
A STUDY ON TIME-DEPENDENT REACHABILITY AND ROUTE

SCHEDULING IN ROAD NETWORK

Lei Li

Master of Computer Science and Engineering

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2018

School of Information Technology & Electrical Engineering

ii

Abstract

For thousands of years, humans have been innovating new technologies to plan their journeys:

from looking up the starry sky, to depending on the magnetic compass; from referring to precious

ancient maps, to interacting with locals for nearby information. However, these approaches are either

inaccurate or hard to grasp by ordinary people. Thanks to the recent rapid development of online map

services and GPS devices, we are able to identify where we are on earth, find any place we want to

go, and retrieve a route to it. Although it is convenient and fast enough for basic uses, it is still far

from optimal. For starters, most systems just provide a shortest path without considering the traffic

condition. Secondly, some systems consider the current traffic condition to provide an estimated travel

time. However, the lack of estimation for future traffic condition cannot help us plan the travel ahead

of time. To make the things worse, the computation that takes traffic condition into consideration

grows slower as the planning time interval and the distance grow longer. Therefore, we study how to

plan a travel that considers traffic information from the following aspects.

The first one is the reachability problem. A road network, or a map, is essentially a graph with

nodes representing intersections and edges representing roads. For a well-maintained map, the nodes

are reachable to each other. However, this is not always the case when we obtain our map data. For

example, the nodes along the boundary might not reach the other nodes on the map. We propose

a High-Dimensional Graph Dominance Drawing approach to answer if one node can reach another

quickly on large graphs. In fact, it takes only constant time to answer reachability query in road

network. We run our algorithm on various of graph structures with different configurations to fully

test its performance. The results help us have a deeper understanding on the reachability problem.

The second one is the speed profile generation. A speed profile is a set of functions that return

the travel time of any road by providing any departure time. Many existing works just assume such

a speed profile exists, or generate one synthetically. Other real-life applications tend to use real-time

data from sensors monitoring major roads, which is expensive to deploy and unable to cover a large

area. In this work, we use historical trajectories of taxis to generate a speed profile. It involves

map-matching, speed data collecting, missing value estimation and compression. By using different

speed profile for different types of day, we can provide route scheduling that satisfying user’s need.

Extensive experiments show that our speed profile is accurate and space efficient.

The third one is the minimal on-road travel time route scheduling (MORT). This is a general

form of all the single criteria path problems. All the existing path finding problem does not allow

iii

waiting on some vertices along the route, nor can they benefit from it. We extend this problem by

allowing waiting. In this way, the total travel time is made up of two parts: on-road travel time and

waiting time. Now we are able to find a route with minimum on-road time. Such query is needed by

logistics company and tourists. The challenging part of the routing problem lies in the computational

complexity when determining if it is beneficial to wait on specifying the parking places and the

corresponding time of waiting to maximize the benefit. To cope with this challenging problem, we

propose two efficient algorithms using minimum on-road travel cost function to answer the query. We

further introduce several approximation methods to speed up the query answering. Experiments show

that our method is more efficient and accurate than baseline approaches extended from the existing

path planning algorithms.

The last one the time-dependent 2-hop labeling.The time-dependent path algorithms are still slow

because the fastest path problem’s complexity is Ω(T (|V | log |V | + |E|)), where T is the number

of turning points in the result’s function and it is large in real-life query. Therefore, we extend the

2-Hop labeling index to time-dependent environment. Besides, our approach can also answer time-

dependent reachability query. However, even for a static graph, the label size is already at least

Ω(|V ||E| 12), so it would be much bigger if we extend it directly. So we propose a partition-based

framework to adapt to the real-life road network. By breaking the query into three parallel parts, we

are able to speed up any time-dependent query for thousands of times. To further reduce the label

size and speed up query answering, we propose an approximation approach with the worst case error

bounded. Comparison with the existing on-line search indexes shows that our time-dependent 2-hop

can answer queries much faster, with an acceptable index size.

iv

Declaration by Author

This thesis is composed of my original work, and contains no material previously published or written

by another person except where due reference has been made in the text. I have clearly stated the

contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance,

survey design, data analysis, significant technical procedures, professional editorial advice, financial

support and any other original research work used or reported in my thesis. The content of my thesis

is the result of work I have carried out since the commencement of my higher degree by research

candidature and does not include a substantial part of work that has been submitted to qualify for the

award of any other degree or diploma in any university or other tertiary institution. I have clearly

stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the policy and procedures of The University of Queensland, the thesis be made available

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has

been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s)

of that material. Where appropriate I have obtained copyright permission from the copyright holder to

reproduce material in this thesis and have sought permission from co-authors for any jointly authored

works included in the thesis.

v

Publications during candidature

• Li, Lei, Wen Hua, and Xiaofang Zhou. HD-GDD: high dimensional graph dominance drawing

approach for reachability query. World Wide Web 20, no. 4 (2017): 677-696.

• Li, Lei, Xiaofang Zhou, and Kevin Zheng. Finding Least On-Road Travel Time on Road Net-

work. In Australasian Database Conference, pp. 137-149. Springer International Publishing,

2016.

• Li, Lei, Wen Hua, Xingzhong Du, and Xiaofang Zhou. Minimal on-road time route scheduling

on time-dependent graphs. Proceedings of the VLDB Endowment 10, no. 11 (2017): 1274-

1285.

• Hosseini, Saeid, and Lei Thor Li. Point-of-interest recommendation using temporal orienta-

tions of users and locations. In International Conference on Database Systems for Advanced

Applications, pp. 330-347. Springer, Cham, 2016.

• Li, Lei, Kai Zheng, Sibo Wang, Wen Hua, and Xiaofang Zhou. Go slow to go fast: minimal

on-road time route scheduling with parking facilities using historical trajectory. The VLDB

Journal (2018): 1-25.

• Zhou, Xiaofang, and Lei Li. Spatio-Temporal data - Trajectories. In Encyclopedia of Big Data

Technologies, 2018.

vi

Publications included in this thesis

Li, Lei, Wen Hua, and Xiaofang Zhou. HD-GDD: high dimensional graph dominance drawing

approach for reachability query. World Wide Web 20, no. 4 (2017): 677-696. -incorporated as

Chapter 3

Contributor Statement of contribution

Lei Li
Conception and design (80%)

Analysis and interpretation(70%)

Drafting and production(80%)

Wen Hua Conception and design (10%)

Analysis and interpretation(15%)

Drafting and production(10%)

Xiaofang Zhou Conception and design (10%)

Analysis and interpretation(15%)

Drafting and production(10%)

Li, Lei, Xiaofang Zhou, and Kevin Zheng. Finding Least On-Road Travel Time on Road Net-

work. In Australasian Database Conference, pp. 137-149. Springer International Publishing, 2016.

-incorporated as Chapter 5.

Contributor Statement of contribution

Lei Li
Conception and design (70%)

Analysis and interpretation(80%)

Drafting and production(80%)

Xiaofang Zhou Conception and design (20%)

Analysis and interpretation(10%)

Drafting and production(10%)

Kai Zheng Conception and design (10%)

Analysis and interpretation(10%)

Drafting and production(10%)

vii

Li, Lei, Wen Hua, Xingzhong Du, and Xiaofang Zhou. Minimal on-road time route scheduling

on time-dependent graphs. Proceedings of the VLDB Endowment 10, no. 11 (2017): 1274-1285.

-incorporated as Chapter 5.

Contributor Statement of contribution

Lei Li Conception and design (70%)

Analysis and interpretation(70%)

Drafting and production(70%)

Wen Hua Conception and design (10%)

Analysis and interpretation(10%)

Drafting and production(10%)

Xingzhong Du Conception and design (10%)

Analysis and interpretation(10%)

Drafting and production(10%)

Xiaofang Zhou Conception and design (10%)

Analysis and interpretation(10%)

Drafting and production(10%)

Li, Lei, Kai Zheng, Sibo Wang, Wen Hua, and Xiaofang Zhou. Go slow to go fast: minimal

on-road time route scheduling with parking facilities using historical trajectory. The VLDB Journal

(2018): 1-25. -incorporated as Chapter 4 and Chapter 5.

Contributor Statement of contribution

Lei Li Conception and design (60%)

Analysis and interpretation(80%)

Drafting and production(80%)

Kai Zheng Conception and design (10%)

Analysis and interpretation(5%)

Drafting and production(5%)

Sibo Wang Conception and design (10%)

Analysis and interpretation(5%)

Drafting and production(5%)

viii

Wen Hua Conception and design (10%)

Analysis and interpretation(5%)

Drafting and production(5%)

Xiaofang Zhou Conception and design (10%)

Analysis and interpretation(5%)

Drafting and production(5%)

Manuscripts included in this thesis

Li, Lei, Sibo Wang, and Xiaofang Zhou. Time-Dependent 2-Hop Labeling -incorporated as Chap-

ter 6.

Contributor Statement of contribution

Lei Li Conception and design (80%)

Analysis and interpretation(80%)

Drafting and production(80%)

Sibo Wang Conception and design (15%)

Analysis and interpretation(15%)

Drafting and production(10%)

Xiaofang Zhou Conception and design (5%)

Analysis and interpretation(5%)

Drafting and production(10%)

ix

Contributions by others to the thesis

For all the published research work included in this thesis, Prof. Xiaofang Zhou, as my principal

advisor, Prof. Kai Zheng and Dr. Wen Hua, as my associate advisors, have provided very helpful

insight into the overall as well as the technical details and research problems; guidance for prob-

lem formulation as well as constructive comments and feedback. They also assisted with both the

refinement of the idea and the pre-submission edition.

Statement of parts of the thesis submitted to qualify for the award of another degree

None.

Research Involving Human or Animal Subjects

No animal or human participants were involved in this research.

x

Acknowledgments

I wish to express my sincere appreciation to those who have contributed to this thesis and sup-

ported generously me during my PhD journey.

First of all, I am extremely grateful to my principal supervisor, Prof. Xiaofang Zhou, for his

generous support, and his valuable and in-depth guidance for my PhD study, research and life. With

all those heated brainstorming, many new ideas are created, polished, deeply analyzed and finally

well presented. It is by his guidance that I have learned how to do the research and how to be a better

man. Those I have learned from him are beneficial for my whole life.

I am also deeply grateful for my associate advisor Prof. Kai Zheng, who helps me to sort out all

those messy details and bring the ideas down to ground, especially on my early stage. It would be

hard to have all my works done without his persistent and generous help.

I am also sincerely grateful to my second associate advisor Dr. Wen Hua, who has worked with

me tightly during this journey. It is an amazing experience to grow together, from the time when we

were both tutors to now I am a tutor of her. I have learned a lot from her, especially on the presentation

skills and paper writing.

I am also lucky to spend the last three years with all the great people from DKE group. It is

my pleasure to specially acknowledge Prof. Shazia Sadiq, Prof. Helen Huang, Prof. Xue Li, Prof.

Yufei Tao, Dr. Mohamed Sharaf, and Dr. Hongzhi Yin. In my daily work I have been blessed with

a friendly and cheerful group of fellow students. Big thanks to Dr. Han Su, Dr. Haozhou Wang, Dr.

Jialong Han, Dr. TieKe He and Dr. Weiqing Wang, you helped me a lot on my early life in Brisbane.

Also special thanks to Dr. Xingzhong Du, Dr. Bolong Zheng and Dr. Junhao Gan, we have spent

so many great time before the white board, around the lake and around different tables. Life would

be colorless without you. Also great thanks to all the members of ‘Common Room Lunch Group’,

together we keep our lab full of vigor and happiness.

Last but not least, my deepest gratitude goes to my family. My parents raise me up to who I am

and support me to as far as I can achieve, without a complaint of my long leave. My girl friend Zoe

gave up her life to company and support me all the way from Perth to Brisbane. It is your direct helps

that I could devote myself fully into research.

xi

Financial support

No financial support was provided to fund this research.

