at the time) developed ipsum-
dump33 to summarize TCP/IP dump files or other packet source into
a self-describing ASCII format for human and machine con-
sumption.

Dsniff34 is part of a collection of tools for network auditing and
penetration testing, developed by Song for Unix-like operating
systems. It parses various application protocols and extracted
relevant information, for example, it decodes passwords sent in
cleartext across a switched or unswitched Ethernet network.

In 2000, Toledo developed EtherApe,35 a packet sniffer and
network traffic monitoring tool, for Unix. This free and open source
software visualizes network traffic using graphs, in which each
node represents a specific host, and the edges of the graphs are the
network connections. The color-coding of nodes and links makes it
possible to differentiate between various protocols. The amount of
network traffic is represented proportionally with the width of the
graph edges, as shown in Fig. 4.

Tcpdump37 is a command-line tool that has been around for
about two decades and is one of the de facto standard tools for
capturing and dumping network packets for later analysis. It also
has a Windows implementation called WinDump.38 Tcpdump is
developed hand in hand with libpcap,39 a popular packet capture
software library to capture live network traffic data, which is also
utilized by both packet analyzers and other software with packet
sniffing capabilities, such as Wireshark and Snort. In turn, libpcap
employs the pcap API. The pcap API is also used by the WinPcap40

and Npcap41 packet sniffers, and ngrep,42 a tool that can match
regular expressions within the network packet payloads.

In 2001, ALoR and NaGA developed Ettercap,43 a free and open
source network security tool for man-in-the-middle (MITM) at-
tacks on LANs. It displays the IP and MAC address of all hosts
connected to a network. It can identify hosts having unauthorized
IP addresses and thereby detecting attackers, although if an
attacker uses an authorized IP address via IP spoofing, this will not
be detected (Agrawal and Tapaswi, 2017).

The Charles Web Debugging Proxy,44 developed by Karl von
Randow in 2002, is an HTTP proxy, HTTP monitor, and reverse
proxy that visualizes all the HTTP and SSL/HTTPS traffic between a
computer and the Internet. In the following year, Eric Lawrence
developed Fiddler,45 a free web debugging proxy that can log HTTP/

Fig. 3. Wireshark can colorize packets by type and displays them in context.

33 http://www.read.seas.harvard.edu/~kohler/ipsumdump/
34 https://www.monkey.org/~dugsong/dsniff/
35 https://etherape.sourceforge.io
36 https://etherape.sourceforge.io/images/v0.9.3.png
37 https://www.tcpdump.org

38 https://www.winpcap.org/windump/
39 https://www.tcpdump.org
40 https://www.winpcap.org
41 https://nmap.org/npcap/
42 https://github.com/jpr5/ngrep/
43 http://www.ettercap-project.org
44 https://www.charlesproxy.com
45 https://www.telerik.com/fiddler

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 2008926

http://www.read.seas.harvard.edu/%7Ekohler/ipsumdump/
https://www.monkey.org/%7Edugsong/dsniff/
https://etherape.sourceforge.io
https://etherape.sourceforge.io/images/v0.9.3.png
https://www.tcpdump.org
https://www.winpcap.org/windump/
https://www.tcpdump.org
https://www.winpcap.org
https://nmap.org/npcap/
https://github.com/jpr5/ngrep/
http://www.ettercap-project.org
https://www.charlesproxy.com
https://www.telerik.com/fiddler

HTTPS traffic. The captured network data can be filtered to hide
sessions, highlight the traffic of interest, bookmark breakpoints, etc.
The software features a Session Inspector widget that can display
the contents of a recorded web session, including status, headers,
caching, cookies, URLs, protocols, type of compression used, re-
directs, and so on.

In 2009, the Open Information Security Foundation released
Suricata,46 an open source-based intrusion detection and intrusion
prevention system (IDS/IPS), which can, among other features, scan
pcap files with IDS rulesets to find traces of suspicious or malicious
network activities. Similar to Snort, Suricata is popular enough to
have support for many third-party tools that can complement it for
visualization and analysis, including Snorby,47 BASE, Sguil,48

u2platform (formerly Aanval),49 and CERNE.50

Also in 2009, Daniel Borkmann wrote netsniff-ng,51 a free Linux
network analyzer. It is a high-performance tool that utilizes zero-
copy mechanisms for network packets, making it unnecessary for
the Linux kernel to copy packets from kernel space to user space via
system calls. The tool supports standard pcap files and can also
capture, analyze, and replay raw 802.11 frames.

WebScarab52 is an easy-to-use integrated penetration testing
tool for finding vulnerabilities in web applications. It has packet
analyzing capabilities, although these are limited to applications

communicating using the HTTP and HTTPS protocols.
Tranalyzer53 is a free software for flow- and packet-based traffic

analysis and network troubleshooting. It is built atop the libpcap
library, and it accepts not only IPv4 and IPv6, but also Layer 2 and
encapsulated packets, such as MPLS, L2TP, and GRE, from standard
pcap files or live interfaces (Burschka and Dupasquier, 2016).

Tcptrace54 is a tool for analyzing the logs produced by tcpdump,
snoop, EtherPeek, HP Net Metrix, and WinDump. Yet Another
Flowmeter (YAF)55 represents network information flow, the
metadata of which can be used as the input for yafMeta2Pcap56 to
create pcap files for a particular flow.

The SolarWinds Network Performance Monitor57 comes with a
packet analyzer58 and also features deep packet inspection,59

which allows the categorization of network traffic into types
based on destination server IP addresses, ports used, and mea-
surement of the total and relative volumes of traffic for each type.

Paessler’s PRTG Network Monitor60 includes a vast array of
network monitoring features, including Packet Sniffer Sensor,61 a
packet capture tool. The packet analyzing capabilities of this tool
are limited to the analysis of data packet headers, but it has other
features, e.g., showing the bandwidth use of different types of
network traffic.

Fig. 4. The EtherApe GUI represents network connections as graphs.36

46 https://suricata-ids.org
47 https://github.com/Snorby/snorby
48 http://sguil.sourceforge.net
49 https://adaptive.codes/pages/aanval
50 https://www.telesoft-technologies.com/cyber/monitoring-visibility-for-
incident-response/cerne
51 http://netsniff-ng.org
52 https://github.com/OWASP/OWASP-WebScarab

53 https://tranalyzer.com
54 https://github.com/blitz/tcptrace
55 https://tools.netsa.cert.org/yaf/
56 https://tools.netsa.cert.org/yaf/yafMeta2Pcap.html
57 https://www.solarwinds.com/network-performance-monitor
58 https://www.solarwinds.com/topics/packet-analyzer
59 https://www.solarwinds.com/topics/deep-packet-inspection
60 https://www.paessler.com/prtg
61 https://www.paessler.com/manuals/prtg/packet_sniffer_header_sensor

