48,422 research outputs found

    Defining and validating a multimodel approach for product architecture derivation and improvement

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41533-3_24Software architectures are the key to achieving the non-functional requirements (NFRs) in any software project. In software product line (SPL) development, it is crucial to identify whether the NFRs for a specific product can be attained with the built-in architectural variation mechanisms of the product line architecture, or whether additional architectural transformations are required. This paper presents a multimodel approach for quality-driven product architecture derivation and improvement (QuaDAI). A controlled experiment is also presented with the objective of comparing the effectiveness, efficiency, perceived ease of use, intention to use and perceived usefulness with regard to participants using QuaDAI as opposed to the Architecture Tradeoff Analysis Method (ATAM). The results show that QuaDAI is more efficient and perceived as easier to use than ATAM, from the perspective of novice software architecture evaluators. However, the other variables were not found to be statistically significant. Further replications are needed to obtain more conclusive results.This research is supported by the MULTIPLE project (MICINN TIN2009-13838) and the Vali+D fellowship program (ACIF/2011/235).González Huerta, J.; Insfrán Pelozo, CE.; Abrahao Gonzales, SM. (2013). Defining and validating a multimodel approach for product architecture derivation and improvement. En Model-Driven Engineering Languages and Systems. Springer. 388-404. https://doi.org/10.1007/978-3-642-41533-3_24S388404Ali-Babar, M., Lago, P., Van Deursen, A.: Empirical research in software architecture: opportunities, challenges, and approaches. Empirical Software Engineering 16(5), 539–543 (2011)Ali-Babar, M., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software Architecture Evaluation Methods. In: 15th Australian Software Engineering Conference, Melbourne, Australia, pp. 309–318 (2004)Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented software environments. IEEE Transactions on Software Engineering 14(6), 758–773 (1988)Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves, M.P., Wallace, E.K.: Concepts for Automating Systems Integration NISTIR 6928. National Institute of Standards and Technology, U.S. Dept. of Commerce (2003)Bosch, J.: Design and Use of Software Architectures. Adopting and Evolving Product-Line Approach. Addison-Wesley, Harlow (2000)Botterweck, G., O’Brien, L., Thiel, S.: Model-driven derivation of product architectures. In: 22th Int. Conf. on Automated Software Engineering, New York, USA, pp. 469–472 (2007)Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented software architecture, vol. 1: A System of Patterns. Wiley (1996)Cabello, M.E., Ramos, I., Gómez, A., Limón, R.: Baseline-Oriented Modeling: An MDA Approach Based on Software Product Lines for the Expert Systems Development. In: 1st Asia Conference on Intelligent Information and Database Systems, Vietnam (2009)Carifio, J., Perla, R.J.: Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences 3(3), 106–116 (2007)Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley, Boston (2007)Czarnecki, K., Kim, C.H.: Cardinality-based feature modeling and constraints: A progress report. In: Int. Workshop on Software Factories, San Diego-CA (2005)Datorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing (2005)Davis, F.D.: Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly 13(3), 319–340 (1989)Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison-Wesley, Boston (2002)Feiler, P.H., Gluch, D.P., Hudak, J.: The Architecture Analysis & Design Language (AADL): An Introduction. Tech. Report CMU/SEI-2006-TN-011. SEI, Carnegie Mellon University (2006)Gómez, A., Ramos, I.: Cardinality-based feature modeling and model-driven engineering: Fitting them together. In: 4th Int. Workshop on Variability Modeling of Software Intensive Systems, Linz, Austria (2010)Gonzalez-Huerta, J., Insfran, E., Abrahao, S.: A Multimodel for Integrating Quality Assessment in Model-Driven Engineering. In: 8th International Conference on the Quality of Information and Communications Technology (QUATIC 2012), Lisbon, Portugal, September 3-6 (2012)Gonzalez-Huerta, J., Insfran, E., Abrahao, S., McGregor, J.D.: Non-functional Requirements in Model-Driven Software Product Line Engineering. In: 4th Int. Workshop on Non-functional System Properties in Domain Specific Modeling Languages, Insbruck, Austria (2012)Guana, V., Correal, V.: Variability quality evaluation on component-based software product lines. In: 15th Int. Software Product Line Conference, Munich, Germany, vol. 2, pp. 19.1–19.8 (2011)Insfrán, E., Abrahão, S., González-Huerta, J., McGregor, J.D., Ramos, I.: A Multimodeling Approach for Quality-Driven Architecture Derivation. In: 21st Int. Conf. on Information Systems Development (ISD 2012), Prato, Italy (2012)ISO/IEC 25000:2005, Software Engineering. Software product Quality Requirements and Evaluation SQuaRE (2005)Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation (CMU/SEI-2000-TR-004, ADA382629). Software Engineering Institute, Carnegie Mellon University, Pittsburgh (2000), http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.htmlKim, T., Ko, I., Kang, S., Lee, D.: Extending ATAM to assess product line architecture. In: 8th IEEE Int. Conference on Computer and Information Technology, Sydney, Australia, pp. 790–797 (2008)Kitchenham, B.A., Pfleeger, S.L., Hoaglin, D.C., Rosenber, J.: Preliminary Guidelines for Empirical Research in Software Engineering. IEEE Transactions on Software Engineering 28(8) (2002)Kruchten, P.B.: The Rational Unified Process: An Introduction. Addison-Wesley (1999)Martensson, F.: Software Architecture Quality Evaluation. Approaches in an Industrial Context. Ph. D. thesis, Blekinge Institute of Technology, Karlskrona, Sweden (2006)Maxwell, K.: Applied Statistics for Software Managers. Software Quality Institute Series. Prentice-Hall (2002)Olumofin, F.G., Mišic, V.B.: A holistic architecture assessment method for software product lines. Information and Software Technology 49, 309–323 (2007)Perovich, D., Rossel, P.O., Bastarrica, M.C.: Feature model to product architectures: Applying MDE to Software Product Lines. In: IEEE/IFIP & European Conference on Software Architecture, Helsinki, Findland, pp. 201–210 (2009)Robertson, S., Robertson, J.: Mastering the requirements process. ACM Press, New York (1999)Roos-Frantz, F., Benavides, D., Ruiz-Cortés, A., Heuer, A., Lauenroth, K.: Quality-aware analysis in product line engineering with the orthogonal variability model. Software Quality Journal (2011), doi:10.1007/s11219-011-9156-5Saaty, T.L.: The Analytical Hierarchical Process. McGraw- Hill, New York (1990)Taher, L., Khatib, H.E., Basha, R.: A framework and QoS matchmaking algorithm for dynamic web services selection. In: 2nd Int. Conference on Innovations in Information Technology, Dubai, UAE (2005)Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Weslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer (2000