Keywords

reachability, trajectory, road network, time-dependent graph, fastest path, index, 2-hop

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 080604, Database Management, 80%

ANZSRC code: 080201, Analysis of Algorithms and Complexity, 20%

Fields of Research (FoR) Classification

FoR code: 0806, Information Systems, 80%

FoR code: 0802, Computation Theory and Mathematics, 20%

xii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.2.1 Graph Reachability Problem . 2

1.2.2 Speed Profile Generation from Historical Trajectories 3

1.2.3 Minimal On-Road Time Route Scheduling 4

1.2.4 Time-Dependent 2-Hop Labeling . 4

1.3 Contributions . 5

1.3.1 Graph Reachability Problem . 5

1.3.2 Speed Profile Generation . 5

1.3.3 Minimal On-Road Time Route Scheduling 6

1.3.4 Time-Dependent 2-Hop Labeling . 6

1.4 Thesis Organization . 7

2 Literature Review 9

2.1 Reachability Problem . 9

2.1.1 Extreme Approaches . 9

2.1.2 Set Cover Approaches . 10

2.1.3 Refined Online Search Approaches . 15

2.1.4 Summary . 17

2.2 Organization of Speed Profiles . 18

2.2.1 Speed Profile Collection . 18

2.2.2 Missing Value Estimation . 19

2.2.3 Compression . 20

xiii

xiv CONTENTS

2.2.4 Summary . 21

2.3 Path Problems . 21

2.3.1 Path Problems on Static Graph . 22

2.3.2 Path Problems on Timetable Graph . 28

2.3.3 Path Problems on Time-Dependent Graph 31

3 Reachability on Graph 35

3.1 Introduction . 35

3.2 Problem Statement . 37

3.2.1 Reachability, SCC and DAG . 37

3.2.2 Graph Drawing and False Positive . 38

3.3 Related Works . 42

3.4 High Dimensional Graph Dominance Drawing Algorithm 43

3.4.1 Overview . 43

3.4.2 Index Construction . 43

3.4.3 Reachability Query . 47

3.4.4 Complexity . 48

3.4.5 Refinement . 48

3.4.6 Reachability on Road Network . 50

3.5 Experiments . 50

3.5.1 Graph Structure Analysis . 51

3.5.2 Evaluation Metrics and Experimental Results 52

3.5.3 Results on Real Graph . 56

3.6 Summary . 57

4 Speed Profile Generation from Trajectory 59

4.1 From Trajectory to Road Speed . 59

4.2 Speed Data Collection . 60

4.3 Missing Value Estimation . 61

4.3.1 Cosine Similarity . 61

4.3.2 Spatial-Temporal Neighboring Average . 62

4.4 Speed Profile Compression . 62

CONTENTS xv

4.4.1 Sliding Window Algorithm . 64

4.4.2 Top-Down Algorithm . 64

4.4.3 Bottom-Up Algorithm . 65

4.5 Experiment . 65

4.5.1 Experiment Setup . 66

4.5.2 Speed Profile Generation Evaluation . 68

4.6 Summary . 70

5 Minimal On-Road Traveling Time Route Scheduling 71

5.1 Introduction . 71

5.2 Related Work . 76

5.3 Problem Definition . 78

5.4 Algorithm . 80

5.4.1 Algorithm Outline . 80

5.4.2 Basic MORT Algorithm . 84

5.4.3 Incremental MORT Algorithm . 89

5.4.4 Application Scenarios . 94

5.5 α-MORT Approximation . 95

5.5.1 Error Bound α and Turning Point Pruning 95

5.5.2 Even Distribution . 97

5.5.3 Exponential Distribution . 97

5.5.4 Dynamic Exponential Distribution . 98

5.6 Experiments . 98

5.6.1 Experiment Setup . 99

5.6.2 Comparison with Existing Algorithms . 99

5.6.3 Algorithm Running Time . 101

5.6.4 Approximation Algorithm . 103

5.7 Summary . 104

6 Time Dependent 2-Hop Labeling 105

6.1 Introduction . 106

6.2 Related Work . 109

xvi CONTENTS

6.2.1 Fastest Path Speed-up Techniques . 109

6.2.2 2-Hop Labeling . 110

6.3 Preliminary . 111

6.3.1 Time-Dependent Road Network . 111

6.3.2 Time-Dependent 2-Hop Cover . 112

6.4 Time-Dependent 2-Hop Labeling on Small Graph 114

6.4.1 Index Construction . 114

6.4.2 Query . 117

6.4.3 Correctness and Minimality . 118

6.4.4 Complexity Analysis . 120

6.5 Partition-based Time-Dependent 2-Hop on Road Network 120

6.5.1 Graph Partition . 120

6.5.2 Boundary 2-Hop Construction . 121

6.5.3 Inner 2-Hop Construction . 122

6.5.4 Query . 123

6.5.5 Correctness . 123

6.5.6 Complexity Analysis . 123

6.5.7 Approximation . 124

6.5.8 Fastest Path Query . 126

6.6 Experiment . 126

6.6.1 Experiment Setup . 126

6.6.2 Evaluation on Small Graph . 128

6.6.3 Evaluation on Large Road Network . 130

6.7 Summary . 130

7 Conclusion and future work 133

7.1 Conclusion . 133

7.2 Future work . 134

List of Figures

2.1 Three Types of Graph to Represent Road Network 22

2.2 From Timetable Graph to Transformed Graph . 30

2.3 Comparison between Time-Dependent Indexes . 34

3.1 False Positive Example . 40

3.2 False Positive Ratio Rfp and Accuracy Ratio Racc on Different Graph Models 52

3.3 Online-Search Ratio Ron of Different Graph Models 53

3.4 Reachability Index Construction Time and Size of Different Models 55

3.5 Query Time on Different Graph Models . 56

3.6 Reachability Query Time on Real Graphs . 57

4.1 Trajectory Starting Time and Length Distribution 67

4.2 MAE of Speed Profiles under Different Granularity and using different Missing Value

Estimation . 69

4.3 Compression Performance on Beijing Map 2015.4.1 70

5.1 A Road Network with Parking Vertices . 73

5.2 Comparison between MORT Path and Other Paths 74

5.3 Comparison between total travel time and on-road travel time. 77

5.4 Minimum Cost Function Update . 84

5.5 Line Segment Intersection . 86

5.6 Ci(t) Turning Points Pruning Example . 96

5.7 Results of Minimal On-Road Time . 100

5.8 Algorithm Running Time . 102

5.9 Running time and accuracy of α−MORT . 103

xvii

xviii LIST OF FIGURES

6.1 Example of a Time-Dependent Graph . 107

6.2 Time-Dependent 2-Hop Query Example . 107

6.3 Example of Min() function . 114

6.4 Continuous Time Dependent 2-Hop Labeling Construction Example 115

List of Tables

2.1 Categories of Reachability Algorithms . 10

3.1 Reachability Important Notations . 38

3.2 Information of Real Graphs for Reachability Test 56

4.1 Trajectory Data Sets . 66

4.2 Size of Speed Profiles under Different Granularity 69

5.1 MORT Important Notations . 82

6.1 Time Dependent 2 Hop Labels of v7 and v3 . 108

6.2 Time-Dependent 2-Hop Labeling Important Notations 113

6.3 Time-Dependent 2-Hop Experiment Result of Small Graph 127

6.4 Time-Dependent 2-Hop Experiment Result of Road Network 128

xix

xx LIST OF TABLES

Chapter 1

Introduction

In this chapter, we give a brief introduction of the research in this thesis, including background,

problem statements, contributions, and organization of the thesis.

1.1 Background

Thanks to the fast development of the mobile network, free map services and the widespread using of

GPS devices, traveling on earth has never been easier. A variety of navigation applications can direct

people to travel by bike, car or public transportation to wherever they want based on their current

locations. What behind these navigation applications are the reachability testing, traffic condition

prediction, and route scheduling in road network.

There are two types of data used in route query answering: road network and traffic condition.

Essentially, a road network, or a map, is a graph. Due to geographic property, or the quality the

map data, not all the vertices are reachable to each other. Therefore, the reachability query could

serve as a preprocessing method, or a testing query to validate the reachability before answering the

actual path query. On the other hand, the traffic condition of each road can be represented in a linear

piecewise function, with the travel time depending on the departure time. A set of such functions

that cover the whole road network is called a speed profile, which could be generated from real-time

traffic monitoring systems. However, such an expensive system is impossible to cover the whole road

network. Hence, we take advantage of the massive trajectory data to generate a speed profile, which

could be used for traffic prediction.

The route scheduling problem is the core of this work. It has two levels: ground truth result

1

2 INTRODUCTION

computation and fast query answering. For the first one, we propose a minimum on-road time route

scheduling algorithm (MORT) that not only can reduce the actual traveling time on-road with the help

of waiting on some vertices, but also can answer all the existing time-dependent fastest path queries

by simply changing the configurations. For the fast query answering, we propose a time-dependent

2-hop labeling by extending the 2-hop labeling approach to the time-dependent environment. It can

answer both the fastest travel time query and time-dependent reachability.

In summary, this thesis provides a solution of road network route scheduling from data preprocess-

ing (reachability problem) and data preparation (speed profile generation), to actual route scheduling

(MORT) and fast time-dependent query answering (time-dependent 2-hop).

1.2 Problem Statement

1.2.1 Graph Reachability Problem

A reachability query on a directed graph G(V,E) (V is the vertex set and E is the edge set) tests

if there exists a path from one vertex to another. Although this query can be answered by a simple

BFS/DFS, it is not efficient to traverse on the whole graph each time a query comes, especially when

a large number of queries come in a short time. So various index structures are proposed to speed up

the reachability query answering. The most straightforward approach pre-computes the reachability

relation for all the vertex pairs and stores them in memory such that the query answering time is

constant. But it takes O(|V |2) time to compute and store, which is impossible for a graph even

not too big. Therefore, some works try to compress the size of transitive closure by introducing

different relations on graph like the post-order number or the topological order (essentially they are

the same) [1, 2, 3, 4, 5]. Another similar trend applies Hop Labeling technique [6, 7, 8, 9, 10, 11],

which attaches an in-set and an out-set to each vertex and answers the reachability query by testing

if the intersection of the two sets is empty or not. However, the space complexity of them is still

Ω(nm1/2) and the construction times are non-linear, which make them impossible to work on a large

and extensive graph. To further achieve the goal of constructing an index on a large graph in nearly

linear time, Refined Online Search approaches [12, 13, 14, 15, 16, 17] sacrifice a little efficiency on

query answering time by only guaranteeing the unreachable relation using the labels. In this way,

the query answering time becomes either O(1) or a little better than BFS since the searching space

1.2 PROBLEM STATEMENT 3

is pruned. Obviously, the more accurate the labels, the better the performance. So our proposal is

inspired by the graph drawing approach adopted by FELINE [14] and the high dimension strategy

applied by IP [18]. We try to reduce the searching space by attaching more topological information,

which still takes nearly linear time to construct and applicable on large graphs, and the index size is

linear to the graph size. As for the reachability query in road network, it always takes O(1) time to

answer the reachability query. The extensive evaluations on different graph structures and real-life

large graphs demonstrate the effectiveness and improvement of our algorithm.

1.2.2 Speed Profile Generation from Historical Trajectories

Speed profile is used to describe the traffic condition of the roads. Given a departure time from one

end of a road, it returns the time cost to travel through that road. We aim to learn a city’s traffic

condition from the taxi trajectories. There are several problems to transfer the trajectories into speed

profile. The first one is how to transfer the trajectories to speeds on roads. Trajectory data is in the

format of< x, y, t >, where x and y are the GPS coordinates and t is the timestamp. We need to match

the GPS data on the map first, then infer the speed on the roads between a consecutive pair of points.

Thus, the trajectories will be converted to a set of speed data like < road, speed, timestamp >.

The second issue is how to organize these speed data. A straightforward approach is to line up the

data points directly. However, this will result in a set of zigzag linear functions which is hard to use

and cannot represent a road’s speed obviously. Another approach is using regression to compute an

approximate line. But this regression line is only computed by the time points with speed data, so it is

unreasonable to use it to describe the time points that have no data. Thus, the only working method is

using a histogram to average the data that fall within each bin. But the problem here is the granularity

of the histogram. If the time slot size is big, then it cannot tell the difference between the smaller time

intervals. And if the size is small, most of the time slots will not have enough data and become empty.

The third issue is the missing value problem. After collecting the speed data by the histogram, there

are still many time slots of many roads have no data at all. We have to use the existing data and map

data to estimate these missing values. Finally, a speed profile with full data is big for data storage,

especially when the number of the time slot is big, so it is necessary to compress a large speed profile

to a smaller one.

4 INTRODUCTION

1.2.3 Minimal On-Road Time Route Scheduling

A road network is organized as a graph G(V,E) in database together with the time dependent traffic

condition information wi,j(t) on each edge (vi, vj) (from speed profile). A subset of the vertices are

called parking vertices, which allow waiting on them. A query aiming to find the minimal on road

travel time path can be generalized as follows: Given a source vertex vs with a departing time interval

[ts1 , ts2] and a destination vertex vd with a latest arrival time td, a path pvs,vd can travels through a

series of road each with cost wi,j(t) at time t and waiting on parking vertices is allowed. Thus, the

total on-road travel time is TORT = Σd
i=swi,i+1(t). Our query is to find a path with the minimal TORT .

We call this problem the minimal on-road time (MORT) problem. It is different from the store and

forward related problems [19], which focus on optimizing the flow rather than individual vehicle.

And it is different from all the other path problems due to the different minimizing object and all of

them actually have longer on-road travel time than a MORT path.

The challenge of solving this problem is that in the MORT problem, waiting on the parking ver-

tices is allowed and may lead to different results. We do not know if waiting on the current parking

vertex will result in a shorter on road travel time or not. And if it does, how long should we wait? This

is the first problem that allows waiting on any vertex. The shortest path algorithms [20] cannot solve

this problem because their cost functions on roads are static, and waiting on vertex does not change

any static cost along the path. The single starting time shortest path on a FIFO time-dependent graph

is just a variant of the shortest path, which cannot wait on any vertex since waiting can only result in

a longer travel time. As for the interval starting time fastest path, only waiting on the starting vertex

is allowed, and waiting on other vertices is insufficient as proved in [21]. In fact, their goal is to find

the optimal departure time within the starting time interval that will result in the shortest total travel

time. The time interval that they take into consideration is just the starting time interval on the source

vertex, while in a MORT problem, we have to compute on the whole time interval between the earliest

starting time ts1 and the latest arrival time td, which is much longer than the starting time interval.

Thus, all the above algorithms cannot solve the MORT problem.

1.2.4 Time-Dependent 2-Hop Labeling

Although the MORT algorithm can answer the time-dependent path queries correctly, it is slow to

use in practice due to its inherit complexity of Ω(T (|V | log |V | + |E|), where T is the number of

1.3 CONTRIBUTIONS 5

turning points in the linear piecewise functions and could be really big. To answer the query faster,

we propose a time-dependent 2-hop labeling approach. For each vertex v ∈ V , we pre-compute two

sets of labels: out-labels Lout(vi) = {(vj, fvi,vj(t))} and in-labels Lin(vi) = {(vj, fvj ,vi(t)}, where vj

is a hop vertex and fvi,vj(t) returns the minimal cost from vi to j at different departure time t. We use

L = {(Lout(vi), Lin(vi))|∀vi ∈ V } to denote the set of all the labels. If L can answer all the queries

onG, then we say L is a time-dependent 2-hop cover. To answer a time-dependent path query, we first

find all the hop vertices. If vi exists in both vs’s out-label set and vd’s in-label set, vi is a hop vertex of

this query. By visiting all the hop vertices, we are able to construct the final result, without traversing

the graph. The result can answer any fastest travel time query and time-dependent reachability query.