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 200892 7

https://suricata-ids.org
https://github.com/Snorby/snorby
http://sguil.sourceforge.net
https://adaptive.codes/pages/aanval
https://www.telesoft-technologies.com/cyber/monitoring-visibility-for-incident-response/cerne
https://www.telesoft-technologies.com/cyber/monitoring-visibility-for-incident-response/cerne
http://netsniff-ng.org
https://github.com/OWASP/OWASP-WebScarab
https://tranalyzer.com
https://github.com/blitz/tcptrace
https://tools.netsa.cert.org/yaf/
https://tools.netsa.cert.org/yaf/yafMeta2Pcap.html
https://www.solarwinds.com/network-performance-monitor
https://www.solarwinds.com/topics/packet-analyzer
https://www.solarwinds.com/topics/deep-packet-inspection
https://www.paessler.com/prtg
https://www.paessler.com/manuals/prtg/packet_sniffer_header_sensor

To address the inefficient processing of large packet capture files
with traditional packet analyzers running on a single host with
limited computing and storage resources, Lee et al. (2011) intro-
duced an Apache Hadoop-based packet processing tool, which can
open even petabyte-sized packet capture files, thanks to the Map-
Reduce parallel processing paradigm. This tool relies on four novel,
representative computation modules for total traffic statistics, pe-
riodic flow statistics, periodic simple statistics, and top N statistics.

The packet analyzer of Lee et al. (2012) is dedicated to the fast
later access (FLA) and deep packet inspection of network packets
using IEC 61850 communication protocols. Considering the large
number of packets to process in IEC 61850 networks, this analyzer
was designed for communications between the server and client of
substation automation systems (SASes), each of which consists of a
station, a bay, and a process level. The authors claim that their
analyzer significantly outperforms other, general packet analyzers
when analyzing such networks.

Another tool for the fast packet extraction for large network
traces is PcapWT, which adopts the wavelet tree data structure to
enable fast search and high compression ratio. PcapWT supports
multi-threading, which improves random file read and write per-
formance over Solid State Drives (SSDs) (Kim et al., 2015).

CAIDA’s CoralReef62 software suite can collect and analyze data
from passive Internet traffic monitors, in real time, or from trace
files. A distinctive feature of CoralReef is that it can categorize
packet traffic by source autonomous systems (ASes).

Xtractr63 is a hybrid cloud application for indexing, searching,
reporting, extracting, and collaborating on pcaps.

Cisco NetFlow64 aggregates statistical information on packets
flowing through routing devices. It identifies packet flows for both
ingress and egress IP packets.65

Capsa66 is a comprehensive packet analyzer with support for
more than 300 protocols. It can display in-depth packet decoding
information in Hex, ASCII, and EBCDIC. It can reconstruct packet
streams, and allow packet capture and analysis to be run at a pre-
defined time or recurrence automatically. In addition, Capsa has
built-in tools to create and replay packets.

Meterpreter of Metasploit,67 Rapid7’s vulnerability assessment
tool, can store packets in a ring buffer and export them in standard
pcap format for later analysis. It builds upon the MicroOLAP Packet
Sniffer SDK.68

SmartSniff69 is a packet capture tool for TCP/IP packets, which
displays captured data as a sequence of client-server conversations
in ASCII mode (for text-based protocols, such as HTTP, SMTP, POP3,
and FTP) or as Hex dump (for non-text-based protocols). SmartSniff
provides three methods for packet capture: raw sockets, using the
WinPcap capture driver, and on older systems, using the Microsoft
Network Monitor driver.

Omnipeek70 provides packet-based analytics by flows (conver-
sation pairs) and visualizes them in intuitive graphical displays. It
supports deep packet analysis and can decode over a thousand

protocols.
Moloch71 is a standalone open source, indexed full packet cap-

ture software. It stores and exports packets in the standard pcap
format. Moloch features a powerful web-based GUI, which can
display sessions and session profile information in a tabular format,
and the top unique values of fields and network connections as
graphs.

PcapDB72 is a distributed, search-optimized full packet capture
system. It reorganizes captured packets during capture by flow,
indexes packets by flow, and allows flow-based searches. The
indices for the captured packets typically occupy less than 1% of the
size of the captured data.

Stenographer73 is a full packet capture utility for writing packets
to disk with high speeds. It provides specific methods to retrieve
only those specific packets that are required for a particular anal-
ysis, thereby selectively reading only less than 1% of packet data
stored on disk.

Packet Capture74 is an Android app with SSL decryption capa-
bility. It can display packet contents in Hex or ASCII.

Networking teams who want to share network packets for
collaborative packet analysis can use tools such as CloudShark75 or
pcapr.76

5.3. Packet builders

Some packet analyzers provide features not only for packet
capture and analysis, but also for packet manipulation. However,
for modifying packets, there are purpose-designed packet builders
(packet crafters) as well.

Colasoft Packet Builder77 can be used to create custom packets. It
provides templates for Ethernet, ARP, IP, TCP, and UDP packets, and
allows the user to change the parameters in a decoder editor,
hexadecimal editor, or ASCII editor to create packets.

Hping78 allows to send custom TCP/IP packets to network hosts
while setting the limit for the number of packets after which the
sending or receiving should stop, determining the interval between
sending packets, and incrementing or decrementing the TTL for
outgoing packets.

Scapy79 is a packet manipulation tool written in Python that
enables sending, sniffing, dissecting, and forging network packets,
and used in software that probe, scan, or attack networks.

Network Dump Data Displayer and Editor (Netdude)80 is a
framework for the inspection, analysis, and manipulation of pcap/
tcpdump trace files. It can be used to inspect and filter packets at
arbitrary locations in trace files, inspect and edit the values of fields
in a protocol’s packet header, resize individual packets, directly
modify packet payload, define arbitrary trace areas for subsequent
packet modifications, and copy and move packets between, and
delete packets in, trace files.

Fragroute is a command-line packet sniffer that can not only
capture packets, but also intercept, modify, and rewrite network
traffic, such as by reordering packets or injecting meaningful
packets of arbitrary size and length into data streams of TCP/IP
sessions (Yang et al., 2018). This can be particularly useful for

62 http://www.caida.org/tools/measurement/coralreef/
63 http://www.pcapr.net/xtractr
64 https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/
index.html?dtid¼osscdc000283
65 Ingress filtering means checking the source IP field of IP packets a router re-
ceives. Packets that do not have an IP address in the IP address block to which the
interface is connected are dropped. Egress filtering is monitoring and potentially
restricting the flow of information outbound from one network to another.
66 https://www.colasoft.com/capsa/
67 https://www.metasploit.com
68 http://www.microolap.com/news/detail.php?ID¼1406
69 https://www.nirsoft.net/utils/smsniff.html
70 https://www.liveaction.com/products/omnipeek/