    A systematic review of quality attributes and measures for software product lines

    Full text link
    [EN] It is widely accepted that software measures provide an appropriate mechanism for understanding, monitoring, controlling, and predicting the quality of software development projects. In software product lines (SPL), quality is even more important than in a single software product since, owing to systematic reuse, a fault or an inadequate design decision could be propagated to several products in the family. Over the last few years, a great number of quality attributes and measures for assessing the quality of SPL have been reported in literature. However, no studies summarizing the current knowledge about them exist. This paper presents a systematic literature review with the objective of identifying and interpreting all the available studies from 1996 to 2010 that present quality attributes and/or measures for SPL. These attributes and measures have been classified using a set of criteria that includes the life cycle phase in which the measures are applied; the corresponding quality characteristics; their support for specific SPL characteristics (e. g., variability, compositionality); the procedure used to validate the measures, etc. We found 165 measures related to 97 different quality attributes. The results of the review indicated that 92% of the measures evaluate attributes that are related to maintainability. In addition, 67% of the measures are used during the design phase of Domain Engineering, and 56% are applied to evaluate the product line architecture. However, only 25% of them have been empirically validated. In conclusion, the results provide a global vision of the state of the research within this area in order to help researchers in detecting weaknesses, directing research efforts, and identifying new research lines. In particular, there is a need for new measures with which to evaluate both the quality of the artifacts produced during the entire SPL life cycle and other quality characteristics. There is also a need for more validation (both theoretical and empirical) of existing measures. In addition, our results may be useful as a reference guide for practitioners to assist them in the selection or the adaptation of existing measures for evaluating their software product lines. © 2011 Springer Science+Business Media, LLC.This research has been funded by the Spanish Ministry of Science and Innovation under the MULTIPLE (Multimodeling Approach For Quality-Aware Software Product Lines) project with ref. TIN2009-13838.Montagud Gregori, S.; Abrahao Gonzales, SM.; Insfrán Pelozo, CE. (2012). A systematic review of quality attributes and measures for software product lines. Software Quality Journal. 20(3-4):425-486. https://doi.org/10.1007/s11219-011-9146-7S425486203-4Abdelmoez, W., Nassar, D. M., Shereschevsky, M., Gradetsky, N., Gunnalan, R., Ammar, H. H., et al. (2004). Error propagation in software architectures. In 10th international symposium on software metrics (METRICS), Chicago, Illinois, USA.Ajila, S. A., & Dumitrescu, R. T. (2007). Experimental use of code delta, code churn, and rate of change to understand software product line evolution. Journal of Systems and Software, 80, 74–91.Aldekoa, G., Trujillo, S., Sagardui, G., & Díaz, O. (2006). Experience measuring maintainability in software product lines. In XV Jornadas de Ingeniería del Software y Bases de Datos (JISBD). Barcelona.Aldekoa, G., Trujillo, S., Sagardui, G., & Díaz, O. (2008). Quantifying maintanibility in feature oriented product lines, Athens, Greece, pp. 243–247.Alves de Oliveira Junior, E., Gimenes, I. M. S., & Maldonado, J. C. (2008). A metric suite to support software product line architecture evaluation. In XXXIV Conferencia Latinamericana de Informática (CLEI), Santa Fé, Argentina, pp. 489–498.Alves, V., Niu, N., Alves, C., & Valença, G. (2010). Requirements engineering for software product lines: A systematic literature review. Information & Software Technology, 52(8), 806–820.Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a product line approach. USA: ACM Press/Addison-Wesley Publishing Co.Briand, L. C., Differing, C. M., & Rombach, D. (1996a). Practical guidelines for measurement-based process improvement. Software Process-Improvement and Practice, 2, 253–280.Briand, L. C., Morasca, S., & Basili, V. R. (1996b). Property based software engineering measurement. IEEE Transactions on Software Eng., 22(1), 68–86.Calero, C., Ruiz, J., & Piattini, M. (2005). Classifying web metrics using the web quality model. Online Information Review, 29(3): 227–248.Chen, L., Ali Babar, M., & Ali, N. (2009). Variability management in software product lines: A systematic review. In 13th international software product lines conferences (SPLC), San Francisco, USA.Clements, P., & Northrop, L. (2002). Software product lines. 2003. Software product lines practices and patterns. Boston, MA: Addison-Wesley.Crnkovic, I., & Larsson, M. (2004). Classification of quality attributes for predictability in component-based systems. Journal of Econometrics, pp. 231–250.Conference Rankings of Computing Research and Education Association of Australasia (CORE). (2010). Available in http://core.edu.au/index.php/categories/conference%20rankings/1 .Davis, A., Dieste, Ó., Hickey, A., Juristo, N., & Moreno, A. M. (2006). Effectiveness of requirements elicitation techniques: Empirical results derived from a systematic review. In 14th IEEE international conference requirements engineering, pp. 179–188.de Souza Filho, E. D., de Oliveira Cavalcanti, R., Neiva, D. F. S., Oliveira, T. H. B., Barachisio Lisboa, L., de Almeida E. S., & de Lemos Meira, S. R. (2008). Evaluating domain design approaches using systematic review. In 2nd European conference on software architecture, Cyprus, pp. 50–65.Ejiogu, L. (1991). Software engineering with formal metrics. QED Publishing.Engström, E., & Runeson, P. (2011). Software product line testing—A systematic mapping study. Information & Software Technology, 53(1), 2–13.Etxeberria, L., Sagarui, G., & Belategi, L. (2008). Quality aware software product line engineering. Journal of the Brazilian Computer Society, 14(1), Campinas Mar.Ganesan, D., Knodel, J., Kolb, R., Haury, U., & Meier, G. (2007). Comparing costs and benefits of different test strategies for a software product line: A study from Testo AG. In 11th international software product line conference, Kyoto, Japan, pp. 74–83, September 2007.Gómez, O., Oktaba, H., Piattini, M., & García, F. (2006). A systematic review measurement in software engineering: State-of-the-art in measures. In First international conference on software and data technologies (ICSOFT), Setúbal, Portugal, pp. 11–14.IEEE standard for a software quality metrics methodology, IEEE Std 1061-1998, 1998.Inoki, M., & Fukazawa, Y. (2007). Software product line evolution method based on Kaizen approach. In 22nd annual ACM symposium on applied computing, Korea.Insfran, E., & Fernandez, A. (2008). A systematic review of usability evaluation in Web development. 2nd international workshop on web usability and accessibility (IWWUA’08), New Zealand, LNCS 5176, Springer, pp. 81–91.ISO/IEC 25010. (2008). Systems and software engineering. Systems and software Quality Requirements and Evaluation (SQuaRE). System and software quality models.ISO/IEC 9126. (2000). Software engineering. Product Quality.Johansson, E., & Höst, R. (2002). Tracking degradation in software product lines through measurement of design rule violations. In 14th International conference on software engineering and knowledge engineering, Ischia, Italy, pp. 249–254.Journal Citation Reports of Thomson Reuters. (2010). Available in http://thomsonreuters.com/products_services/science/science_products/a-z/journal_citation_reports/ .Khurum, M., & Gorschek, T. (2009). A systematic review of domain analysis solutions for product lines. The Journal of Systems and Software.Kim, T., Ko, I. Y., Kang, S. W., & Lee, D. H. (2008). Extending ATAM to assess product line architecture. In 8th IEEE international conference on computer and information technology, pp. 790–797.Kitchenham, B. (2007). Guidelines for performing systematic literature reviews in software engineering. Version 2.3, EBSE Technical Report, Keele University, UK.Kitchenham, B., Pfleeger, S., & Fenton, N. (1995). Towards a framework for software measurement validation. IEEE Transactions on Software Engineering, 21(12).Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.Mendes, E. (2005). A systematic review of Web engineering research. International symposium on empirical software engineering. Noosa Heads, Australia.Meyer, M. H., & Dalal, D. (2002). Managing platform architectures and manufacturing processes for non assembled products. Journal of Product Innovation Management, 19(4), 277–293.Montagud, S., & Abrahão, S. (2009). Gathering Current knowledge about quality evaluation in software product lines. In 13th international software product lines conferences (SPLC), San Francisco, USA.Montagud, S., & Abrahão, S. (2009). A SQuaRE-bassed quality evaluation method for software product lines. Master’s thesis, December 2009 (in Spanish).Needham, D., & Jones, S. (2006). A software fault tree metric. In 22nd international conference on software maintenance (ICSM), Philadelphia, Pennsylvania, USA.Niemelä, E., & Immonen, A. (2007). Capturing quality requirements of product family architecture. Information and Software Technology, 49(11–12), 1107–1120.Odia, O. E. (2007). Testing in software product lines. Master Thesis Software Engineering of School of Engineering, Bleking Institute of Technology. Thesis no. MSE-2007:16, Sweden.Olumofin, F. G., & Mišić, V. B. (2007). A holistic architecture assessment method for software product lines. Information and Software Technology, 49, 309–323.Pérez Lamancha, B., Polo Usaola, M., & Piattini Velthius, M. (2009). Software product line testing—a systematic review. ICSOFT, (1), 23–30.Poels, G., & Dedene, G. (2000). Distance-based software measurement: necessary and sufficient properties for software measures. Information and Software Technology, 42(I), 35–46.Prehofer, C., van Gurp, J., & Bosch, J. (2008). Compositionality in software platforms. In Emerging methods, technologies and process management in software engineering. Wiley.Rahman, A. (2004). Metrics for the structural assessment of product line architecture. Master Thesis on Software Engineering, Thesis no. MSE-2004:24. School of Engineering, Blekinge Institute of Technology, Sweden.Sethi, K., Cai, Y., Wong, S., Garcia, A., & Sant’Anna, C. (2009). From retrospect to prospect: Assessing modularity and stability from software architecture. Joint working IEEE/IFIP conference on software architecture, 2009 & European conference on software architecture. WICSA/ECSA.Shaik, I., Abdelmoez, W,. Gunnalan, R., Shereshevsky, M., Zeid, A., Ammar, H. H., et al. (2005). Change propagation for assessing design quality of software architectures. 5th working IEEE/IFIP conference on software architecture (WICSA’05).Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., & Saake, G. (2008). Measuring non-functional properties in software product lines for product derivation. In 15th Asia-Pacific software engineering conference, Beijing, China.Sun Her, J., Hyeok Kim, J., Hun Oh, S., Yul Rhew, S., & Dong Kim, S. (2007). A framework for evaluating reusability of core asset in product line engineering. Information and Software Technology, 49, 740–760.Svahnberg, M., & Bosch, J. (2000). Evolution in software product lines. In 3rd international workshop on software architectures for products families (IWSAPF-3). Las Palmas de Gran Canaria.Van der Hoek, A., Dincel, E., & Medidović, N. (2003). Using services utilization metrics to assess the structure of product line architectures. In 9th international software metrics symposium (METRICS), Sydney, Australia.Van der Linden, F., Schmid, K., & Rommes, E. (2007). Software product lines in action. Springer.Whitmire, S. (1997). Object oriented design measurement. John Wiley & Sons.Wnuk, K., Regnell, B., & Karlsson, L. (2009). What happened to our features? Visualization and understanding of scope change dynamics in a large-scale industrial setting. In 17th IEEE international requirements engineering conference.Yoshimura, K., Ganesan, D., & Muthig, D. (2006). Assessing merge potential of existing engine control systems into a product line. In International workshop on software engineering for automative systems, Shangai, China, pp. 61–67.Zhang, T., Deng, L., Wu, J., Zhou, Q., & Ma, C. (2008). Some metrics for accessing quality of product line architecture. In International conference on computer science and software engineering (CSSE), Wuhan, China, pp. 500–503