However, because the 2-hop label on static graph is already too big, it would be much larger on

the time-dependent environment. Therefore, we partition the big road network into subgraphs, and

build the time-dependent 2-hop within each subgraph and between the boundary vertices. In this way,

we bring the index size down to a tolerable level. Furthermore, we provide an approximation method

to compress the index, with a guaranteed error bound.

1.3 Contributions

1.3.1 Graph Reachability Problem

In this study [22], we propose a High Dimensional Graph Dominance Drawing (HD-GDD) approach

for fast index construction and fast reachability queries. To have deeper understanding of the problem,

we analyze the cause of false positive suffered by all refined online search approaches. Then, to further

improve the query performance, we propose two refinement approaches, namely false positive cache

and false positive removal. Finally, we empirically analyze the behavior of our approach on several

types of synthetic and real world graphs. The experimental results verify our analysis of the cause of

the false positive problem, and demonstrate that our proposal outperforms state-of-the-art methods.

1.3.2 Speed Profile Generation

In this study [23], we provide a solution to convert the trajectory data to speed profile in road network.

We first extensively test the performance of speed profiles under different granularity and choose an

appropriate one. Then we propose two missing value estimation methods and compare them with a

6 INTRODUCTION

widely used method. Finally, we introduce the Piecewise linear approximation (PLA) into the speed

profile compression field and have conducted tests on three different PLA algorithms. The generated

speed profile is used in Chapter 5 and Chapter 6.

1.3.3 Minimal On-Road Time Route Scheduling

In this study [24, 25, 23], we identify a general form of time-dependent route scheduling problem,

called MORT, to make use of parking facilities in a road network to minimize the on-road travel

time, instead of the total travel time. In fact, it is a general form of time-dependent path problem

that can cover all the existing ones. Then we propose a minimum cost function and two novel algo-

rithms to solve the MORT route scheduling problem efficiently and accurately, and an approximation

approach for faster query answering. The Basic MORT Algorithm performs the MORT search for

a vertex after each iteration, until the destination is reached. We show that its time complexity is

O(T |V | log |V |+ T 2|E|). The Incremental MORT Algorithm visits the vertices starting from a small

subinterval to fill the full time interval incrementally, and its time complexity is O(L(|V | log |V |

+|E|)). Both algorithms require O(T (|V |+ |E|)) space. T is the average number of turning points in

minimum cost functions, and L > T is the average number of subintervals during computation. The

α-MORT approach can return an approximate result faster than the exact algorithms, with the worst

error bounded. Finally, we evaluate the effectiveness and efficiency of our MORT algorithms with

extensive experiments in road network and small world graphs, measuring both the reduction of the

minimal on-road time and the algorithm running time.

1.3.4 Time-Dependent 2-Hop Labeling

We propose a time-dependent 2-hop labeling approach to speed up the fastest path query answering

on small graph by hundreds of times. It is the first time-dependent path index that does not use

online search. In order to scale to large road network, we propose a partition-based time-dependent

2-hop labeling to the answer fastest path query. After that, we apply a piecewise linear approximation

approach on the label set to reduce the index size and further speed up the query answering. Finally,

We thoroughly evaluate our approach with extensive experiments on the real-life road network and

linear-piecewise-function-based speed profile. Results show that our approach outperforms the linear

piecewise version of time-dependent variations of CH and SHARC.

1.4 THESIS ORGANIZATION 7

1.4 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we review the existing works on solving

graph reachability problems, speed profile generation, path finding problems and path query indexes.

In Chapter 3, we present our high-dimensional graph dominance drawing approach that can answer

reachability query faster even on large graph. We also analyze the influence of graph structures

on the query performance. In Chapter 4, we present our solution to transform a large amount of

trajectory into speed profile, which servers as the time-dependent functions in the later chapters. In

Chapter 5, we introduce a new type of time-dependent route scheduling problem: minimal on-road

time route scheduling, and present two accurate algorithms and a fast approximate algorithm. We

further show that our algorithms can solve all the existing single criteria path problems. In Chapter 6,

we further speed up the time-dependent travel time query and time-dependent reachability answering

by adopting 2-hop labeling approaches to time-dependent environment. Finally, the conclusions and

the future research directions suggested by the thesis are given in Chapter 7.

8 INTRODUCTION

Chapter 2

Literature Review

In this chapter, we first provide a brief overview of the fields we talked about in the report, including

the reachability problem and path problems on graph, which will be presented in Section 2.1 and

Section 2.3 respectively. In section 2.2, we provide a brief description of the existing techniques

related to the speed profile construction from trajectory.

2.1 Reachability Problem

In the early years when graphs were small, basic algorithms like Breadth-First Search / Depth-First

Search (BFS/DFS) were efficient enough to solve the reachability problem. However, with the rapid

development of Internet, e-commerce services, social networks, road networks and many other appli-

cations, the sizes of graphs have increased dramatically nowadays, making it indispensable to answer

reachability queries efficiently on extensive graphs. Tremendous efforts have been devoted to design-

ing novel indexing or querying strategies for reachability checking. Most of the existing approaches

can be classified into three categories, as depicted in Table 2.1.

2.1.1 Extreme Approaches

The first category is the Extreme, which contains two approaches, namely BFS/DFS and Transitive

Closure. BFS/DFS traverses the entire graph starting from the source vertex to find the destination

vertex without any pre-computation or pruning. Obviously, it requires the smallest space complexity

but has the largest query time complexity of O(|V | + |E|). Transitive Closure pre-calculates and

9

10 LITERATURE REVIEW

TABLE 2.1: Categories of Reachability Algorithms

Category Type Index Construction Time Index Size Query Time

Extreme
BFS/DFS 0 0 O(|V |+ |E|)

Transitive O(|V ||E|) |V |2 O(1)

Set Cover

Transitive Closure

Compression
non-linear non-linear sub-linear

Hop non-linear Ω(nm1/2) sub-linear

Topological Refined Online Search O(|V |+ |E|) O(|V |)
O(|V |+ |E|)

or O(1)

stores all the reachable vertex pairs in a |V |×|V | reachability matrix. Thus, it can answer reachability

queries within constant time by directly retrieving the results from the matrix. However, its index size

and construction time are bothO(|V |2), making it infeasible even for small graphs. All the approaches

in the other two categories either try to reduce the storage cost of Transitive Closure or to reduce the

searching space of BFS/DFS.

2.1.2 Set Cover Approaches

Set Cover consists of two streams: Transitive Closure Compression (TCC) and Hop Labeling. Both of

them store an in-neighbor set and an out-neighbor set for each vertex, and answer reachability query

by intersecting corresponding neighbor sets. If the intersection result is not empty, then two vertices

are reachable.

Transitive Closure Compression

TCC tries to compress the large transitive closure by considering intermediate paths or topological

orders so that both the index construction complexity and the space complexity could be decreased.

Range Compression [1] first finds a spanning tree of the graph. Obviously, the reachability infor-

mation on a tree can be recorded by a post-order traverse. Thus, each vertex has an interval [ra, rb],

where rb is its post-order number and ra is the smallest post-order number on its subtree. For any

two vertices vr and vs on the same spanning tree, if [ra, rb] ⊂ [sa, sb], then vr → vs. This is because

the post-order number is actually the reverse depth-first topological order, and the smallest subtree

2.1 REACHABILITY PROBLEM 11

number stores from which no-out-neighbor vertex that this reverse topological ordering starts. The

parent vertex always has a larger post-order number than its children, and has the smallest subtree

number from all its children, so its interval can contain all its children’s interval. At the same time,

two vertices that cannot reach each other are not in each other’s subtrees. Since it uses post-order, one

subtree has to be traversed thoroughly before another subtree can be traversed. So the intervals on

different subtrees cannot contain each other. However, one set of tree cover is not enough to cover all

the information on the original graph. If an edge in the original graph is not contained in a spanning

tree, then this reachable information is not covered by this tree. For example, there is an edge (vr, vs)

in G but not in the spanning tree. To add the reachable information r → s back to the tree, Range

Compression will add the interval of vr to vs. So the interval of vs is {[sa, sb], [ra, rb]} now. If one

interval is covered by another interval in the interval set of a vertex, then these two intervals can com-

bine to a single interval (This is the compression part). Apparently, the total number of the intervals

depends on how the spanning tree is built. To reduce the interval size, the algorithm first computes the

predecessor set of each vertex. The more predecessors indicates it has more reachable information.

Then the spanning tree is generated in topological order, with each vertex only keeps the in-edge from

the in-neighbor that has the largest predecessor set. However, the worst case of this approach is still

O(|V |2) in the case of the bipartite graph, and the index construction time is O(|V ||E|) while the

query time is O(log|V |).

Chain Cover [3] follows the idea proposed by [26] that decomposes a DAG (directed acyclic

graph) into disjoint chains such that on each chain, if vertex v appears above vertex u, there is a path

from v to u in G. Then, each vertex v is assigned an index (i, j), where i is a chain number, on

which v appears, and j indicates v’s position on the chain. In addition to this, v is associated with an

index sequence (1, j1), ..., (i − 1, ji−1), (i + 1, ji+1), ..., (k, jk) such that for any vertex u with index

(x, y) if x = i and y > j or x 6= i but y > jx, it is a descendant of v, where k is the number

of the disjoint chains. For this method, the space overhead and the query time are O(k|V |) and

O(log k), respectively. However, finding a minimized set of chains for a graph, [26] needs O(|V |3)

time. With a similar thought, [3] can decompose a graph into a minimized set of disjoint chains in

O(|V |2 + b|V |
√
b) time, where b is G’s width, defined to be the size of a largest vertex subset V of G

such that for every pair of vertices u, v ∈ V , there does not exist a path from u to v or from v to u.

This enables them to generate a compressed transitive closure inO(b|E|) time, improving the existing

methods for the problems of practical size by one order of magnitude or more. The space overhead

12 LITERATURE REVIEW

and the query time are bounded by O(b|V |) and O(log b), respectively.

Path Tree Cover [4] proposes a graph structure called path-tree to cover the DAG, where each

vertex in the tree represents a path in the original graph. It is suitable for the sparse graph that

the number of edges is no more than two times of the number of vertices. Such a structure can

be constructed in O(|E| + |V | log |V |) time. Then, the labels are attached to each vertex with the

connection information of the paths by traversing the path tree in a post-order manner. Therefore,

their labels can be viewed as the combination of tree cover intervals and a path number. They prove

that the path-tree cover can always perform the compression of transitive closure better than or equal

to the optimal tree cover approaches and chain decomposition approaches.

TF-Label [5]) proposes a data structure called Topological Folding and uses it to attach their

reachability labels. First of all, the vertices in a graph is assigned a topological level such that a vertex

can never reach the vertices on smaller or equal level due to the property of topological order. Then the

graph is folded by 2 each time through deriving the reachability of the even levels from the odd levels.

So the original graph is converted into a set of smaller TF-graphs and each vertex is associated with

one of these TF-graphs. Again, like the previous algorithms, the labels are assigned to vertices based

on the transitive closure. So in fact, TF-Label aims to use the TF number to compress the transitive

closure. However, their index size and query time are not bounded and the index construction time

depends on the characteristic of the graph.

Hop Labeling

Hop Labeling algorithms originate from Cohen’s work [6]. This branch of methods tries to find a

subset of vertices as landmarks and answers reachability queries between vertices by reachability

between landmarks. The most famous work is the 2-Hop [6]. For each vertex u, let lin(u) denotes

the set of vertices that can reach u, and lout(u) denotes the set of vertices that can be reached by u.

The key observation of this approach is that every vertex in lin(u) can reach every vertex in lout(u).

However, finding the optimal label sets is actually a NP-H problem, which is proved by reducing it to

the 3-SAT problem [6]. Therefore, many approaches have been proposed to reduce the label size and

label construction time by introducing various heuristic rules.

Hierarchical Labeling of Sub-Structures (HLSS) [7] is a hierarchical approach. Since a graph often

contains different types of substructures whose reachability is easier to encode with different labeling

techniques, they extract such substructures and apply efficient techniques suitable to each of them.

2.1 REACHABILITY PROBLEM 13

Their labeling algorithm has two phases and each focusing on exploiting different characteristics of

the input graph G: The first phase, tree-reachability reduction, begins with a preprocessing step that

identifies each strongly connected component, collapses the component into one representative ver-

tex, and uses this vertex to label others in the component. Then, they identify tree structures in G and

assign interval labels to vertices based on these tree structures. Containment of interval labels implies

reachability through tree paths. This phase also computes a remainder graph Gr that captures any

remaining reachability information not encoded by interval labels. Specifically, a vertex can reach

another vertex through portals in Gr. They label vertices by their portals to facilitate reachability

checking. The second phase, remainder graph-reachability encoding, aims at compressing the reach-

ability information in the remainder graph Gr produced by the first phase. They do so by assigning

additional labels to portals so that reachability among them can be checked efficiently by comparing

their labels. They use several techniques for assigning such labels, including an enhanced version

of the 2-hop approach as well as techniques inspired by data mining, linear algebra, and graph algo-

rithms. To sum up, their algorithm produces a four-level hierarchy label for each vertex: The first one

is a strongly connected component label ls(u), which is a representative vertex in the strongly con-

nected component containing u, if any. It is assigned by the tree-reachability reduction phase. The

second one is a pair of numeric interval labels, lxi (u) and lyi (u), which form the interval [lxi (u), lyi (u)].