71 https://molo.ch
72 https://github.com/dirtbags/pcapdb
73 https://github.com/google/stenographer
74 https://play.google.com/store/apps/details?id¼app.greyshirts.sslcapture
75 https://cloudshark.io
76 https://www.pcapr.net
77 https://www.colasoft.com/packet_builder/
78 http://www.hping.org
79 https://scapy.net
80 http://netdude.sourceforge.net

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 2008928

http://www.caida.org/tools/measurement/coralreef/
http://www.pcapr.net/xtractr
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html?dtid=osscdc000283
https://www.colasoft.com/capsa/
https://www.metasploit.com
http://www.microolap.com/news/detail.php?ID=1406
http://www.microolap.com/news/detail.php?ID=1406
https://www.nirsoft.net/utils/smsniff.html
https://www.liveaction.com/products/omnipeek/
https://molo.ch
https://github.com/dirtbags/pcapdb
https://github.com/google/stenographer
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture
https://cloudshark.io
https://www.pcapr.net
https://www.colasoft.com/packet_builder/
http://www.hping.org
https://scapy.net
http://netdude.sourceforge.net

stepping-stone intrusion detection when analyzing how intruders
canmanipulate sessions to stay undetected for long periods of time.

5.4. Comparisons of packet analyzers for forensic applications

The primary use of packet analyzers in network forensics can be
categorized by the data that can be extracted or reconstructed from
packet data, and by the level of network activity that can be traced
back.

5.4.1. Reconstruction and carving capabilities

Carving can provide both direct and indirect forensic evidence of
various nature (see Fig. 5).

Purpose-built carvers, such as tcpflow (Garfinkel, 2013), the
Packet Capture Forensic Evidence eXtractor (pcapfex),81 and File-
TSAR,82 can efficiently extract files form packet capture. NetScout
TruView83 is a high-performance stream-to-disk packet sniffer for
tracing abnormal user behavior. It provides advanced filters to find
patterns in user behavior, and to identify tampering and compli-
ance and security violations. Its ClearSight Analyzer can play back
FTP traffic, messaging, email correspondence, and voice and video
calls to quickly extract digital evidence. NetworkMiner84 acts as a
passive network sniffer, which can detect operating systems, ses-
sions, hostnames, open ports, etc. without putting any traffic on the
network; as a packet analyzer that parses pcap files; and as a
network carver that reassembles transmitted files. Cutter is a tool
for the forensic analysis of SCADA network traffic (Senthivel et al.,
2017). It can identify transfers of logic programs and configura-
tion files to/from a PLC in a network packet capture, and extract
them for analysis.

5.4.2. Tracing capabilities
In forensic applications, the logical grouping of packet-related

data determines what level of context can be obtained from a
packet capture. Packet analyzers may trace one or more levels of
network information, i.e., packet data, packet metadata, flow, ses-
sion, client-server communication, and payload, and many
specialize in some of these (Lovanshi and Bansal, 2019). Although
related information might be obtained from packet capture files by
many analyzers, some, such as Tranalyzer and TCPflow, are better at
flow analysis, while others, such as Fragroute and NetScout, are
more suitable when user sessions are analyzed, as shown in Fig. 6.

CoralReef is the best choice when autonomous systems have to
be identified, and ngrep when patterns or regular expressions have
to be matched in the data payload of packets.

6. Research challenges and future directions in packet
analysis

Utilizing machine learning in packet analysis is evolving into a
complex research field that aimes at addressing the analysis of
unknown features and encrypted network data streams (Yin et al.,
2018), packet analysis in software-defined networks (Indira et al.,
2019), and so on. In fact, machine learning-based approaches
have a potential in addressing some of the issues of packet analysis
in regards to big network data (Yoon and DeBiase, 2018), which
affects more and more packet sniffing implementations.

The packet analysis of Internet of Things (IoT) networks plays an
increasingly important role in fighting cyber-crime and mass sur-
veillance. For example, IoT packet analysis can help detect distrib-
uted denial-of-service (DDoS) attacks (Salim et al., 2019) and the
process of botnet forming (Kumar and Lim, 2020).

With the increasing share of cloud-based services, there is a
growing need for performing packet capturing and analysis in
cloud environments rather than using packet capture files of
network segments. The government and financial sectors, cyber-
defence and security applications, cloud-managed services, VoIP
services, etc. utilize cloud storage and cloud computing services,

Fig. 5. Primary evidence types derived from network packets for forensic investigations.

81 https://github.com/vikwin/pcapfex
82 https://polytechnic.purdue.edu/facilities/cybersecurity-forensics-lab/tools
83 https://www.netscout.com/sites/default/files/2018-09/6002359_TruView_
Brochure.pdf
84 https://www.netresec.com/?page¼NetworkMiner

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 200892 9

https://github.com/vikwin/pcapfex
https://polytechnic.purdue.edu/facilities/cybersecurity-forensics-lab/tools
https://www.netscout.com/sites/default/files/2018-09/6002359_TruView_Brochure.pdf
https://www.netscout.com/sites/default/files/2018-09/6002359_TruView_Brochure.pdf
https://www.netresec.com/?page=NetworkMiner
https://www.netresec.com/?page=NetworkMiner

with additional complexities on top of the source and destination
IPs, protocols, and port numbers. For example, this is the very
reason for Amazon introducing virtual private cloud (VPC) traffic
mirroring, which allows capturing and inspecting AWS network
traffic at scale. This is done by selecting a network resource’s (such
as an EC2’s) network interface and an elastic network interface or
load balancer on another EC2 instance. So for example, if the
network resource in a setup is an EC2 resource, and the EC2 mirror
target runs tcpdump, the traffic being sent to themirror destination
is encapsulated using a VXLAN interface on the destination of the
mirror. The captured data can be uploaded to CloudShark using an
upload API.

Achieving a favorable tradeoff between privacy and packet
analysis has long been a challenge (Yurcik et al., 2008), and urges
research efforts in the area of privacy-preserving deep packet in-
spection (Li et al., 2017). The legal issues and concerns about
invading privacy with packet analysis of wireless network traffic
(Ohm, 2014) and IoT devices (Vukojevi�c, 2015) continue to grow,
which needmore research. The corresponding technologies have to
comply with the growing number of national and international
policies and interception laws.

7. Conclusions

Analyzing network packets is fundamental in network forensics
to collect data needed to obtain a clear understanding of online user
actions happened at a particular point in time, and to serve evi-
dence admissible in court. Even though some might be skeptical
about the trustworthiness of information retrieved or recon-
structed from packet data, network packets complement other in-
formation, such as corporate firewall logs or CCTV footage, and in
many cases they form the one and only information source about
what has happened during, and who was involved in, an online
activity. Because employing packet analysis in network forensics

differs from other application areas, such as intrusion detection, the
potential of packets in providing forensic evidence has been
explained and the limitations highlighted.

Both hardware and software implementations are available for
packet sniffing, however, the capabilities of these tools vary greatly
in terms of properties, supported protocols, interface, and licensing.
This paper presented comparisons of state-of-the-art packet ana-
lyzers from multiple viewpoints.