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    A Quality Model for Actionable Analytics in Rapid Software Development

    Get PDF
    Background: Accessing relevant data on the product, process, and usage perspectives of software as well as integrating and analyzing such data is crucial for getting reliable and timely actionable insights aimed at continuously managing software quality in Rapid Software Development (RSD). In this context, several software analytics tools have been developed in recent years. However, there is a lack of explainable software analytics that software practitioners trust. Aims: We aimed at creating a quality model (called Q-Rapids quality model) for actionable analytics in RSD, implementing it, and evaluating its understandability and relevance. Method: We performed workshops at four companies in order to determine relevant metrics as well as product and process factors. We also elicited how these metrics and factors are used and interpreted by practitioners when making decisions in RSD. We specified the Q-Rapids quality model by comparing and integrating the results of the four workshops. Then we implemented the Q-Rapids tool to support the usage of the Q-Rapids quality model as well as the gathering, integration, and analysis of the required data. Afterwards we installed the Q-Rapids tool in the four companies and performed semi-structured interviews with eight product owners to evaluate the understandability and relevance of the Q-Rapids quality model. Results: The participants of the evaluation perceived the metrics as well as the product and process factors of the Q-Rapids quality model as understandable. Also, they considered the Q-Rapids quality model relevant for identifying product and process deficiencies (e.g., blocking code situations). Conclusions: By means of heterogeneous data sources, the Q-Rapids quality model enables detecting problems that take more time to find manually and adds transparency among the perspectives of system, process, and usage.Comment: This is an Author's Accepted Manuscript of a paper to be published by IEEE in the 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 2018. The final authenticated version will be available onlin

    Software Reuse in Agile Development Organizations - A Conceptual Management Tool

    Get PDF
    The reuse of knowledge is considered a major factor for increasing productivity and quality. In the software industry knowledge is embodied in software assets such as code components, functional designs and test cases. This kind of knowledge reuse is also referred to as software reuse. Although the benefits can be substantial, software reuse has never reached its full potential. Organizations are not aware of the different levels of reuse or do not know how to address reuse issues. This paper proposes a conceptual management tool for supporting software reuse. Furthermore the paper presents the findings of the application of the management tool in an agile development organization

    Managed Evolution of Automotive Software Product Line Architectures: A Systematic Literature Study

    Get PDF
    The rapidly growing number of software-based features in the automotive domain as well as the special requirements in this domain ask for dedicated engineering approaches, models, and processes. Nowadays, software development in the automotive sector is generally developed as product line development, in which major parts of the software are kept adaptable in order to enable reusability of the software in different vehicle variants. In addition, reuse also plays an important role in the development of new vehicle generations in order to reduce development costs. Today, a high number of methods and techniques exist to support the product line driven development of software in the automotive sector. However, these approaches generally consider only partial aspects of development. In this paper, we present an in-depth literature study based on a conceptual model of artifacts and activities for the managed evolution of automotive software product line architectures. We are interested in the coverage of the particular aspects of the conceptual model and, thus, the fields covered in current research and research gaps, respectively. Furthermore, we aim to identify the methods and techniques used to implement automotive software product lines in general, and their usage scope in particular. As a result, this in-depth review reveals that none of the studies represent a holistic approach for the managed evolution of automotive software product lines. In addition, approaches from agile software development are of growing interest in this field

    Quality aware software product line engineering

    Get PDF
    corecore