They are assigned by the tree-reachability reduction phase. The third one is a pair of portal labels,

linp(u) and loutp(u), which are two portals of u in Gr if they exist. They are also assigned by the tree-

reachability reduction phase. The last one is a pair of remainder labels, Linr(u) and Loutr(u), each of

which consists of a set of symbols in general. They are assigned by the remainder graph-reachability

encoding phase. So this approach is just a combination of the ten-years-ago-state-of-art techniques.

Dual Labeling [27] is another hybrid index for sparse graphs. Indicated by the name, it has two

schemes: Dual-I and Dual-II. The Dual-I labeling scheme has constant query time, and for sparse

graphs, the labeling complexities of both Dual-I and Dual-II are almost linear. The Dual-II scheme

has higher query complexity but uses less space in practice. They view a graph as two components:

a tree (spanning tree) plus a set of t non-tree edges. For sparse, tree-like graphs, they assume t� n.

The two components together contain the complete reachability information of the original graph. The

dual labeling scheme seamlessly integrates: i) interval-based labels, which encode reachability in the

spanning tree, and ii) non-tree labels, which encode additional reachability in the rest of the graph. At

query time, it first consults the interval-based labels to see if two vertices are connected by tree edges,

14 LITERATURE REVIEW

if not, it consults non-tree labels, and check if they are connected by paths that involve non-tree edges.

For Dual-I, both operations have constant time complexity. For Dual-II, the second operation takes

O(log t) time. Since t � n for sparse graphs, O(log t) is often negligible. Furthermore, the two set

of labels can be assigned by a depth-first traversal of the graph, which is of linear complexity. The

preprocessing step may take O(t3) time in the worst case and this cost is almost negligible for sparse

graphs. To check reachability encoded by non-tree labels, the Dual-I approach relies on an additional

data structure of size t2. Since the spanning tree of a connected graph has |V | − 1 edges, the number

of non-tree edges t is at most |E||V |+ 1.

3-Hop [10] aims to the large and dense problem faced by the 2-hop. The basic idea in 3-hop

index is to utilize a simple graph structure line chain, rather than a sole vertex, as an intermediate hop

to describe the reachability between source vertices and destination vertices. Such a chain structure

is analogous to the highway system of the transportation network. To reach a destination from a

starting point, you simply need to get on an appropriate highway and get off at the right exit to the

destination. This index scheme does not need to compute the entire transitive closure. Instead, it

only needs to compute and record a number of so-called contour vertex pairs, which can be orders

of magnitude smaller than the size of the transitive closure. Indeed, it is even much smaller than the

compressed transitive closure of the chain cover. The connectivity of any pair of vertices in the DAG

can be answered by those contour vertex pairs. Further, they factorize these contour vertex pairs by

recording a list of entry points and exit points on some intermediate chains. Since each chain has

a direction, each vertex u records a list of entry points (the smallest vertices) it can reach on some

chains. It also records a list of exit points (the largest vertices) which can reach it in some chains.

Here, the order of vertices in the chain is with respect to their topological order in that chain, i.e., a

vertex with a smaller number can reach a vertex with a larger number. Given this, the three hops are:

1) the first hop from the starting vertex to the entry point of some chain, 2) the second hop from the

entry point in the chain to the exit point of the chain, and finally 3) the third hop from the exit point

of the chain to the destination vertex. The goal of 3-hop index is to assign all vertices with a minimal

total number of entry and exit points so that they can maximally compress the transitive closure. So

they propose an efficient algorithm to generate an index which approximates the minimal 3-hop index

by a logarithmic factor. Theoretically, it is shown that 3-hop labeling always has a better minimal

compression ratio than 2-hop labeling, and its construction time is much faster than that of 2-hop.

However, its construction time complexity is still O(k|V |2|Con(G)|), where |Con(G)| is transitive

2.1 REACHABILITY PROBLEM 15

closure contour number. Thus, although is has better performance on dense graphs, it is still not

applicable on large graphs.

Hierarchical Labeling (HL) and Distributed Labeling (DL) [11] are two labeling approaches for

different graph structures. They assume a DAG can be represented in a hierarchical (multi-level)

structure, such that the lower-level reachability needs to go through upper-level (but not vice versa),

then they can somehow recursively broadcast the upper-level labels to lower-level labels. In other

words, the labels of lower-level vertices (Lin and Lout) can directly utilize the already computed

labels in the upper-level. Thus, on one side, by using the hierarchical structure, the completeness

of labeling can be automatically guaranteed. On the other side, it provides an importance score

(the level) of every hop, and each vertex only records those hops whose levels are higher than or

equal to its own level. The HL structure is produced by a recursive reachability backbone approach,

i.e., finding a reachability backbone G∗ from the original graph G and then applying the backbone

extraction algorithm on G∗. Recall that the reachability backbone is introduced by the latest SCARAB

framework [28] which aims to scale the existing reachability computation approaches. Here they

apply it recursively to provide a hierarchical DAG decomposition. Given this, a fast labeling algorithm

is designed to quickly compute Lin and Lout one vertex by one vertex in a level-wise fashion. In

Distribution Labeling the sophisticated reachability backbone hierarchy is replaced with the simplest

hierarchy a total order, i.e., each vertex is assigned a unique level in the hierarchy structure. Given

this, instead of computing Lin and Lout one vertex at a time, the labeling algorithm will distribute

the hop one by one (from higher order to lower order) to Lin and Lout of other vertices. The worst

case computation complexity of this labeling algorithm is O(|V |(|V | + |E|)) (of the same order as

transitive closure computation), so they are still not useful on large graphs.

So all the above algorithms cannot work on large and dense graphs due to the large construction

time and label size.

2.1.3 Refined Online Search Approaches

Our work falls into the third category of Refined Online Search, which is also called Topological

Cover approach. By attaching topological information to each vertex as a label within linear time,

Topological Cover can easily scale to large graphs although it is sometimes slower in query answering

than Set Cover approaches. Note that all the existing Topological Cover approaches suffer from

the false positive problem, where the positive result of label comparison cannot guarantee that two

16 LITERATURE REVIEW

vertices are reachable. In other words, the unreachable relationship can be retrieved directly from

the labels within constant time, while the reachable relationship detection decays into a guided or

pruned BFS/DFS. So if two vertices are unreachable, the query time is O(1). If they are reachable,

the worse case could be O(|V |+ |E|) when the false positive exists, and O(1) when the false positive

is eliminated.

Grail (Graph Reachability Indexing via RAndomized Interval Labeling) [12] is the first work that

can work fast on large graph. Similar to the tree-cover approaches, it also traverses the vertices on

graph in a post-order manner and assign intervals. The difference between it and the tree covers is that

the first number of the interval is not the smallest post-order on a spanning tree, but the smallest post-

order it can reach on graph. So the interval it has actually contained more information than needed

that even if one vertex’s interval is contained by another vertex’s, the reachability between these two

vertices cannot be guaranteed. In fact, only the unreachability is guaranteed. And the post orders of

the vertices that have the same father vertex are assigned randomly, it just ignores the information

that could help reduce the false positive rate. Thus, although it can scale to large graph and answer

the reachability query in a short average time, its performance is bounded by the 1-dimensional label.

FERRARI (Flexible and Efficient Reachability Range Assignment for Graph Indexing) [13] starts

its labeling from the Range Compression [1]’s result. Unlike the approaches in the transitive clo-

sure compression category which aim to compress without loss, it relaxes the requirement that some

degrees of loss is acceptable. Such compression is achieved by combining the consecutive intervals

using a greedy algorithm, and the compression rate is specified by the predefined parameter. Thus,

the label size decreases and the false positive appears. Since it still applies the 1-dimensional label,

its performance is also bounded.

FELINE (Fast rEfined onLINE search) [14] is the state-of-the-art Topological Cover algorithms.

Its origin can be traced back to the graph drawing. [15] is the first work that tries to use graph

drawing to answer reachability query. Their goal is to label the vertices by vectors in such a way that

u can reach v if and only if Cu < Cv, where Cu is a d-dimensional vector that is assigned to vertex

u. Although their goal is promising, they only focus on the graphs that are planar. That is to say,

all the vertices with no in-neighbors are on the boundary of the same face while all the ones with

no out-neighbors are on the other face. Then they use a simple left-DFS followed by a right-DFS

algorithm to compute a 2-dimensional vector for each vertex. However, this planar condition is so

strong that it does not allow the existence of false positive. In fact, it is the feature of non-planar

2.1 REACHABILITY PROBLEM 17

that causes the false positive. So their algorithm is limited to a small type of graphs. Twenty years

later, [16] expands the condition from planar graph to bipartite graph, which is made up of a set of

source vertices and a set of sink vertices, and all edges are directed from a source to a sink. They

first call the vector assignment approach the dominance drawing and prove the dominance drawing

dimension d is no bigger than min(|source|, |sink|). Then they give an algorithm to compute a 2-

dimensional dominance drawing in the case of such drawing exists, which is also a strong assumption.

So they just avoid the false positive problem. Kornaropoulos revisited this problem in [17] [29] and

proposed weak dominance drawing to expand the above algorithm to any graph type, which can

only guarantee the unreachability relation between two vertices if the source is not smaller than the

destination. They give the upper bound of false positive pairs, which is inc(G) − (dim(G) − 2),

where inc(G) = |V |(|V |−1)
2

− |E∗| is the number of incomparable pairs of a graph, dim(G) is the

smallest graph dominance drawing dimension, and |E∗| is the number of reachable pairs. With the

weak dominance drawing, they attached a two-dimensional coordinate to each vertex regardless it is

planar or not. Thus, this was the first time that the graph drawing approach was using on any graph

type. And they proved that finding the optimal weak dominance drawing is NP-C. Although they

did lots of theoretical work, no experiment result was released. FELINE adopts the weak dominance

drawing concept from Kornaropoulos’s work and treats it as a Refined Online Search method. All

they do is to use the ancient 2-dimensional vector generating algorithm [15] to give each vertex a

coordinate and use it to rule out the unreachable vertex pairs. However, their approach is merely an

implementation of the 1975 work, which is two-dimensional and has no theoretical progress.

2.1.4 Summary

As explained above, all the set cover approaches aim to answer the reachability query only by labels.

Due the natural bounds of their schemes, most of them can only work on small graph. Although some

of them can work on large graph, they still require the graph to be sparse, which is a strong condition.

To extend the index on the general large graph, several refined online search algorithms are proposed.

They sacrifice the query time a little for the ability to work on large graph. Due to this purpose, false

positive is the main issue that affects the query performance. The lower the false positive rate, the

faster the average query time. However, none of the existing approaches has an effective solution to

reduce the false positive rate. Thus, we aim to reduce the false positive rate by analyzing the graph

structure and adding more dimensions of labels. Such an approach can only increase the construction

18 LITERATURE REVIEW

time complexity by a constant factor, but will decrease the false positive pair number and boost the

average query time.

2.2 Organization of Speed Profiles

Speed profile is used to organize the speed of each road at different time of a day in a city. It can be

used to predict the traffic condition of a city and serves as the input of the path queries. In this section,

we breifly review the existing works on a series aspects of the speed profile generation.

2.2.1 Speed Profile Collection

Theoretically, the speed profile is organized as a continuous function. However, in reality, such a

function does not even exist. The most accurate method is to use sensor, which collects the traffic

data on road in a time slot of 1 minute and still is a kind of histogram-based approach.

[30] uses sensors to build up their speed profile with a granularity of 1 minute. However, such an

approach is expensive and impractical in most places around the world apart from some experimental

systems. So many works try to learn the traffic condition road from the trajectories of the cars.

Firstly, the trajectory has to be matched to the roads [31, 32]. Then, with the path length and the

time spent between the two points, we can get the average speed spent on these roads. By repeating

this procedure from the first GPS point to the last, we can get all the roads’ speeds on this trajectory,

together with their corresponding time intervals.

After gaining the speed data on each road at different time, we have to use histogram to collect

them. By averaging the speed values within each bin, the outlier speed value’s defect can be elimi-

nated. However, choosing the granularity of a speed profile is a problem. If the granularity is too big,

then it cannot reflect the traffic condition on road correctly. If the granularity is too small, sometimes

we just do not have enough data for each bin. Thus, most of the time slots have no data. This choice

actually depends on the data set. Different data may have different suitable granularity. For example,

[33, 34] apply a granularity of 15 minutes. [35, 36] apply 10 minutes. [37, 38] use 5 minutes as the

size of their time slot.

2.2 ORGANIZATION OF SPEED PROFILES 19

2.2.2 Missing Value Estimation

It is not surprising that even if we have collected a large amount of trajectory, there are still many

time slots on many roads that still have no data at all. To estimate the missing values based on the

existing ones, different approaches are proposed. Since most of the speed profiles are organized into

histogram, which can be viewed as a vector of each road, or a matrix of the whole road network, most

of the research are working on filling the missing values of vector or matrix. However, as an early

work, [39] uses regression to organize the speed profile. Thus, its missing values are filled only by

the regression function itself. But this only works on special cases, like the two-lane rural highways

studied in their paper. So it fails on other road network types that do not share the same property with

the rural highway.

Markov model [40] is a widely used model to learn the traffic state changing patterns in both

temporal and spatial dimensions. [33] uses spatio-temporal hidden Markov models (STHMM) to

model correlations among different traffic time series. Their algorithms are able to learn the parame-

ters of an STHMM while contending with the sparsity, spatio-temporal correlation, and heterogeneity

of the time series. In the offline learning stage, a state formulation and parameter learning module

takes as input a collection of time series that is obtained from historical GPS trajectories. It outputs

an STHMM. As real-time GPS records stream in, the online inference component infers near-future

travel costs by using the learned STHMM. The time-dependent edge weights in road network can be

updated based on the inferred travel costs.