The comprehensive review presented in this paper helps the
reader gain a solid understanding of the processes involved in, and
the tools designed for, packet analysis, along with the specific re-
quirements of network forensics. This can be used for designing
novel algorithms as well as innovative tools andmethods for packet
analysis in forensic applications.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

Afanasyev, M., Kohno, T., Ma, J., Murphy, N., Savage, S., Snoeren, A.C., Voelker, G.M.,
2011. Privacy-preserving network forensics. Commun. ACM 54 (5), 78e87.
https://doi.org/10.1145/1941487.1941508.

Agrawal, N., Tapaswi, S., 2017. The performance analysis of honeypot based intru-
sion detection system for wireless network. Int. J. Wirel. Inf. Netw. 24 (1),
14e26. https://doi.org/10.1007/s10776-016-0330-3.

Al-Duwairi, B., Govindarasu, M., 2006. Novel hybrid schemes employing packet
marking and logging for IP traceback. IEEE T. Parall. Distr. 17 (5), 403e418.
https://doi.org/10.1109/TPDS.2006.63.

Alhawi, O.M.K., Baldwin, J., Dehghantanha, A., 2018. Leveraging machine learning
techniques for Windows ransomware network traffic detection. In:
Dehghantanha, A., Conti, M., Dargahi, T. (Eds.), Cyber Threat Intelligence.
Springer, Cham, pp. 93e106. https://doi.org/10.1007/978-3-319-73951-9_5.

Alshammari, R., Zincir-Heywood, A.N., 2015. Identification of VoIP encrypted traffic
using a machine learning approach. J. King Saud Univ. Comput. Inf. Sci. 27 (1),

Fig. 6. Packet analyzers by the suitability for analyzing at a particular level of network information context.

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 20089210

https://doi.org/10.1145/1941487.1941508
https://doi.org/10.1007/s10776-016-0330-3
https://doi.org/10.1109/TPDS.2006.63
https://doi.org/10.1007/978-3-319-73951-9_5

77e92. https://doi.org/10.1016/j.jksuci.2014.03.013.
Alsmadi, I., Burdwell, R., Aleroud, A., Wahbeh, A., Al-Qudah, M., Al-Omari, A., 2018.

Network forensics: lesson plans. Practical Information Security: A Competency-
Based Education Course. Springer, Cham, pp. 245e282. https://doi.org/10.1007/
978-3-319-72119-4_11.

Ansari, S., Rajeev, S.G., Chandrashekar, H.S., 2003. Packet sniffing: a brief intro-
duction. IEEE Potentials 21 (5), 17e19. https://doi.org/10.1109/MP.2002.1166620.

Bellovin, S.M., Leech, M., 2000. ICMP traceback messages. https://www.ietf.org/
proceedings/51/I-D/draft-ietf-itrace-00.txt.

Ben-Asher, N., Oltramari, A., Erbacher, R.F., Gonzalez, C., 2015. Ontology-based
adaptive systems of cyber defense. In: Laskey, K.B., Emmons, I., Costa, P.C.G.,
Oltramari, A. (Eds.), Proceedings of the Semantic Technology for Intelligence,
Defense, and Security. RWTH Aachen, Aachen, pp. 34e41. http://ceur-ws.org/
Vol-1523/STIDS_2015_T05_BenAsher_etal.pdf.

Beverly, R., Garfinkel, S., Cardwell, G., 2011. Forensic carving of network packets and
associated data structures. Digit. Invest. 8, S78eS89. https://doi.org/10.1016/
j.diin.2011.05.010.

Bhandari, A., Gautam, S., Koirala, T.K., Islam, M.R., 2017. Packet sniffing and network
traffic analysis using TCPda new approach. In: Kalam, A., Das, S., Sharma, K.
(Eds.), Advances in Electronics, Communication and Computing. Springer,
Singapore, pp. 273e280. https://doi.org/10.1007/978-981-10-4765-7_28.

Boukhtouta, A., Mokhov, S.A., Lakhdari, N.-E., Debbabi, M., Paquet, J., 2016. Network
malware classification comparison using DPI and flow packet headers.
J. Comput. Virol. Hacking Tech. 12 (2), 69e100. https://doi.org/10.1007/s11416-
015-0247-x.

Broadway, J., Turnbull, B., Slay, J., 2008. Improving the analysis of lawfully inter-
cepted network packet data captured for forensic analysis. In: Jakoubi, S.,
Tjoa, S., Weippl, E.R. (Eds.), Third International Conference on Availability,
Reliability and Security. IEEE Computer Society, Los Alamitos, CA, USA,
pp. 1361e1368. https://doi.org/10.1109/ARES.2008.122.

Burch, H., Cheswick, B., 2000. Tracing anonymous packets to their approximate
source. Proceedings of the 14th USENIX Conference on System Administration.
USENIX, Berkeley, CA, USA, pp. 319e328. https://www.usenix.org/legacy/
publications/library/proceedings/lisa2000/full_papers/burch/burch_html/.

Burschka, S., Dupasquier, B., 2016. Tranalyzer: versatile high performance network
traffic analyser. 2016 IEEE Symposium Series on Computational Intelligence.
IEEE, Piscataway, NJ, USA. https://doi.org/10.1109/SSCI.2016.7849909.

Carvalho, D.A., Pereira, M., Freire, M.M., 2009. Towards the detection of encrypted
BitTorrent traffic through deep packet inspection. In: �Slęzak, D., Kim, T.-H.,
Fang, W.-C., Arnett, K.P. (Eds.), Security Technology. Springer, Heidelberg,
pp. 265e272. https://doi.org/10.1007/978-3-642-10847-1_33.

Chapman, C., 2016. Using Wireshark and TCP dump to visualize traffic. In: Network
Performance and Security: Testing and Analyzing Using Open Source and Low-
Cost Tools. Syngress, Cambridge, MA, USA. https://doi.org/10.1016/B978-0-12-
803584-9.00007-X.

Clarke, N., Li, F., Furnell, S., 2017. A novel privacy preserving user identification
approach for network traffic. Comput. Secur. 70, 335e350. https://doi.org/
10.1016/j.cose.2017.06.012.

Cui, Y., Xue, J., Wang, Y., Liu, Z., Zhang, J., 2018. Research of Snort rule extension and
APT detection based on APT network behavior analysis. In: Zhang, H., Zhao, B.,
Yan, F. (Eds.), Trusted Computing and Information Security. Springer, Singapore,
pp. 51e64. https://doi.org/10.1007/978-981-13-5913-2_4.

Das, R., Tuna, G., 2017. Packet tracing and analysis of network cameras with
Wireshark. In: Genge, B., Haller, P. (Eds.), 5th International Symposium on
Digital Forensic and Security. IEEE, Piscataway, NJ, USA. https://doi.org/10.1109/
ISDFS.2017.7916510.

