301 research outputs found

    TopCom: Index for Shortest Distance Query in Directed Graph

    Get PDF
    Finding shortest distance between two vertices in a graph is an important problem due to its numerous applications in diverse domains, including geo-spatial databases, social network analysis, and information retrieval. Classical algorithms (such as, Dijkstra) solve this problem in polynomial time, but these algorithms cannot provide real-time response for a large number of bursty queries on a large graph. So, indexing based solutions that pre-process the graph for efficiently answering (exactly or approximately) a large number of distance queries in real-time is becoming increasingly popular. Existing solutions have varying performance in terms of index size, index building time, query time, and accuracy. In this work, we propose T OP C OM , a novel indexing-based solution for exactly answering distance queries. Our experiments with two of the existing state-of-the-art methods (IS-Label and TreeMap) show the superiority of T OP C OM over these two methods considering scalability and query time. Besides, indexing of T OP C OM exploits the DAG (directed acyclic graph) structure in the graph, which makes it significantly faster than the existing methods if the SCCs (strongly connected component) of the input graph are relatively small

    Sublinear Distance Labeling

    Get PDF
    A distance labeling scheme labels the nn nodes of a graph with binary strings such that, given the labels of any two nodes, one can determine the distance in the graph between the two nodes by looking only at the labels. A DD-preserving distance labeling scheme only returns precise distances between pairs of nodes that are at distance at least DD from each other. In this paper we consider distance labeling schemes for the classical case of unweighted graphs with both directed and undirected edges. We present a O(nDlog2D)O(\frac{n}{D}\log^2 D) bit DD-preserving distance labeling scheme, improving the previous bound by Bollob\'as et. al. [SIAM J. Discrete Math. 2005]. We also give an almost matching lower bound of Ω(nD)\Omega(\frac{n}{D}). With our DD-preserving distance labeling scheme as a building block, we additionally achieve the following results: 1. We present the first distance labeling scheme of size o(n)o(n) for sparse graphs (and hence bounded degree graphs). This addresses an open problem by Gavoille et. al. [J. Algo. 2004], hereby separating the complexity from distance labeling in general graphs which require Ω(n)\Omega(n) bits, Moon [Proc. of Glasgow Math. Association 1965]. 2. For approximate rr-additive labeling schemes, that return distances within an additive error of rr we show a scheme of size O(nrpolylog(rlogn)logn)O\left ( \frac{n}{r} \cdot\frac{\operatorname{polylog} (r\log n)}{\log n} \right ) for r2r \ge 2. This improves on the current best bound of O(nr)O\left(\frac{n}{r}\right) by Alstrup et. al. [SODA 2016] for sub-polynomial rr, and is a generalization of a result by Gawrychowski et al. [arXiv preprint 2015] who showed this for r=2r=2.Comment: A preliminary version of this paper appeared at ESA'1

    Efficient Computation of Distance Labeling for Decremental Updates in Large Dynamic Graphs

    Get PDF
    Since today's real-world graphs, such as social network graphs, are evolving all the time, it is of great importance to perform graph computations and analysis in these dynamic graphs. Due to the fact that many applications such as social network link analysis with the existence of inactive users need to handle failed links or nodes, decremental computation and maintenance for graphs is considered a challenging problem. Shortest path computation is one of the most fundamental operations for managing and analyzing large graphs. A number of indexing methods have been proposed to answer distance queries in static graphs. Unfortunately, there is little work on answering such queries for dynamic graphs. In this paper, we focus on the problem of computing the shortest path distance in dynamic graphs, particularly on decremental updates (i.e., edge deletions). We propose maintenance algorithms based on distance labeling, which can handle decremental updates efficiently. By exploiting properties of distance labeling in original graphs, we are able to efficiently maintain distance labeling for new graphs. We experimentally evaluate our algorithms using eleven real-world large graphs and confirm the effectiveness and efficiency of our approach. More specifically, our method can speed up index re-computation by up to an order of magnitude compared with the state-of-the-art method, Pruned Landmark Labeling (PLL)

    Fast Exact Shortest-Path Distance Queries on Large Networks by Pruned Landmark Labeling

    Full text link
    We propose a new exact method for shortest-path distance queries on large-scale networks. Our method precomputes distance labels for vertices by performing a breadth-first search from every vertex. Seemingly too obvious and too inefficient at first glance, the key ingredient introduced here is pruning during breadth-first searches. While we can still answer the correct distance for any pair of vertices from the labels, it surprisingly reduces the search space and sizes of labels. Moreover, we show that we can perform 32 or 64 breadth-first searches simultaneously exploiting bitwise operations. We experimentally demonstrate that the combination of these two techniques is efficient and robust on various kinds of large-scale real-world networks. In particular, our method can handle social networks and web graphs with hundreds of millions of edges, which are two orders of magnitude larger than the limits of previous exact methods, with comparable query time to those of previous methods.Comment: To appear in SIGMOD 201

    A Study on Time-Dependent Reachability and Route Scheduling in Road Network

    Get PDF

    Simpler, faster and shorter labels for distances in graphs

    Full text link
    We consider how to assign labels to any undirected graph with n nodes such that, given the labels of two nodes and no other information regarding the graph, it is possible to determine the distance between the two nodes. The challenge in such a distance labeling scheme is primarily to minimize the maximum label lenght and secondarily to minimize the time needed to answer distance queries (decoding). Previous schemes have offered different trade-offs between label lengths and query time. This paper presents a simple algorithm with shorter labels and shorter query time than any previous solution, thereby improving the state-of-the-art with respect to both label length and query time in one single algorithm. Our solution addresses several open problems concerning label length and decoding time and is the first improvement of label length for more than three decades. More specifically, we present a distance labeling scheme with label size (log 3)/2 + o(n) (logarithms are in base 2) and O(1) decoding time. This outperforms all existing results with respect to both size and decoding time, including Winkler's (Combinatorica 1983) decade-old result, which uses labels of size (log 3)n and O(n/log n) decoding time, and Gavoille et al. (SODA'01), which uses labels of size 11n + o(n) and O(loglog n) decoding time. In addition, our algorithm is simpler than the previous ones. In the case of integral edge weights of size at most W, we present almost matching upper and lower bounds for label sizes. For r-additive approximation schemes, where distances can be off by an additive constant r, we give both upper and lower bounds. In particular, we present an upper bound for 1-additive approximation schemes which, in the unweighted case, has the same size (ignoring second order terms) as an adjacency scheme: n/2. We also give results for bipartite graphs and for exact and 1-additive distance oracles
    corecore