[41] uses Matrix-Factorization based Collaborative Filtering (MF-CF) [42, 43] to estimate the

missing values in their gas consumption prediction work. The rows of the matrix are the roads and

the columns are the time slots. The elements are the speeds of each road at different time slot. To

improve the accuracy, they add a side information matrix to make their approach context aware. The

first context is the road information, including the length, direction, level, tortuosity, speed limit and

lane number. The road static information is organized into a matrix with rows stand for roads and

columns stand for feature. The second feature is related to POI (Point of Interest). The POIs that

are within a distance of 200m are counted as belonged to a road. They set 10 categories of POI like

school, bank, restaurant and so on. Thus, this POI feature is a vector with 10 elements for each road,

with each number stands for the number of POI of each category that this road has. The third context

is the global position feature. They divide the city into 4 × 4 grids, and label the neighboring grid

with 1, others with 0. Thus, the global position of each road that it resides in can be organized into a

20 LITERATURE REVIEW

vector of 16 elements. These three context features are placed into one big matrix. The general idea

is that road segments with similar road feature, POI feature and global position feature could share a

similar traffic condition.

[35] takes advantage of the above methods. They build a multi-view road speed prediction frame-

work. In the first view, temporal patterns are models by a layered hidden Markov model and in the

second view, spatial patterns are modeled by a collective matrix factorization model. The two models

are learned and inferred simultaneously in a co-regularized manner.

2.2.3 Compression

The raw histogram speed profile takes a large space to store, especially when the time slot size is

small, its growth is linear to the number of time slots. A large speed profile does not only waste

storage and memory space, but also takes a longer time to load it into memory. As observed in reality,

lots of the values in the speed profile are the same, especially during night time when there is nearly

no car on the road, the road speed tend to be same. So compression on speed profile is meaningful

and practicable.

Histogram-based speed profile is essentially a time series data [44], which is a general data type

that has an ordered sequence of n real valued variables. The segmentation task on time series data

aims at creating an accurate approximation of time series, by reducing its dimensionality while re-

taining its essential features. The objective of segmentation is to minimize the reconstruction error

between a reduced representation and the original time series. Piecewise Linear Approximate(PLA)

[45, 46] is the main approach to achieve this. The main idea behind PLA is to split the series into

most representative segments, and then fit a polynomial model for each segment. There are three

basic approaches: sliding window [45], top-down [47, 48] and bottom-up [49].

The sliding window algorithm is a fast online algorithm whose time complexity is O(n), where

n is the time series length. It keeps expanding the approximate line from the left starting point to

the right until the error surpasses the threshold ε. Then it uses the end point of the latest generated

segment as the next starting point and repeats until all the points are visited. The top-down algorithm

finds the best splitting position each time (i.e. the two resulting segments have the smallest combined

error). If any of the two resulting segments’ errors are larger than threshold ε, the algorithm repeats

recursively. The algorithm ends when all the segments’ errors are smaller than ε. It breaks the search

space into 2 pieces each time and calls itself recursively at most 2 times. At the same time, the Error

2.3 PATH PROBLEMS 21

function calculates the difference between the approximate line and the original line, which takes

O(n) times. So the overall time complexity of the top-down algorithm is O(n log n). As the threshold

ε grows, less recursion is needed, and the overall running time decreases.The bottom-up algorithm is

reverse to the top-down algorithm. In the initial step, it connects the consecutive points, whose errors

are all 0. Then it merges consecutive lines with the smallest error iteratively until the smallest error

exceeds the threshold ε. The worst case is to erase all the intermediate points, which runs
n(n− 1)

2
times. Thus, the time complexity of bottom-up algorithm is O(n2).

2.2.4 Summary

No previous work has provided a thorough solution from trajectory data to compressed speed profile.

Depend on the data set, different granularities are used. There is no pervasive rule for it, so we have to

test on our own dataset and find the appropriate granularity for it. As for the missing value estimation,

the matrix factorization based collaborative filtering is adopted by many works, so we choose it as

a comparison method. No work on speed profile compression has been reported. Since the speed

profile is essentially a set of consecutive lines, we introduce the compression methods in the time

series data field and test their performance.

2.3 Path Problems

The road network is naturally a graph, with vertices denote the intersections of roads or the turning

points between road segments and the edges denote the roads or road segments. Depending on the

type of information that is attached on the edges, the graphs that are used on the road network can be

categorized into the following three types:

1. Static Graph Gs(V,E) as shown in Figure 2.1(a), where V = vi is the set of vertices, E ⊆

V ×V is the set of edges. ∀(vi, vj) ∈ E, there is a value weight(vi, vj). This value can be used

to denote the distance or any other static weights of the roads.

2. Timetable Graph Gt(V,E) as shown in Figure 2.1(b), where V = vi is the set of vertices, E is

the edge set. An edge e ∈ E is a quadruple(vi, vj, t, λ), where vi, vj ∈ V , t is the starting time

and the λ is the traversal time to go from vi to vj at time t. t+ λ is the ending time. Such graph

is used in problems related to public transportation systems like train, bus and airplane [50].

22 LITERATURE REVIEW

FIGURE 2.1: Three Types of Graph to Represent Road Network

3. Time Dependent Graph GT (V,E,W) as shown in Figure 2.1(c) , where V = {vi} is the vertex

set, E ⊆ V ×V is the directed edge set and W is a set of functions. For each edge (vi, vj) ∈ E,

there is a function w(vi, vj, t) ∈ W , where t is the time in time domain T̂ , that tells how much

time it costs to travel from vi to vj at time t. Such graph is used in describing traffic condition

in a city.

We will talk about the path algorithms on each type of the graph in the following sub-sections.

2.3.1 Path Problems on Static Graph

Since the weight W on each edge is static, the path problem on static graph, mostly known as the

shortest path problem, aims to minimize the total W on the path. So Given a query Q(vs, vd), the

objective is to find a path from vs to vd that has the minimum Σd
i=sweight(vi, vi+1).

The research on this field can be categorized into two streams: finding the shortest path and

answering a shortest distance query quickly. The first stream is the basis of the second one.

Shortest Path Computation

Depending on the algorithm can find the shortest path from one source vertex or all the vertices on

the graph, the shortest path algorithms can be categorized into Single Source Shortest Path algorithm

and All Pair Shortest Path algorithm.

The most widely used single source shortest path algorithm is the Dijkstra Algorithm [20], which

acts as the base technique for almost all the other path algorithms. It can find the shortest path from a

source vertex to all the other vertex in the graph whose weights on edges are all non-negative. It keeps

a priority queue Q to store the vertices based on their distance to the source vertex vs. Each time we

retrieve the top vertex vi, which has the minimum value inQ. Thus, it has founded its shortest distance

2.3 PATH PROBLEMS 23

from the source vertex vs, and it can relax the distance of its out-neighbors. The reason is that all the

other vertices in Q have larger distance than vi, then the paths via these vertices will result in a longer

distance. So the top vertex in Q has found its shortest distance. For example, the current top vertex

is vi and its distance is di. It has a out-neighbor vj whose distance is dj . The weight from vi to vj is

weight(vi, vj). If di + weight(vi, vj) < dj , then we set dj = di + weight(vi, vj). If the destination

vertex is on the top of Q, then we can draw the conclusion that the shortest distance between vs

and vd has been found. The complexity of Dijkstra Algorithm depends on the implementation of

the priority queue. If the priority queue is implemented by a binary heap, the time complexity is

O((|V | + |E|)log|V |). If the priority queue is implemented as a Fibonacci Heap [51], the time

complexity can achieve O(|V |log|V | + |E|). If all the costs are integers within a range [0, C], the

time complexity can be further reduced to O(|E|+ |V |
√
C), with the help of multi-level bucket [52].

There are several variations of Dijkstra Algorithm. The first one the Bidirectional Search [53],

which runs two simultaneous searches: one forward from the source vertex vs, and the other one

backward from the destination vertex vd, stopping when the two meet in the middle. The reason

for this approach is that in many cases it is faster: for instance, in a simplified model of search

problem in which both searches expand a tree with branching factor or out-degree b, and the distance

from start to goal is d, each of the two searches has complexity O(bd/2), and the sum of these two

search times is much less than O(bd) which would result from a single search from vs. For road

networks, bidirectional search visits roughly half as many vertices as the unidirectional approach.

Another famous variation is A∗ Algorithm[54]. It uses a new function f(n) = g(n) + h(n) as the

minimization goal rather than the pure distance. g(n) here is the path distance while h(n) is the

heuristic function that calculates the geographical distance of the current vertex to the destination

vertex. f(n) is the sum of the current shortest distance from vs and the estimate distance to the vd.

So a vertex has a smaller geographic distance to the destination would have a smaller f(n), thus, it

would appear earlier on the top of the queue, which could help speed up the shortest path finding.

Since these variations all use heuristic functions, there are no guaranteed upper bounds although they

run faster than the original Dijkstra Algorithm.

Bellman-Ford Algorithm [55] can compute the single source shortest path on a more general case

where the weight on edge can be negative. If there is a negative loop on graph, then it can tell that

such path does not exist. It visits each edge |V | − 1 times to relax its distance to the source. The

relaxation process is the same with the Dijkstra’s. Thus, its time complexity is O(|V ||E|). Although

24 LITERATURE REVIEW

its worst case is worse than the Dijkstra, it is often much faster in average, making it competitive with

Dijkstra in some scenarios.

As for the all pair shortest path problem, the naive approach is to call Dijkstra Algorithm |V |2

times to compute all the paths, whose best time complexity isO(|V |2log|V |+|V ||E|). However, it can

only work on the graphs with no negative edge weight. If we call Bellman-Ford Algorithm |V |2 times

to work on general graphs, then the time complexity would beO(|V |3|E|). Floyd-Warshall Algorithm

[56] is a classic algorithm that can solve the problem on the graph with no negative loop in Θ(|V |3)

time. It considers the intermediate vertices along a path. Suppose the vertices in graph is numbered

from 1 to N and a function F (i, j, k) returns a possible shortest path from vi to vj using the vertices

in set {v1, v2, .., vk} as the intermediate vertices along the path. Thus, for any vertex pair (vi, vj), the

shortest path from vi to vj is either only using vertices in set {v1, v2, .., vk} or a combination of path

from vi to vk and from vk+1 to vj . Since the shortest path from vi to vj through vk is F (i, j, k), it is

obvious that if there is a better path from vi to vj through vk+1, then the length of this path should

be the concatenation of the shortest path from vi to vk+1 and the shortest path from vk+1 to vj , which

can be formulated as F (i, j, k + 1) = min(F (i, j, k), F (i, k + 1, k) + F (k + 1, j, k). This recursive

formula takes O(|V |3) time to return the results of all the vertex pairs. [57] compares the weights on

edges for O(|V |5/2), which would result in a better time complexity of O(|V |3(loglog|V/LogV |)1/3).

Johnson Algorithm [58] solves the all pair shortest path problem on sparse graph. It works by

using Bellman-Ford Algorithm first to compute a transformation of the input graph that removes all

negative weights. It is done by adding a dummy vertex vq to the original graph, and the edge weights

from vq to all the other vertices are set to 0. Then the Bellman-Ford Algorithm is applied to test if there

is a negative loop. If there is a negative loop, then the algorithm terminates. Otherwise, the edges

of the original graph are re-weighted using the values computed by the Bellman-Ford Algorithm: an

edge from vi to vj , having length W (vi, vj), is given the new length w(vi, vi) + h(ui)h(vj), where

h(vi) is the distance from vq to vi. Then the Dijkstra Algorithm could be applied to the transformed

graph. Since it is applying Dijkstra in essence, its time complexity is O(|V |2log|V |+ |V ||E|).

All of the above algorithms are the basis of the path algorithms on time-dependent graphs. Al-

though they cannot solve the various time-dependent path directly, they provide core techniques that

are shared by all the following algorithms.

2.3 PATH PROBLEMS 25

Shortest Distance Query Answering

When it comes to the shortest distance query answering, there are two extreme approaches. The

first one has no pre-computation process and runs the above shortest path algorithms each time when

a query comes. Although the above algorithms are fast enough on small graphs, they all perform

not well on real-life large graphs. So it is not applicable to the query intensive applications that

require a high degree of responsiveness. Another extreme approach is to pre-compute all the distances

between any two vertices, such that the query answering time is O(1). Since it only looks up the

precomputed structure once, it is also known as 1-Hop approach, corresponding to the 2-Hop labeling

below. However, its space complexityO(|V |2) is not acceptable even for graphs that are not too large.

So people further propose different precomputed indexes on the static graph to speed up the shortest

distance query.