Dong, S., Jain, R., 2019. Flow online identification method for the encrypted Skype.
J. Netw. Comput. Appl. 132, 75e85. https://doi.org/10.1016/j.jnca.2019.01.007.

Duncan, R., Jungck, P., 2009. packetC language for high performance packet pro-
cessing. 11th IEEE International Conference on High Performance Computing
and Communications. IEEE Computer Society, Los Alamitos, CA, USA,
pp. 450e457. https://doi.org/10.1109/HPCC.2009.89.

Garfinkel, S.L., 2013. Passive TCP Reconstruction and Forensic Analysis with Tcpflow.
Technical Report. Naval Postgraduate School. https://core.ac.uk/download/pdf/
36728558.pdf.

Gong, C., Sarac, K., 2005. IP traceback based on packet marking and logging. IEEE
International Conference on Communications. IEEE, Piscataway, NJ, USA,
pp. 1043e1047. https://doi.org/10.1109/ICC.2005.1494507.

Goyal, P., Goyal, A., 2017. Comparative study of two most popular packet sniffing
tools-Tcpdump and Wireshark. 9th International Conference on Computational
Intelligence and Communication Networks. IEEE, pp. 77e81. https://doi.org/
10.1109/CICN.2017.8319360.

Guo, Y., Gao, Y., Wang, Y., Qin, M., Pu, Y., Wang, Z., Liu, D., Chen, X., Gao, T., Lv, T.,
Fu, Z., 2017. DPI & DFI: a malicious behavior detection method combining deep
packet inspection and deep flow inspection. Procedia Engineer. 174, 1309e1314.
https://doi.org/10.1016/j.proeng.2017.01.276.

Hong, X., Hu, C., Wang, Z., Wang, G., Wan, Y., 2012. VisSRA: visualizing Snort rules
and alerts. In: Tomar, G.S., Sharma, T.N., Bhatnagar, D. (Eds.), Fourth Interna-
tional Conference on Computational Intelligence and Communication Net-
works. IEEE Computer Society, Los Alamitos, CA, USA, pp. 441e444. https://
doi.org/10.1109/CICN.2012.207.

Huang, J., Zhu, B., Chen, Z., 2012. Video traffic detection method for deep packet
inspection. In: Jin, D., Lin, S. (Eds.), Advances in Computer Science and Infor-
mation Engineering, 2. Springer, Heidelberg, pp. 135e140. https://doi.org/
10.1007/978-3-642-30223-7_22.

Hurd, D., 2018. Endace fusion partners: redefining cybersecurity with Cisco. https://
youtu.be/iRagH8y0GBA.

Indira, B., Valarmathi, K., Devaraj, D., 2019. An approach to enhance packet classi-
fication performance of software-defined network using deep learning. Soft
Comput. 23 (18), 8609e8619. https://doi.org/10.1007/s00500-019-03975-8.

Islam, M.R., Koirala, T.K., Khatun, F., 2018. Network traffic analysis and packet
sniffing using UDP. In: Bera, R., Sarkar, S.K., Chakraborty, S. (Eds.), Advances in
Communication, Devices and Networking. Springer, Singapore, pp. 907e914.
https://doi.org/10.1007/978-981-10-7901-6_97.

Jandaeng, C., 2016. Embedded packet logger for network monitoring system. In:
Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C. (Eds.),
Advanced Computer and Communication Engineering Technology. Springer,
Cham, pp. 1093e1102. https://doi.org/10.1007/978-3-319-24584-3_93.

Johansen, G., 2017. Acquiring host-based evidence. In: Digital Forensics and Incident
Response: an Intelligent Way to Respond to Attacks. Packt Publishing, Bir-
mingham, UK.

Joshi, R., Pilli, E.S., 2016. Network forensic tools. In: Fundamentals of Network Fo-
rensics. Springer, London, pp. 71-93.

Jungck, P., Duncan, R., Mulcahy, D., 2011. packetC Programming. Apress. https://
doi.org/10.1007/978-1-4302-4159-1.

Kaushik, A.K., Pilli, E.S., Joshi, R.C., 2010. Network forensic analysis by correlation of
attacks with network attributes. In: Das, V.V., Vijaykumar, R. (Eds.), Information
and Communication Technologies. Springer, Heidelberg, pp. 124e128. https://
doi.org/10.1007/978-3-642-15766-0_18.

Kim, H.S., Kim, H.K., 2011. Network forensic evidence acquisition (NFEA) with
packet marking. In: Ninth International Symposium on Parallel and Distributed
Processing with Applications Workshops. IEEE Computer Society, Los Alamitos,
CA, USA, pp. 388e393. https://doi.org/10.1109/ISPAW.2011.27.

Kim, H., Kim, E., Kang, S., Kim, H.K., 2015. Network forensic evidence generation and
verification scheme (NFEGVS). Telecommun. Syst. 60 (2), 261e273. https://
doi.org/10.1007/s11235-015-0028-3.

Kim, Y.-H., Konow, R., Dujovne, D., Turletti, T., Dabbous, W., Navarro, G., 2015b.
PcapWT: an efficient packet extraction tool for large volume network traces.
Comput. Network. 79, 91e102. https://doi.org/10.1016/j.comnet.2014.12.007.

Kumar, A., Lim, T.J., 2020. Early detection of Mirai-like IoT bots in large-scale net-
works through sub-sampled packet traffic analysis. In: Arai, K., Bhatia, R. (Eds.),
Advances in Information and Communication. Springer, Cham, pp. 847e867.
https://doi.org/10.1007/978-3-030-12385-7_58.

Lee, Y., Kang, W., Lee, Y., 2011. A Hadoop-based packet trace processing tool. In:
Domingo-Pascual, J., Shavitt, Y., Uhlig, S. (Eds.), Traffic Monitoring and Analysis.
Springer, Heidelberg, pp. 51e63. https://doi.org/10.1007/978-3-642-20305-3_5.

Lee, C., Park, M., Lee, J., Joe, I., 2012. Design and implementation of packet analyzer
for IEC 61850 communication networks in smart grid. In: Kim, T., Ko, D.,
Vasilakos, T., Stoica, A., Abawajy, J. (Eds.), Computer Applications for Commu-
nication, Networking, and Digital Contents. Springer, Heidelberg, pp. 33e40.
https://doi.org/10.1007/978-3-642-35594-3_5.

Li, J., Su, J., Wang, X., Sun, H., Chen, S., 2017. CloudDPI: cloud-based privacy-pre-
serving deep packet inspection via reversible sketch. In: Wen, S., Wu, W.,
Castiglione, A. (Eds.), Cyberspace Safety and Security. Springer, Cham,
pp. 119e134. https://doi.org/10.1007/978-3-319-69471-9_9.

Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M., 2019. Deep Packet: a novel
approach for encrypted traffic classification using deep learning. Soft Comput.
https://doi.org/10.1007/s00500-019-04030-2.

