5,287 research outputs found

    A colour hit-or-miss transform based on a rank ordered distance measure

    Get PDF
    The Hit-or-Miss Transform (HMT) is a powerful morphological operation that can be utilised in many digital image analysis problems. Its original binary definition and its extension to grey-level images have seen it applied to various template matching and object detection tasks. However, further extending the transform to incorporate colour or multivariate images is problematic since there is no general or intuitive way of ordering data which allows the formal definition of morphological operations in the traditional manner. In this paper, instead of following the usual strategy for Mathematical Morphology, based on the definition of a total order in the colour space, we propose a transform that relies on a colour or multivariate distance measure. As with the traditional HMT operator, our proposed transform uses two structuring elements (SE) - one for the foreground and one for the background - and retains the idea that a good fitting is obtained when the foreground SE is a close match to the image and the background SE matches the image complement. This allows for both flat and non-flat structuring elements to be used in object detection. Furthermore, the use of ranking operations on the computed distances allows the operator to be robust to noise and partial occlusion of objects

    COASTLINE EXTRACTION IN VHR IMAGERY USING MATHEMATICAL MORPHOLOGY WITH SPATIAL AND SPECTRAL KNOWLEDGE

    Get PDF
    In this article, we are dealing with the problem of coastline extraction in Very High Resolution (VHR) multispectral images (Quickbird) on the Normandy Coast (France). Locating precisely the coastline is a crucial task in the context of coastal resource management and planning. In VHR imagery, some details on coastal zone become visible and the coastline definition depends on the geomorphologic context. According to the type of coastal units (sandy beach, wetlands, dune, cliff), several definitions for the coastline has to be used. So in this paper we propose a new approach in two steps based on morphological tools to extract coastline according to their context. More precisely, we first perform two detections of possible coastline pixels (respectively without false positive and without false negative). To do so, we apply a recent extension to multivariate images of the hit-or-miss transform, the morphological template matching tool, and rely on expert knowledge to define the sought templates. We then combine these two results through a double thresholding procedure followed by a final marker-based watershed to locate the exact coastline. In order to assess the performance and reliability of our method, results are compared with some ground-truth given by expert visual analysis. This comparison is made both visually and quantitatively. Results show the high performance of our method and its relevance to the problem under consideration

    Color Hit-or-Miss Transform (CMOMP)

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Bucharest, Romania, 201

    Adaptive hit or miss transform

    Get PDF
    International audienceThe Hit or Miss Transform is a fundamental morphological operator, and can be used for template matching. In this paper, we present a framework for adaptive Hit or Miss Transform, where structuring elements are adaptive with respect to the input image itself. We illustrate the difference between the new adaptive Hit or Miss Transform and the classical Hit or Miss Transform. As an example of its usefulness, we show how the new adaptive Hit or Miss Transform can detect particles in single molecule imaging

    Outlier and target detection in aerial hyperspectral imagery : a comparison of traditional and percentage occupancy hit or miss transform techniques

    Get PDF
    The use of aerial hyperspectral imagery for the purpose of remote sensing is a rapidly growing research area. Currently, targets are generally detected by looking for distinct spectral features of the objects under surveillance. For example, a camouflaged vehicle, deliberately designed to blend into background trees and grass in the visible spectrum, can be revealed using spectral features in the near-infrared spectrum. This work aims to develop improved target detection methods, using a two-stage approach, firstly by development of a physics-based atmospheric correction algorithm to convert radiance into reflectance hyperspectral image data and secondly by use of improved outlier detection techniques. In this paper the use of the Percentage Occupancy Hit or Miss Transform is explored to provide an automated method for target detection in aerial hyperspectral imagery

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161–173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37–67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575–585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167–1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9–14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208–209, 2000. [48] M. K¨oppen, C.H. Nowack and G. R¨osel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195–202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251–267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175–178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67–73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169–172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749–750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167–185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69–87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674–693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367–381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    On morphological hierarchical representations for image processing and spatial data clustering

    Full text link
    Hierarchical data representations in the context of classi cation and data clustering were put forward during the fties. Recently, hierarchical image representations have gained renewed interest for segmentation purposes. In this paper, we briefly survey fundamental results on hierarchical clustering and then detail recent paradigms developed for the hierarchical representation of images in the framework of mathematical morphology: constrained connectivity and ultrametric watersheds. Constrained connectivity can be viewed as a way to constrain an initial hierarchy in such a way that a set of desired constraints are satis ed. The framework of ultrametric watersheds provides a generic scheme for computing any hierarchical connected clustering, in particular when such a hierarchy is constrained. The suitability of this framework for solving practical problems is illustrated with applications in remote sensing

    Object detection and classification in aerial hyperspectral imagery using a multivariate hit-or-miss transform

    Get PDF
    High resolution aerial and satellite borne hyperspectral imagery provides a wealth of information about an imaged scene allowing for many earth observation applications to be investigated. Such applications include geological exploration, soil characterisation, land usage, change monitoring as well as military applications such as anomaly and target detection. While this sheer volume of data provides an invaluable resource, with it comes the curse of dimensionality and the necessity for smart processing techniques as analysing this large quantity of data can be a lengthy and problematic task. In order to aid this analysis dimensionality reduction techniques can be employed to simplify the task by reducing the volume of data and describing it (or most of it) in an alternate way. This work aims to apply this notion of dimensionality reduction based hyperspectral analysis to target detection using a multivariate Percentage Occupancy Hit or Miss Transform that detects objects based on their size shape and spectral properties. We also investigate the effects of noise and distortion and how incorporating these factors in the design of necessary structuring elements allows for a more accurate representation of the desired targets and therefore a more accurate detection. We also compare our method with various other common Target Detection and Anomaly Detection techniques

    A fast hyperspectral hit-or-miss transform with integrated projection-based dimensionality reduction

    Get PDF
    The Hit-or-Miss transform (HMT) is a common tool in Mathematical Morphology (MM) used in template matching and object detection and subsequent classification applications. The HMT probes a query image with a pair of structuring elements (SEs) which are designed to detect specific objects of interest. The relative size of hyperspectral image data in particular provides a wealth of information on a scene however, it also makes object detection via a HMT a computationally expensive process. We aim to solve this problem through employing both spatial and spectral dimensionality reduction (DR) techniques to transform a hyperspectral image and its associated SEs designed for the HMT into a reduced space
    corecore