The first technique is the labeling [59]. One of the most important early work of the labeling

approach is 2-Hop [6]. It assigns each vertex a distance label of the network such that the distance

between two vertices can be computed only using the labels of these two vertices. For each vertex

v ∈ V , it creates 2 labels Lin(v) and Lout(v) so that if distG(s, t) 6= ∞, then it can find a pivot u

such that (u, d1) ∈ Lout(s), (u, d2) ∈ Lin(t) and d1 + d2 = distG(s, t), and there does not exist any

u′ such that (u′, d′1) ∈ Lout(s), (u
′, d′2) ∈ Lin(t) and d′1 + d′2 < distG(s, t). Then it is guaranteed

that the vertex pair (s, t) is covered by u. They proved that finding the minimum 2-hop cover is NP-H

and the lower bound of the label size is Ω(|V ||E|1/2). [59, 60, 61] are the previous works considering

labeling, but they only considered undirected graphs and the worst case results. Hop-Doubling Label

[62] narrows the 2-Hop approach on the scale-free graph which is directed and unweighted, i.e. the

weight on edges are all one. Thus, they can use the degree of a vertex to approximate its betweenness

centrality, which reflects the importance of a vertex in a graph by considering how many shortest paths

go through this vertex. Their strategy is to rank all vertices uniquely according to non-increasing

degrees, with the highest rank given to the highest degree vertex. This is due to the intuition that the

higher ranked vertices are likely to hit more shortest paths. Then they generate label entries to cover

shortest paths with increasing number of hops. These labels are generated based on a set of rules they

proposed, and will be further pruned to reduce the label size.

Transit Node Routing (TNR) [63] is an approximation of 2-Hop in road network. For a given road

network, it computes a small set of transit nodes with the property that every shortest path between

that covers a certain not too small euclidean distance passes through at least one of these transit nodes.

26 LITERATURE REVIEW

Then for each vertex in road network, it computes a set of closest transit nodes, which is as small as

10 on average on their US road network. Thus, it is not time-consuming to compute the distance

between each vertex and these transit nodes on a local query. As for a non-local shortest distance

query from vs to vd, they first retrieve the closest transit node sets Ts and Td of vs and vd, respectively.

After that, they have to compute all the shortest distance combinations d(vs, ts) +d(ts, td) +d(td, vd),

where ts ∈ Ts, td ∈ Td and d(vs, ts) is the distance between vs and vt. Among all the possible results,

it uses the minimum one as the shortest distance.

Pruned Highway Labeling (PHL) [64] is a combination of labeling and transit node. Instead of

maintaining a set of transit nodes, it decomposes the graph into disjoint shortest paths and computes a

label for each vertex that contains the distance from it to the vertices in a small subset of such shortest

paths. Thus, the shortest path from u to v can be expressed as u → p → q → v, where p → q is a

sub-path that appears in u and v’s labels. It can take advantages of pruned labeling technique [65] to

improve the efficiency.

Another stream of taking advantages of the hierarchical natural of road networks such that the

long shortest paths can converge to a smaller arterial network of important roads like highways. Con-

traction Hierarchies (CH) [66] is one of these indexing techniques that uses the vertices’ importance

to impose a total order. The distances among the vertices are computed based on this total order.

Obviously, the efficiency is determined by the total order. An inferior ordering can lead to O(|V |2)

shortcuts, which in turn results in an O(|V |2log|V |) time complexity for queries. The CH exploits the

hierarchical nature of road network by contracting the vertices in a precomputed total order. A vertex

v is contracted by removing it from the graph in such a way that the shortest paths in the remaining

graphs are preserved. Such a property can be achieved by replacing paths of< u, v, w > by a shortcut

edge < u,w >. It should be noted that the shortcut < u,w > is needed only if < u, v, w > is the only

shortest path from u to w. Since the optimal total order is a difficult problem, they applied a simple

local heuristics approach which keeps the vertices in a priority queue sorted by some estimate of how

attractive it is to contract a vertex. They use the edge difference, which is the number of shortcuts

introduced when contracting v minus the number of edges incident to v, to do this estimation. The

intuition behind this is that the contracted graph should have as few edges as possible.

[67] proposes a hierarchical hub labellings, which is designed for road networks. It is a natural

special case where the relationship vertex v is in the label of vertex w defines a partial order on the

vertices. They show that for every total order there is a minimum hierarchical labeling. They use

2.3 PATH PROBLEMS 27

this theory to develop efficient algorithms for computing the minimum labeling from an ordering,

and for computing orderings which yield small labellings.They also show that CH and hierarchical

labellings are closely related and obtain new top-down CH preprocessing algorithms that lead to faster

CH queries.

[68] proposes a highway centric for answering distance queries in a large sparse graph. Their

scheme provides better labeling size than 2-hop both theoretically and empirically. Intuitively, it uti-

lizes a tree structured highway to serve as the intermediaries to link the start vertex and the end vertex,

a generalization of 2-hop which only utilizes a single vertex as the intermediary. Though highway

structure is widely used in shortest path computation in road networks, it is primarily used for speed-

ing up the online search [69, 70]. The heart of the highway-centric labeling consists of a fast greedy

algorithm for a general bipartite set cover problem, which by itself is very interesting and useful as

it significantly generalizes the classic set cover problem. Furthermore, as a side product, we are able

to speed up 2-hop without sacrificing its labeling size (empirically offering even better results). This

scheme also offers both exact and approximate distance with bounded accuracy. Spatially Induced

Linkage Cognizance [71] aims to compress the all pair distance to O(N1.5). Path-Coherent Pairs

Decomposition [71, 72] are two approaches aiming to compress the all pair distance.

Landmark [73, 74] is another major approach which can return approximate result fast. The basic

idea of these methods is to select a subset L of vertices as landmarks and pre-compute the distance

dG(l, u) between each landmark l ∈ L and all the vertices u ∈ V . When the distance between two

vertices u and v is queried, they answer the minimum dG(u, l) + dG(l, v) over landmarks l ∈ L as

an estimate. Generally, the precision for each query depends on whether actual shortest paths pass

nearby the landmarks. Therefore, by selecting central vertices as landmarks, the accuracy of esti-

mation becomes much better than selecting landmarks randomly [75, 76]. However, for close pairs,

the precision is still much worse than the average, since lengths of shortest paths between them are

small and they are unlikely to pass nearby the landmarks [77]. [78] presents two improvements to

existing landmark-based shortest path estimation methods. The first improvement relates to the use

of shortest-path trees (SPTs). Together with appropriate short-cutting heuristics, the use of SPTs al-

lows achieving higher accuracy with acceptable time and memory overhead. Furthermore, SPTs can

be maintained incrementally under edge insertions and deletions, which allows for a fully-dynamic

algorithm. The second improvement is a new landmark selection strategy that seeks to maximize

the coverage of all shortest paths by the selected landmarks. [79] proposes a query-dependent local

28 LITERATURE REVIEW

landmark scheme, which identifies a local landmark close to both query nodes and provides more

accurate distance estimation than the traditional global landmark approach. They also propose effi-

cient local landmark indexing and retrieval techniques, which achieve low offline indexing complexity

and online query complexity. Two optimization techniques on graph compression and graph online

search are also proposed, with the goal of further reducing index size and improving query accuracy.

Furthermore, the challenge of immense graphs whose index may not fit in the memory leads us to

store the embedding in the relational database, so that a query of the local landmark scheme can be

expressed with relational operators. Effective indexing and query optimization mechanisms are de-

signed in this context. [80] proposes an ALT (A∗,Landmark & Triangle inequality) algorithm, which

is also a preprocessing-based technique for computing distance bounds. It is the first exact shortest

path algorithm with preprocessing that can be applied to arbitrary graphs. It carefully chooses a small

number of landmarks, then computes and stores the shortest distances between all vertices and each of

these landmarks. Lower bounds are computed in constant time using these distances in combination

with the triangle inequality.

[81, 77] propose approaches based on tree decomposition methodology. The graph is first decom-

posed into a tree in which the node (a.k.a. bag) contains more than one vertex from the graph. The

shortest paths are stored in such bags and these local paths together with the tree are the components

of the index of the graph. Based on this index, a bottom-up operation can be executed to find the

shortest path for any given source and target vertices.

As indexing on the static graph is already complex and hard to create enough, little work has been

expanded on the time-dependent graphs. Some of them will be discussed in the following sub-section.

2.3.2 Path Problems on Timetable Graph

Such a graph can be used to demonstrate the following networks:

• Transportation Network: Like train, plain and bus that have a time table. Each vertex represents

a location, and an edge (u, v, t, λ) is a transportation from u to v departing at time t and the

travel duration is λ.

• Social networks: Each vertex represents a person or an organization, and an edge is an interac-

tion between u and v at time t which takes λ time.

2.3 PATH PROBLEMS 29

• SMS, email or Phone call network: Each vertex models a person or a device and an edge

indicates that u calls or sends a message to v at time t.

The path problems on timetable graph can be categorized into the following types:

1. Earliest Arrival Path is the path p that arrives vd earliest, whose

p.Arrival(vd) = min{p′.Arrival(vd), p′ ∈ P}.

2. Latest Departure Path is a path p that departs vs latest but still can reach vd, whose

p.Depart(vs) = max{p′.Depart(vs).p′ ∈ P}

3. Shortest Path is a path p that has the shortest traveling distance min{Σd
i=sweight(vi, vi+1)}.

4. Fastest Path is a path p that has the minimum total travel time

min{p′.Arrival(vd)− p′.Departure(vs)}.

Path Computation

[82] applies two approaches computing these paths. The first one is using the edge stream. The edge

stream is to present a graph only by edges. By sorting the edges in stream according to the start time,

they are able to answer the above four queries in one-pass scan of all the edges. The earliest arrival

path and the latest departure path can be answered in linear time, while the latter two is nearly the

same as Dijkstra, except for the difference on maintaining the data structures. Although edge stream

is not a new way to present graph, it is the first time to be used for solving this problem and achieves

a promising performance. The second method is a traditional way, which views the timetable graph

as a graph with multiple edges between each vertex pair. By viewing each edge in the edge stream

as a single edge, the timetable graph can be derived to a static graph. The vertex with multiple out-

edges can split into several copies of itself to meet the restriction that there should be only one edge

between any vertex pair, as shown in Figure 2.2. Thus, the above four paths can be solved using

the Dijkstra algorithm [50]. However, this transformation may result in a graph several times larger

than the original one. If the number of the edges between the pair vertices are big, the size growth

is exponential [83]. This approach is also applied by many earlier works that tried to simulate the

dynamic network [84, 85, 86, 87, 80]. Another similar approach is Connection Scan Algorithm [88],

which views the timetable graph as two sequences of edges, such that the first sequence sorts edges

30 LITERATURE REVIEW

FIGURE 2.2: From Timetable Graph to Transformed Graph

in ascending order of their departure timestamps, while the second sequence in descending order of

their arrival timestamps. For any path query, it derives the query answer using one linear scan of one

of the edge sequences. This technique incurs very small preprocessing overheads, and is shown to

outperform the temporal Dijkstra algorithm in terms of query time.

Although the algorithm discussed in this sub-section is different from the algorithm in time-

dependent graph, some notions brought by them is quite useful. For example, Earliest arrival time

and latest departure time will be used in our algorithm to solve the least on road travel time problem.

Path Query Answering

Like the works on the static graph, many works aim to build up precomputed index to boost the

efficiency of query. [89] applies pre-computation based on node contraction: gradually removing

nodes from the graph and adding shortcuts to preserve shortest paths.

[90] applies labeling on timetable graph to improve the query time. The basic idea of this approach

is to associate each node vi with a set of labels, each of which records the shortest travel time from vi

to some other node vj given a certain departure time from uj . Such labels would then be used during

query processing to improve efficiency. [89] extends CH to work on the timetable graph. It pre-

processes the graph by constructing shortcuts among the vertices, such that each shortcut captures

a fastest route between the two vertices that it connects. During query processing, it employs a

bidirectional Dijkstra-like search from the source and destination nodes simultaneously, and it utilizes

the pre-computed shortcuts to reduce the number of nodes that need to be traversed. [91] proposes

2.3 PATH PROBLEMS 31

T-Patterns to pre-compute a set of fastest paths and record them in a set S. When it comes to query

processing, it utilizes the pre-computed paths to construct the major parts of the query results, which

improves query performance. However, it does not guarantee exact query results, that is to say, its

answer for an earliest arrival time query might not be an actual earliest arrival time. So the T-Pattern

is to trade query accuracy for efficiency.

2.3.3 Path Problems on Time-Dependent Graph

The time-dependent graph on a road network first has to comply the FIFO (First-In-First-Out) prop-

erty, which claims that a car drives into a road earlier than another car, then the time it leaves this

road cannot be later than the later car. Such a property further requires a constraint on the general

time-dependent graph, which requires the cost functions gradient has to be no smaller than -1 [21].

Given a time-dependent graph GT (V,E,W), a general path p = ((v1, v2), (v2, v3)..., (vk−1, vk))

which travels from v1 to vk can be decomposed into a series of travel segments as shown below:

p1,2 :

Arrival(v1) = ts1,

Depart(v1) = Arrival(v1) + waiting1,

Cost1,2 = w(v1, v2, Depart(v1))

p2,3 :

Arrival(v2) = Depart(v1) + Cost1,2,

Depart(v2) = Arrival(v2) + waiting2,

Cost2,3 = w(v2, v3, Depart(v2))

...

pk−1,k : Arrival(vk) = Depart(vk−1) + Costk−1,k

The fast path algorithm can be categorized into two types based on if waiting on the departure

vertex is allowed. If it is not, then it is a Single Starting Time Fastest Path, which can be solved

by applying the Dijkstra Algorithm directly. If waiting on the departure vertex is allowed, then the

problem is changed into finding the optimal departure time within this time interval that could result

in a fastest path. It objective is to minimize Arrival(vk)−Departure(v1).

32 LITERATURE REVIEW

Fastest Path Computation

Dreyfus [92] first shows the time-dependent fastest path problem is solvable in polynomial time if

the graph is restricted to have FIFO property in 1969. Other early theoretical works are Halpern [93]

in 1997 and Orda [94] in 1991. However, these algorithms are so complicated to implement that no

works have reported any computational evaluation of them.

DOI [95] uses a discrete approach, which splits the starting time interval into k segments and

computes the fastest paths of at boundary time points. Although its result is not optimal in theory, it is

the most practical one since the speed profile is always histogram rather than linear function in reality.