Lovanshi, M., Bansal, P., 2019. Comparative study of digital forensic tools. In:
Shukla, R.K., Agrawal, J., Sharma, S., Tomer, G.S. (Eds.), Data, Engineering and
Applications. Springer, Singapore, pp. 195e204. https://doi.org/10.1007/978-
981-13-6351-1_15.

Manesh, T., Brijith, B., Singh, M.P., 2011. An improved approach towards network
forensic investigation of HTTP and FTP protocols. In: Nagamalai, D., Renault, E.,
Dhanuskodi, M. (Eds.), Advances in Parallel Distributed Computing. Springer,
Heidelberg, pp. 385e392. https://doi.org/10.1007/978-3-642-24037-9_38.

Mielczarek, W., Mo�n, T., 2015. USB data capture and analysis in Windows using
USBPcap and Wireshark. In: Gaj, P., Kwiecie�n, A., Stera, P. (Eds.), Computer
Networks. Springer, Cham, pp. 431e443. https://doi.org/10.1007/978-3-319-
19419-6_41.

Murugesan, V., Selvaraj, M.S., Yang, M.-H., 2018. HPSIPT: a high-precision single-
packet IP traceback scheme. Comput. Network. 143, 275e288. https://doi.org/
10.1016/j.comnet.2018.07.013.

Ndatinya, V., Xiao, Z., Manepalli, V.R., Meng, K., Xiao, Y., 2015. Network forensics
analysis using Wireshark. Int. J. Secur. Netw. 10 (2), 91e106. https://doi.org/
10.1504/IJSN.2015.070421.

Nikkel, B.J., 2005. Generalizing sources of live network evidence. Digit. Invest. 2 (3),
193e200. https://doi.org/10.1016/j.diin.2005.08.001.

Ning, J., Pelechrinis, K., Krishnamurthy, S.V., Govindan, R., 2013. On the trade-offs
between collecting packet level forensic evidence and data delivery perfor-
mance in wireless networks. In: Kim, D.-I., Mueller, P. (Eds.), 2013 IEEE Inter-
national Conference on Communications. IEEE, Piscataway, NJ, USA,
pp. 1688e1693. https://doi.org/10.1109/ICC.2013.6654760.

Ohm, P., 2014. Should sniffing Wi-Fi be illegal? IEEE Secur. Priv. 12 (1), 73e76.
https://doi.org/10.1109/MSP.2014.14.

Orebaugh, A., Ramirez, G., Burke, J., Pesce, L., Wright, J., Morris, G., 2006. Wireshark
& Ethereal Network Protocol Analyzer Toolkit. Syngress, Rockland, MA, USA.
https://www.sciencedirect.com/book/9781597490733/.

Parra, G.L.T., Rad, P., Choo, K.-K.R., 2019. Implementation of deep packet inspection
in smart grids and industrial Internet of Things: challenges and opportunities.

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 200892 11

https://doi.org/10.1016/j.jksuci.2014.03.013
https://doi.org/10.1007/978-3-319-72119-4_11
https://doi.org/10.1007/978-3-319-72119-4_11
https://doi.org/10.1109/MP.2002.1166620
https://www.ietf.org/proceedings/51/I-D/draft-ietf-itrace-00.txt
https://www.ietf.org/proceedings/51/I-D/draft-ietf-itrace-00.txt
http://ceur-ws.org/Vol-1523/STIDS_2015_T05_BenAsher_etal.pdf
http://ceur-ws.org/Vol-1523/STIDS_2015_T05_BenAsher_etal.pdf
https://doi.org/10.1016/j.diin.2011.05.010
https://doi.org/10.1016/j.diin.2011.05.010
https://doi.org/10.1007/978-981-10-4765-7_28
https://doi.org/10.1007/s11416-015-0247-x
https://doi.org/10.1007/s11416-015-0247-x
https://doi.org/10.1109/ARES.2008.122
https://www.usenix.org/legacy/publications/library/proceedings/lisa2000/full_papers/burch/burch_html/
https://www.usenix.org/legacy/publications/library/proceedings/lisa2000/full_papers/burch/burch_html/
https://doi.org/10.1109/SSCI.2016.7849909
https://doi.org/10.1007/978-3-642-10847-1_33
https://doi.org/10.1016/B978-0-12-803584-9.00007-X
https://doi.org/10.1016/B978-0-12-803584-9.00007-X
https://doi.org/10.1016/j.cose.2017.06.012
https://doi.org/10.1016/j.cose.2017.06.012
https://doi.org/10.1007/978-981-13-5913-2_4
https://doi.org/10.1109/ISDFS.2017.7916510
https://doi.org/10.1109/ISDFS.2017.7916510
https://doi.org/10.1016/j.jnca.2019.01.007
https://doi.org/10.1109/HPCC.2009.89
https://core.ac.uk/download/pdf/36728558.pdf
https://core.ac.uk/download/pdf/36728558.pdf
https://doi.org/10.1109/ICC.2005.1494507
https://doi.org/10.1109/CICN.2017.8319360
https://doi.org/10.1109/CICN.2017.8319360
https://doi.org/10.1016/j.proeng.2017.01.276
https://doi.org/10.1109/CICN.2012.207
https://doi.org/10.1109/CICN.2012.207
https://doi.org/10.1007/978-3-642-30223-7_22
https://doi.org/10.1007/978-3-642-30223-7_22
https://youtu.be/iRagH8y0GBA
https://youtu.be/iRagH8y0GBA
https://doi.org/10.1007/s00500-019-03975-8
https://doi.org/10.1007/978-981-10-7901-6_97
https://doi.org/10.1007/978-3-319-24584-3_93
https://doi.org/10.1007/978-1-4302-4159-1
https://doi.org/10.1007/978-1-4302-4159-1
https://doi.org/10.1007/978-3-642-15766-0_18
https://doi.org/10.1007/978-3-642-15766-0_18
https://doi.org/10.1109/ISPAW.2011.27
https://doi.org/10.1007/s11235-015-0028-3
https://doi.org/10.1007/s11235-015-0028-3
https://doi.org/10.1016/j.comnet.2014.12.007
https://doi.org/10.1007/978-3-030-12385-7_58
https://doi.org/10.1007/978-3-642-20305-3_5
https://doi.org/10.1007/978-3-642-35594-3_5
https://doi.org/10.1007/978-3-319-69471-9_9
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1007/978-981-13-6351-1_15
https://doi.org/10.1007/978-981-13-6351-1_15
https://doi.org/10.1007/978-3-642-24037-9_38
https://doi.org/10.1007/978-3-319-19419-6_41
https://doi.org/10.1007/978-3-319-19419-6_41
https://doi.org/10.1016/j.comnet.2018.07.013
https://doi.org/10.1016/j.comnet.2018.07.013
https://doi.org/10.1504/IJSN.2015.070421
https://doi.org/10.1504/IJSN.2015.070421
https://doi.org/10.1016/j.diin.2005.08.001
https://doi.org/10.1109/ICC.2013.6654760
https://doi.org/10.1109/MSP.2014.14
https://www.sciencedirect.com/book/9781597490733/

J. Netw. Comput. Appl. 135, 32e46. https://doi.org/10.1016/j.jnca.2019.02.022.
Parvat, T.J., Chandra, P., 2015. A novel approach to deep packet inspection for

intrusion detection. Procedia Comput. Sci. 45, 506e513. https://doi.org/10.1016/
j.procs.2015.03.091.

Rahman, M., Khalib, Z.I.A., Ahmad, R.B., 2009. Performance evaluation of PNtMS: a
portable network traffic monitoring system on embedded Linux platform. In:
Zhou, J., Zhou, X. (Eds.), 2009 International Conference on Computer Engi-
neering and Technology, II. IEEE Computer Society, Los Alamitos, CA, USA,
pp. 108e113. https://doi.org/10.1109/ICCET.2009.37.

Richter, P., Wohlfart, F., Vallina-Rodriguez, N., Allman, M., Bush, R., Feldmann, A.,
Kreibich, C., Weaver, N., Paxson, V., 2016. A multi-perspective analysis of carrier-
grade NAT deployment. In: Proceedings of the 2016 Internet Measurement
Conference. ACM, New York, pp. 215e229. https://doi.org/10.1145/
2987443.2987474.

Pimenta Rodrigues, G.A., De Oliveira Albuquerque, R., Gomes de Deus, F.E., De
Sousa Jr., R.T., De Oliveira Júnior, G.A., García Villalba, L.J., Kim, T.-H., 2017.
Cybersecurity and network forensics: analysis of malicious traffic towards a
honeynet with deep packet inspection. Appl. Sci. 7 (10), 1082e1110. https://
doi.org/10.3390/app7101082.

Rounsavall, R., 2017. Full network traffic capture and replay. In: Vacca, J.R. (Ed.),
Computer and Information Security Handbook, third ed. Morgan Kaufmann,
Cambridge, MA, USA. https://doi.org/10.1016/B978-0-12-803843-7.00062-4.

Salim, M.M., Rathore, S., Park, J.H., 2019. Distributed denial of service attacks and its
defenses in IoT: a survey. J. Supercomput. https://doi.org/10.1007/s11227-019-
02945-z.

Sanders, C., 2017. Practical Packet Analysis: Using Wireshark to Solve Real-World
Network Problems. No Starch Press, San Francisco.

Savage, S., Wetherall, D., Karlin, A., Anderson, T., 2001. Network support for IP
traceback. IEEE ACM Trans. Netw. 9 (3), 226-237.

Senthivel, S., Ahmed, I., Roussev, V., 2017. SCADA network forensics of the PCCC
protocol. Digit. Invest. 22, S57eS65. https://doi.org/10.1016/j.diin.2017.06.012.

Shah, S.A.R., Issac, B., 2018. Performance comparison of intrusion detection systems
and application of machine learning to Snort system. Future Gener. Comput.
Syst. 80, 157e170. https://doi.org/10.1016/j.future.2017.10.016.

Shimonski, R., 2013. The Wireshark Field Guide. Syngress. https://doi.org/10.1016/
C2012-0-07287-0.

Sikos, L.F. (Ed.), 2018. AI in Cybersecurity. Springer, Cham. https://doi.org/10.1007/
978-3-319-98842-9.

Sikos, L.F., 2019. Knowledge representation to support partially automated honey-
pot analysis based on Wireshark packet capture files. In: Czarnowski, I.,
Howlett, R.J., Jain, L.C. (Eds.), Intelligent Decision Technologies 2019. Springer,
Singapore, pp. 345e351. https://doi.org/10.1007/978-981-13-8311-3_30.

Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent, S.T.,
Strayer, W.T., 2001. Hash-based IP traceback. In: SIGCOMM ’01. ACM. https://
doi.org/10.1145/383059.383060.

Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Schwartz, B.,
Kent, S.T., Strayer, W.T., 2002. Single-packet IP traceback. IEEE/ACM Trans. Netw.
10 (6), 721e734. https://doi.org/10.1109/TNET.2002.804827.

Song, D.X., Perrig, A., 2001. Advanced and authenticated marking schemes for IP
traceback. In: Proceedings of IEEE INFOCOM 2001, 3. IEEE, Piscataway, NJ, USA,
pp. 878e886. https://doi.org/10.1109/INFCOM.2001.916279.

Stalla-Bourdillon, S., Papadaki, E., Chown, T., 2014. From porn to cybersecurity
passing by copyright: how mass surveillance technologies are gaining legiti-
macy … the case of deep packet inspection technologies. Comput. Law Secur.
Rep. 30 (6), 670e686. https://doi.org/10.1016/j.clsr.2014.09.006.

Stallings, W., Case, T.L., 2012. Business Data Communications: Infrastructure,
Networking and Security. Pearson, Upper Saddle River, NJ, USA.

Stergiopoulos, G., Talavari, A., Bitsikas, E., Gritzalis, D., 2018. Automatic detection of
various malicious traffic using side channel features on TCP packets. In: Lopez,

J., Zhou, J., Soriano, M. (Eds.), Computer Security. Springer, Cham, pp. 346-362.
Stone, R., 2000. CenterTrack: an IP overlay network for tracking DoS floods. In:

Proceedings of the 9th USENIX Security Symposium. USENIX, Berkeley, CA, USA,
pp. 199e212. https://www.usenix.org/legacy/events/sec2000/full_papers/
stone/stone.pdf.

Sy, D., Bao, L., 2006. CAPTRA: coordinated packet traceback. In: 5th International
Conference on Information Processing in Sensor Networks. ACM, New York,
pp. 152e159. https://doi.org/10.1145/1127777.1127803.

Thomas, B., Mullins, B., Peterson, G., Mills, R., 2011. An FPGA system for detecting
malicious DNS network traffic. In: Peterson, G., Shenoi, S. (Eds.), Advances in
Digital Forensics VII. Springer, Heidelberg, pp. 195e207. https://doi.org/10.1007/
978-3-642-24212-0_15.

Turnbull, B., Slay, J., 2007. Wireless forensic analysis tools for use in the electronic
evidence collection process. In: Ralph, H., Sprague, J. (Eds.), Proceedings of the
40th Annual Hawaii International Conference on System Sciences. IEEE Com-
puter Society, Los Alamitos, CA, USA. https://doi.org/10.1109/HICSS.2007.617.

van de Wiel, E., Scanlon, M., Le-Khac, N.-A., 2018. Enabling non-expert analysis of
large volumes of intercepted network traffic. In: Peterson, G., Shenoi, S. (Eds.),
Advances in Digital Forensics XIV. Springer, Cham, pp. 183e197. https://doi.org/
10.1007/978-3-319-99277-8_11.