Thus, even if this approach is not as complex as the other theoretical methods, it is the most practical

one. [86] extends the Bellman-Ford Algorithm [55]. It keeps refining the earliest arrival time function

of each vertex to find the optimal starting time. The time complexity of it is O(|V ||E|α(T)), where

α(T)) is the time required in a function operation in interval T . Obviously, this high time complexity

makes it infeasible to work on large or dense time-dependent graphs.

[96] uses an extension of A∗ algorithm to find the fastest path. It maintains the corresponding

earliest arrival time and total traveling time functions of all possible paths. It also applies a heuristic

function which estimates the arriving time by the geographical distance divided by the current speed.

It maintains a priority queue of all the paths to be expanded, sorted by the minimum heuristic value

of each vertex’s expected arrival time. When the path is expanded, it adds more than one edge to the

queue, since they are different newly generated path. When a new path is generated, it also generates a

new pair of functions. This algorithm is efficient only when the heuristic estimation can assist pruning

the search space effectively, and vs and ve are closed to each other in graph. However, It is difficult to

find such an estimation in general graphs, and the travel time estimation is still not good enough for

the road network.

[21] proposes a Dijkstra-based algorithm to solve the problem faster than the previous meth-

ods. Unlike the [96] that maintaining the priority queue of paths, it maintains a priority queue for

each vertex, sorted by its earliest arrival time by its current expanded upper bound of the starting

time interval (smaller than the original upper bound). And by increasing the starting time step by

step, it refines the earliest arrival time function of each vertex step by step. When the starting time

reaches its upper bound, the earliest arrival time function of each vertex is set, and the fastest trav-

eling time can be retrieved. It achieves a much faster query time than the [96]. Its time complexity

is O(α(T)(|V | log |V | + |E|)), where O(|V | log |V | + |E|) is due to the Dijkstra-based algorithm

2.3 PATH PROBLEMS 33

structure, and the α(T) is time to maintain the earliest arrival time functions.

Another stream of finding the fastest path on road is by mining the trajectories. [97] proposes

a mining-based algorithm PATE to predict the estimated travel time. This paper uses a travel time

evaluation table to find the shortest path within a user-specified travel time constraint. In addition, a

prefix-tree-based structure, called NPST, is proposed to efficiently find the shortest navigation path.

However, all of the researches were focused on the path finding problem with single destination. [98]

proposes navigation pattern mining from web navigation database to find a series of consecutive pat-

terns which satisfy the user-specified minimal support threshold. The algorithm is divided into three

parts: (1) maximal forward references, (2) large reference sequences, and (3) maximal reference se-

quences. The navigation pattern is defined as the consecutive and acyclic pattern. [99] proposes

techniques for popular path mining from navigation log to discover the consecutive patterns which

satisfy a minimal frequency threshold. [100] developes a framework, called Trajectory-based Path

Finding (TPF), which is built upon a novel algorithm named Mining-based Algorithm for Travel time

Evaluation (MATE) for evaluating the travel time of a navigation path and a novel index structure

named Efficient Navigation Path Search Tree (ENS-Tree) for efficiently retrieving the fastest path.

With MATE and ENS-tree, an efficient fastest path finding algorithm for single destination is derived.

To find the path for multiple destinations, they propose a strategy named Cluster-Based Approxima-

tion Strategy (CBAS), to determine the fastest visiting order from specified multiple destinations.

As discussed above, none of the existing algorithms can compute the MORT. They all aim to find

the shortest total traveling time, i.e. find the optimal departure time that can result in the shortest travel

time. And applying to compute the approximate MORT is both slow and not close the optimal result.

So we need to propose a new algorithm to solve this new path problem. However, the techniques used

by these algorithms are inspiring and will be expanded to solve our problem.

Fastest Path Query Answering

We classify and compare the existing approaches, in terms of index construction time, query answer-

ing time and index size, as illustrated in Figure 2.3. Such a classification also applies for reachability

query [14, 22] and distance query [62, 65] on static graph. On one extreme, we can compute the fastest

path between each vertex pair by calling the existing fastest path algorithms [96, 21, 25, 95, 101, 24]

directly. It consumes no extra space because it has no index at all. However, even the fastest one of

them has to take several seconds to return the result on a graph not too big, which is too slow to serve

34 LITERATURE REVIEW

Construction Time

Index Size

Query Time

Fastest Path All Pair Online Speed-up 2-Hop Labeling

FIGURE 2.3: Comparison between Time-Dependent Indexes

as the foundation for other applications. On the other extreme, we could answer this query in O(1)

time by retrieving the result from the precomputed all-pair fastest paths between all vertices during

the whole time span. But such an approach is not applicable even on static graph due its unrealisti-

cally long preprocessing time (O(|V |2 log |V | + |V ||E|))) and quadratic large index size (O(|V |2)),

not to mention multiplying a large T on them. Therefore, some speed-up techniques are proposed for

answering fastest path query in an online search way, extended from their original static versions. For

example, Bidirectional A* Search [102] augments A* Search Using Landmarks (ALT) [103, 80, 104],

Time-dependent Contraction Hierarchies [105, 106] expands the original CH [66], Time-dependent

SHARC [107] extends Arc-Flag [108, 109] and Time-dependent CH, and Core-ALT [110, 111] com-

bines Landmark, bidirectional search and Contraction. However, since these speed-up approaches

still have to traverse the graph, they remain time-consuming. And that is why although they claim

they can achieve fastest path query answering time in ms level, they all conduct their experiments

on the histogram-based speed profile which constrains T to a small fixed number and much easier

and faster to compute, rather than using the linear piecewise functions which is widely used in orig-

inal fastest path algorithms. Nevertheless, the benefits of them are the shorter construction time and

smaller space consumption.

Chapter 3

Reachability on Graph

Efficiently answering reachability queries, which checks whether one vertex can reach another in a

directed graph, has been studied extensively during recent years. However, the size of the graph

that people are facing and generating nowadays is growing so rapidly that simple algorithms, such

as BFS and DFS, are no longer feasible. Although Refined Online Search algorithms can scale to

large graphs, they all suffer from the false positive problem, which deteriorates their performance.

In this chapter, we analyze the cause of false positive and propose an efficient high dimensional

coordinate generating method based on Graph Dominance Drawing to answer reachability queries in

linear or even constant time. We conduct experiments on different graph structures and different graph

sizes to fully evaluate the performance and behavior of our proposal. Empirical results demonstrate

that our method outperforms state-of-the-art algorithms and can handle extensive graphs. As for the

reachability query in road network, our approach can always answer it in constant time.

3.1 Introduction

A reachability query Q(G, s, t) checks whether the source vertex s can reach the destination vertex

t in a directed graph G(V,E), where V is the vertex set and E is the edge set. The reachability

operation is an essential step for map data processing, which could help prune out those standalone

vertices. It can also prevent a useless but time-consuming search from the beginning if one vertex

cannot reach another. Apart from the applications on the road network, it is also a fundamental step

for various higher-level applications. For example, reachability queries can be used to conduct the

ancestor-descendant search in XML databases [4, 112], to estimate a given molecule’s influence on

35

36 REACHABILITY ON GRAPH

the expression of genes in biological networks[113], or to determine whether two users are related in

social networks [114, 115]. Other applications include website analysis [116, 117], web usage mining

[118, 119], and so forth.

In the early years when the graphs were small, basic algorithms like BFS/DFS (Breath-First Search

/ Depth-First Search) were efficient enough. However, with the rapid development of the Internet, e-

commerce services, social networks, road networks and many other applications, the sizes of graphs

have increased dramatically in recent years, making it indispensable to answer reachability queries

efficiently on extensive graphs. Tremendous efforts have been devoted to designing novel indexing

or querying strategies for reachability checking. The detailed reachability problem related work is

presented in Chapter 2.

Our work falls into the third category of Refined Online Search, which is also called Topological

Cover approach. By attaching topological information to each vertex as a label within linear time,

Topological Cover can easily scale to large graphs, although it is slower in query time than Set Cover

approaches. Note that all the existing Topological Cover approaches suffer from the false positive

problem, where the positive result of label comparison cannot guarantee that two vertices are reach-

able. In other words, the unreachable relationship can be retrieved directly from the labels within

constant time, while the reachable relationship detection decays into a guided or pruned BFS/DFS.

Grail [12], FERRARI [13] and FELINE [14] are the state-of-the-art Topological Cover algorithms.

Rather than using the time-consuming pruned BFS/DFS to cope with the false positive issue, a

better alternative to guarantee the accuracy of reachability queries is to reduce the false positive ratio

in underlying index. This in turn calls for a new topological labeling approach. Our study is inspired

by the graph drawing approach adopted by FELINE [14] and the high dimension strategy applied by

IP [18]. We analyze the cause of false positive problem and observe that false positive can be reduced

by increasing the dimension of labels. We propose a High Dimensional Graph Dominance Drawing

(HD-GDD) approach for exact reachability queries. However, it is nontrivial to find the optimal labels

which minimize both false positive ratio and index size at the same time. To this end, we introduce

several heuristic rules to guide index construction, and propose two refinement approaches (i.e., false

positive cache and false positive removal) to further speed up reachability checking with the sacrifice

of index size or index construction time. We examine the behavior of our algorithm on different

graph structures, and conduct extensive experiments on real large graphs to compare the performance

of our approach and existing state-of-the-art Refined Online Search methods. We summarize the main

3.2 PROBLEM STATEMENT 37

contributions of our work as follows.

• We analyze the cause of false positive suffered by all refined online search approaches;

• We propose a High Dimensional Graph Dominance Drawing (HD-GDD) approach for fast

index construction and fast reachability queries;

• We propose two refinement approaches, namely false positive cache and false positive removal,

to further improve the query efficiency;

• We empirically analyze the behavior of our approach on several types of synthetic and real

world graphs. The experimental results verify our analysis of the cause of the false positive

problem, and demonstrate that our proposal outperforms state-of-the-art Refined Online Search

algorithms on extensive graphs.

The rest of the chapter is organized as follows. In Section 3.2, we introduce some preliminaries

and analyze the false positive problem. In Section 3.3, we summarize the related works of graph

drawing. Section 3.4 describes our index construction algorithm and reachability query algorithm in

detail, followed by complexity analysis and two refinement approaches. Section 3.5 demonstrates the

experimental analysis of HD-GDD and its performance on real graphs. Finally, Section 3.6 make a

conclusion of this chapter.

3.2 Problem Statement

3.2.1 Reachability, SCC and DAG

Definition 3.1. (Reachability) Given a directed graph G = (V,E) where V is the vertex set and E

is the edge set, a reachability query Q(G, s, t) asks whether there exists a directed path from source

vertex s to destination vertex t in G.

We use s→ t to represent s can reach t inG and s9 t otherwise. In other words, the reachability

query Q(G, s, t) returns True if s→ t and False otherwise. If both s→ t and t→ s hold at the same

time, we say vertices s and t are strongly connected.

Definition 3.2. (Strongly Connected Component, SCC) Given a directed graph G = (V,E) where V

is the vertex set and E is the edge set, an SCC of G is defined as a maximal subset of V where any

two vertices are strongly connected.

38 REACHABILITY ON GRAPH

TABLE 3.1: Reachability Important Notations

Notation Description

Cu Coordinate of vertex u (Cu,1, Cu,2, ..., Cu,k)

T Topological ordering (t(v1), t(v2), ..., t(v|V |)

T Set of all topological orderings {T 1, T 2, .., T i, ...}

l(v) Topological level number of vertex v

{L0, L1, .., Lt} Topological level set, Li = v|l(v) = i

Definition 3.3. (Directed Acyclic Graph, DAG) Given a directed graph G = (V,E) where V is the

vertex set and E is the edge set, we can condense G into a DAG G′ = (V ′, E ′) where

• V ′ is the set of SCCs of the original graph G;

• E ′ is aggregated from the edge set E of the original graph G. Specifically, if e = (u, v) ∈ E,

then e′ = (SCCu, SCCv) ∈ E ′ where SCCu denotes the SCC u belongs to in G.

After condensing the original graph G into a DAG G′, a reachability query Q(G, s, t) from

source vertex s to destination vertex t in G can be answered by a transformed reachability query

Q(G′, SCCs, SCCt) between the SCCs s and t belong to. In particular, s→ t in G iff 1) s and t are

in the same SCC or 2) SCCs → SCCt in the corresponding DAG G′. The condensing process from

the original graph to a DAG can be conducted by Tarjan’s algorithm [120]. In this chapter, we assume

that the input graph of our algorithm has already been converted into a DAG.

3.2.2 Graph Drawing and False Positive

Graph drawing is a graph research area of mathematics and computer science, which tries to depict a

graph into different visualization categories to meet various needs. There is a branch of graph drawing

methods that aims to map the vertices of a graph into a k-dimensional coordinate system such that

each vertex is assigned a k-dimensional coordinate, where k > 2. In this way, some properties of

the original graph can be derived by computations on the corresponding coordinates. For example,

dominance drawing can be used to answer reachability queries.

Definition 3.4. (Dominance Drawing) Given a DAG G, we assign each vertex u in G with a coor-

dinate Cu = (Cu,1, Cu,2, ..., Cu,k) such that s → t iff ∀i ∈ [1, k], Cs,i < Ct,i. k is called the lowest

satisfying dimension number.