Vukojevi�c, S., 2015. Violation of user privacy by IPTV packet sniffing in home
network. In: Biljanovic, P., Butkovic, Z., Skala, K., Mikac, B., Cicin-Sain, M.,
Sruk, V., Ribaric, S., Gros, S., Vrdoljak, B., Mauher, M., Sokolic, A. (Eds.), 38th
International Convention on Information and Communication Technology,
Electronics and Microelectronics. IEEE, pp. 1338e1343. https://doi.org/10.1109/
MIPRO.2015.7160482.

Wang, M.-H., Yu, C.-M., Lin, C.-L., Tseng, C.-C., Yen, L.-H., 2014. KPAT: a kernel and
protocol analysis tool for embedded networking devices. In: Jamalipour, A.,
Deng, D.-J. (Eds.), 2014 IEEE International Conference on Communications. IEEE,
Piscataway, NJ, USA, pp. 1160e1165. https://doi.org/10.1109/ICC.2014.6883478.

Xiang, Y., Zhou, W., Guo, M., 2008. Flexible deterministic packet marking: an IP
traceback system to find the real source of attacks. IEEE T. Parall. Distr. 20 (4),
567e580. https://doi.org/10.1109/TPDS.2008.132.

Yang, J., Zhang, Y., King, R., Tolbert, T., 2018. Sniffing and chaffing network traffic in
stepping-stone intrusion detection. In: Barolli, L., Takizawa, M., Enokido, T.,
Ogiela, M.R., Ogiela, L., Javaid, N. (Eds.), 32nd International Conference on
Advanced Information Networking and Applications Workshops. IEEE Com-
puter Society, Los Alamitos, CA, USA, pp. 515e520. https://doi.org/10.1109/
WAINA.2018.00137.

Yin, C., Wang, H., Wang, J., 2018. Network data stream classification by deep packet
inspection and machine learning. In: Park, J.J., Loia, V., Choo, K.-K.R., Yi, G. (Eds.),
Advanced Multimedia and Ubiquitous Engineering. Springer, Singapore,
pp. 245e251. https://doi.org/10.1007/978-981-13-1328-8_31.

Yin, C., Wang, H., Yin, X., Sun, R., Wang, J., 2018b. Improved deep packet inspection
in data stream detection. J. Supercomput. 75 (8), 4295e4308. https://doi.org/
10.1007/s11227-018-2685-y.

Yoon, J., DeBiase, M., 2018. Real-time analysis of big network packet streams by
learning the likelihood of trusted sequences. In: Chin, F.Y.L., Chen, C.L.P.,
Khan, L., Lee, K., Zhang, L.-J. (Eds.), Big Data e BigData 2018. Springer, Cham,
pp. 43e56. https://doi.org/10.1007/978-3-319-94301-5_4.

Yu, C., Lan, J., Xie, J., Hu, Y., 2018. QoS-aware traffic classification architecture using
machine learning and deep packet inspection in SDNs. Procedia Comput. Sci.
131, 1209e1216. https://doi.org/10.1016/j.procs.2018.04.331.

Yurcik, W., Woolam, C., Hellings, G., Khan, L., Thuraisingham, B., 2008. Making
quantitative measurements of privacy/analysis tradeoffs inherent to packet
trace anonymization. In: Tsudik, G. (Ed.), Financial Cryptography and Data Se-
curity. Springer, Heidelberg, pp. 323e324. https://doi.org/10.1007/978-3-540-
85230-8_33.

L.F. Sikos / Forensic Science International: Digital Investigation 32 (2020) 20089212

https://doi.org/10.1016/j.jnca.2019.02.022
https://doi.org/10.1016/j.procs.2015.03.091
https://doi.org/10.1016/j.procs.2015.03.091
https://doi.org/10.1109/ICCET.2009.37
https://doi.org/10.1145/2987443.2987474
https://doi.org/10.1145/2987443.2987474
https://doi.org/10.3390/app7101082
https://doi.org/10.3390/app7101082
https://doi.org/10.1016/B978-0-12-803843-7.00062-4
https://doi.org/10.1007/s11227-019-02945-z
https://doi.org/10.1007/s11227-019-02945-z
https://doi.org/10.1016/j.diin.2017.06.012
https://doi.org/10.1016/j.future.2017.10.016
https://doi.org/10.1016/C2012-0-07287-0
https://doi.org/10.1016/C2012-0-07287-0
https://doi.org/10.1007/978-3-319-98842-9
https://doi.org/10.1007/978-3-319-98842-9
https://doi.org/10.1007/978-981-13-8311-3_30
https://doi.org/10.1145/383059.383060
https://doi.org/10.1145/383059.383060
https://doi.org/10.1109/TNET.2002.804827
https://doi.org/10.1109/INFCOM.2001.916279
https://doi.org/10.1016/j.clsr.2014.09.006
https://www.usenix.org/legacy/events/sec2000/full_papers/stone/stone.pdf
https://www.usenix.org/legacy/events/sec2000/full_papers/stone/stone.pdf
https://doi.org/10.1145/1127777.1127803
https://doi.org/10.1007/978-3-642-24212-0_15
https://doi.org/10.1007/978-3-642-24212-0_15
https://doi.org/10.1109/HICSS.2007.617
https://doi.org/10.1007/978-3-319-99277-8_11
https://doi.org/10.1007/978-3-319-99277-8_11
https://doi.org/10.1109/MIPRO.2015.7160482
https://doi.org/10.1109/MIPRO.2015.7160482
https://doi.org/10.1109/ICC.2014.6883478
https://doi.org/10.1109/TPDS.2008.132
https://doi.org/10.1109/WAINA.2018.00137
https://doi.org/10.1109/WAINA.2018.00137
https://doi.org/10.1007/978-981-13-1328-8_31
https://doi.org/10.1007/s11227-018-2685-y
https://doi.org/10.1007/s11227-018-2685-y
https://doi.org/10.1007/978-3-319-94301-5_4
https://doi.org/10.1016/j.procs.2018.04.331
https://doi.org/10.1007/978-3-540-85230-8_33
https://doi.org/10.1007/978-3-540-85230-8_33

	Packet analysis for network forensics: A comprehensive survey
	Packet analysis for network forensics: A comprehensive survey
	1. Introduction to packet analysis in network forensics
	2. Capturing and storing network packets
	3. Processing network packets and packet flow
	3.1. Deep packet inspection
	3.2. Using artificial intelligence in packet analysis
	3.2.1. Optimizing and offloading packet processing

	3.3. Programming packet processing applications

	4. Packet data as digital evidence
	5. Network packet analyzers
	5.1. Hardware devices for packet analysis
	5.2. Packet analyzer software
	5.3. Packet builders
	5.4. Comparisons of packet analyzers for forensic applications
	5.4.1. Reconstruction and carving capabilities
	5.4.2. Tracing capabilities

	6. Research challenges and future directions in packet analysis
	7. Conclusions
	Declaration of competing interest
	References