3.2 PROBLEM STATEMENT 39

Based on the dominance drawing of a DAG G, we can answer the reachability query Q(G, s, t)

from vertex s to t by simply comparing their coordinates. More specifically, 1) if ∀i ∈ [1, k], Cs,i <

Ct,i, then s → t; 2) if ∃i ∈ [1, k], Cs,i ≥ Ct,i, then s 9 t. However, there is no theory or algorithm

that can calculate the exact dominance drawing dimension k of a given graph. k can be extremely

large in real graphs. Since no theory can give an upper bound of k, the original dominance drawing

method cannot be applied directly. Therefore, a weaker version is defined as below:

Definition 3.5. (Weak Dominance Drawing) Given a DAG G, we assign each vertex u in G with a

coordinate Cu = (Cu,1, Cu,2, ..., Cu,d) such that s→ t only if ∀i ∈ [1, k], Cs,i < Ct,i. In other words,

if ∃i ∈ [1, d], Cs,i ≥ Ct,i, then s9 t.

Weak dominance drawing dimension d is a number much smaller than the dominance drawing

dimension k. Weak dominance drawing sacrifices the accuracy of reachability queries for less storage

cost of coordinate system. According to Definition 3.5, weak dominance drawing can only guarantee

unreachability rather than reachability. More specifically, 1) if ∃i ∈ [1, d], Cs,i ≥ Ct,i, then s9 t; but

2) even if ∀i ∈ [1, d], Cs,i < Ct,i, t is not necessarily reachable from s. We call such a phenomenon

false positive, which means although the coordinate comparison result is positive, the reachability

relation is false.

Definition 3.6. (False Positive) Given the weak dominance drawing of a DAG G, if ∀i ∈ [1, d], Cs,i <

Ct,i but s9 t, then Cs and Ct is a false positive pair.

Consider the example in Figure 3.1. The 2-dimensional coordinate assignment is a weak dom-

inance drawing of the graph. Vertex A(1, 4) is not entirely smaller than vertex B(2, 2), and thus

A 9 B. Such unreachability information can be derived safely by comparing the 2-dimensional

coordinates. As for reachability, although E(5, 5) is entirely larger than B(2, 2), B cannot reach E

(as shown by a dotted arrow). Therefore, the vertex assignment pair B(2, 2) and E(5, 5) is a false

positive pair which cannot be resolved by the 2-dimensional weak dominance drawing in Figure 3.1.

Definition 3.7. (Topological Ordering) The topological ordering of a DAG G = (V,E) is a linear

ordering of its vertices denoted as T = (t(v1), t(v2)..., t(v|V |)) such that for every directed edge

e = (u, v) ∈ E from vertex u to v, t(u) < t(v).

Theorem 3.1. If t(u) > t(v), then u9 v.

40 REACHABILITY ON GRAPH

FIGURE 3.1: False Positive Example

Proof. Assume to the contrary that u → v, then there exists a directed path form u to v, denoted

as (u, vp,1), (vp,1, vp,2), ..., (vp,j, v). According to Definition 3.7, t(u) < t(vp,1) < t(vp,2) < ... <

t(vp,j) < t(v), namely t(u) < t(v). This causes a contradiction.

Theorem 3.2. If u 9 v, then ∃ T i ∈ {T}, where {T} is the set of all the possible topological

orderings of a graph, ti(u) > ti(v).

Proof. We can safely deduce Theorem 3.1 to “If ∃ T i ∈ {T} that ti(u) > ti(v), then u 9 v”.

Now let’s assume the contrary of Theorem 3.2: If u 9 v, then ∀ T i ∈ {T}, ti(u) < ti(v), and its

contrapositive statement is “If ∃ T i ∈ {T} that ti(u) > ti(v), then u → v”, which is contrary to the

deduced version of Theorem 3.1.

Based on Theorem 3.1 and 3.2, topological ordering can be used to derive the unreachable rela-

tionship. In real applications, weak dominance drawing is usually implemented by running d rounds

of topological orderings. At the same time, we can reduce the number of false positive pairs in a weak

dominance drawing by increasing the dimension number d.

Theorem 3.3. The false positive between a vertex pairCu = (Cu,1, Cu,2, ..., Cu,d) andCv = (Cv,1, Cv,2,

..., Cv,d) in a d-dimensional weak dominance drawing can be eliminated by adding a new dimension

to the coordinates.

3.2 PROBLEM STATEMENT 41

Proof. Since u 9 v, there exists a topological ordering where t(u) > t(v) according to Theorem

3.2. By adding this topological ordering as a new dimension of the coordinates, we can achieve

Cu,d+1 > Cv,d+1. This breaks the false positive pair between Cu and Cv.

For example, using the 3-dimensional weak dominance drawing in Figure 3.1, we can safely draw

the conclusion that B 9 E since B(2, 2, 4) is not entirely smaller than E(5, 5, 3).

To further understand the cause of false positive and the difference between Set Cover and Topo-

logical Cover, we need the following definitions:

Definition 3.8. (Topological Level Number) Given a DAG G = (V,E), the topological level number

l(v) of a vertex v is defined as below:

• if v has no in-neighbor, then l(v) = 0;

• otherwise, l(v) = max {l(u) + 1: u is v’s in-neighbor}.

Definition 3.9. (Topological Level) Given a DAGG = (V,E), it contains t topological levels denoted

as L0, L1, ..., Lt, where Li = {v|l(v) = i} and t is the largest topological level number in G.

Theorem 3.4. If l(u) = l(v), then u9 v and v 9 u

Proof. Assume to the contrary that u → v, then there exists a directed path from vertex u to v,

denoted as (u, vp,1), (vp,1, vp,2), ..., (vp,j, v). According to Definition 3.8, l(v) ≥ l(vp,j) + 1 ≥ ... ≥

l(vp,1) + j ≥ l(u) + j+ 1, namely l(v) > l(u). This causes a contradiction. Therefore, if l(u) = l(v),

then u9 v. Similarly, we can prove that l(u) = l(v), then v 9 u.

From Theorem 3.4, we can easily observe two essential differences between Set Cover approach

and Topological Cover approach described in Table 2.1. First, in Set Cover, vertices in the in-neighbor

set consistently have a smaller topological level number than those in the out-neighbor set, and ver-

tices of the same topological level will never appear in each other’s neighbor sets. However, in

Topological Cover, vertices of the same topological level can have either a bigger or smaller topo-

logical order than each other during different rounds of topological ordering, which is one reason for

the false positive problem (another reason is the unreachable pairs from different topological levels).

Second, Set Cover uses the information positively to answer reachability queries, while Topological

Cover uses the information negatively. For example, in Set Cover, if u and v can find each other

in corresponding neighbor sets, their reachability can be answered directly. Whereas in Topological

42 REACHABILITY ON GRAPH

Cover, the unreachability can be answered directly if u has a larger topological order than v in some

topological ordering.

3.3 Related Works

[15] is the first work that tries to use graph drawing to answer reachability query. Their goal is to

label the vertices by vectors in such a way that u can reach v if and only if Cu < Cv, where Cu

is a d-dimensional vector that is assigned to vertex u. Although their goal is promising, they only

focus on the graphs that are planar. That is to say, all the vertices with no in-neighbors are on the

boundary of the same face while all the ones with no out-neighbors are on the other face. Then they

use a simple left-DFS followed by a right-DFS algorithm to compute a 2-dimensional vector for each

vertex. However, this planar condition is so strong that it does not allow the existence of false positive.

In fact, it is the feature of non-planar that causes the false positive. So their algorithm is limited to a

small type of graphs.

Twenty years later, [16] expands the condition from planar graph to bipartite graph, which is

made up of a set of source vertices and a set of sink vertices, and all edges are directed from a

source to a sink. They first call the vector assignment approach the dominance drawing and prove the

dominance drawing dimension d is no bigger thanmin(|source|, |sink|). Then they give an algorithm

to compute a 2-dimensional dominance drawing in the case of such drawing exists, which is also a

strong assumption. So they just avoid the false positive problem.

[17][29] revisited this problem and proposed weak dominance drawing to expand the above algo-

rithm to any graph type, which can only guarantee the unreachability relation between two vertices

if the source is not smaller than the destination. They give the upper bound of false positive pairs,

which is inc(G) − (dim(G) − 2), where inc(G) = |V |(|V |−1)
2

− |E∗| is the number of incomparable

pairs of a graph, dim(G) is the smallest graph dominance drawing dimension, and |E∗| is the number

of reachable pairs. With the weak dominance drawing, they attached a two dimensional coordinate to

each vertex regardless it is planar or not. Thus, this was the first time that the graph drawing approach

was using on any graph type. And they proved that finding the optimal weak dominance drawing is

NP-C. Although they did a lot theoretical work, no experiment result was released.

FELINE [14] adopts the weak dominance drawing concept from Kornaropoulos’s work and treats

it as a Refined Online Search method. All they do is to use the ancient 2-dimensional vector generating

3.4 HIGH DIMENSIONAL GRAPH DOMINANCE DRAWING ALGORITHM 43

algorithm[15] to give each vertex a coordinate and use it to rule out the unreachable vertex pairs.

As discussed above, all of the works on graph dominance drawing algorithms are actually based

on the 1975’s 2-dimensional graph drawing algorithm, and no work has been done to extend it to a

higher dimension, which will definitely reduce the false positive pairs and boost the efficiency of the

reachability query while still has a linear index size and fast index construction time.

There is another similar research trend called Graph Embedding [121, 122] that also could assign

a low dimensional vector to each vertex. The outputs are similar as the vectors serve as coordinates.

However, the purpose of these methods is to reduce the cost of the graph analytics tasks, which

involves node classification, recommendation and prediction. Therefore, the vectors are assigned with

different similarity functions in order to preserve the structure of the graph maximumly. While the

Graph Drawing simply asks for visualizing a graph, and the Node Embedding in Graph Embedding

is a branch of it. In this work, we use topological information rather than similarity to solve the

reachability problem, so the existing Graph Embedding methods cannot help.

3.4 High Dimensional Graph Dominance Drawing Algorithm

3.4.1 Overview

In this work, we propose a high dimensional weak dominance drawing approach to answer reachabil-

ity queries. The workflow consists of two parts:

• Index Construction. Given a DAG G = (V,E), we assign a d-dimensional coordinate to each

vertex inG using topology ordering. After the first dimensional coordinates have been assigned,

we propose several heuristic rules to assign higher dimensional coordinates;

• Reachability Query. Given a pair of vertex s and t, we first compare their coordinates. If

Cs 6< Ct namely ∃i ∈ [1, d], Cs,i ≥ Ct,i, then we can conclude that s9 t; Otherwise, we check

whether the descendants of s can reach t iteratively until the search reaches t or all the vertices

on the search path are labeled with coordinates not smaller than Ct.

3.4.2 Index Construction

During index construction, we adopt topological ordering to assign coordinates. Before jumping into

details, we first discuss a possible solution.

44 REACHABILITY ON GRAPH

Definition 3.10. (Valid Coordinate) ∀d < k, where d is the current dimension of the coordinate and

k is the minimum coordinate dimension required to eliminate all false positive pairs, the coordinate

of dimension d+ 1 is a valid coordinate if it eliminates at least one false positive pair of the previous

coordinate.

In order to build a feasible coordinate index for a given DAG G = (V,E), the coordinate for

each dimension should be valid. However, it takes O(|V |2) time to test whether a new dimension

is valid or not. A naive solution for index construction is to apply greedy algorithm. Specifically,

before adding a new dimensional coordinate, we iterate all vertex pairs and sort vertices based on

the time they act as the source of false positive. Thus, by dealing with the vertex which acts more

times as the source of false positive, the elimination of false positive can be guaranteed. During the

next topological ordering, we eliminate false positives according to Theorem 3.3. Although the naive

approach can guarantee that the new coordinate is valid, its time complexity is still O(|V |2), which is

too time-consuming for large graphs.

As discussed in Section 3.2.2, weak dominance drawing is a trade-off between the storage cost

of coordinate index and the accuracy of reachability queries. Therefore, the optimal coordinate index

of a given graph is the one that minimizes the dimension number k and the false positive pairs at

the same time. However, finding the optimal dimension number k of a general graph is still an open

problem and is out of the scope of our current work. In fact, the only exact k people know is for

Bipartite Graph’s [16]. Moreover, minimizing false positive pairs for a given dimension number d is

a NP-H problem [17, 29]. Therefore, we propose several heuristic rules to construct the coordinate

index effectively and efficiently.

In order to eliminate false positive pairs, we need to assign different topological orders in different

rounds of topological ordering to the vertices that can not reach each other. Suppose at a certain

stage of topological ordering to calculate the (d + 1)th dimensional coordinate, we maintain a set of

candidate vertices which satisfies the following conditions:

• Each vertex has a d dimensional coordinate;

• Each vertex has no in-neighbors (it has no in-neighbors or all its in-neighbors have been visited

in previous topological search);

• Cannot reach each other.

3.4 HIGH DIMENSIONAL GRAPH DOMINANCE DRAWING ALGORITHM 45

The vertices in the candidate set are sorted based on some heuristic rules which we will describe

later. We choose vertex u with the largest order from the candidate set to be the next visited vertex

and assign Cu,d+1 an increasing topological order. In fact, the newly assigned topological order is

the smallest one in the candidate set, which is intended to eliminate false positive from this vertex to

the remaining vertices in the candidate set. After deleting it from the set, we update the candidate

set by adding the vertices that were connected to the erased vertex and the in-degrees are 0 currently.

For example in Figure 3.1, assume the first round of topological sorting is finished and the first di-

mensional coordinates are generated. In the beginning of the second round of topological sorting,

the candidate set is {A(1), B(2), C(4)}. Suppose the ordering here is opposite to the first coordinate.

Then C(4) is visited first and its coordinate is C(4, 1) now. No new vertex is added to the candidate

set {A(1), B(2)} and B(2) should be visited next and its coordinate is B(2, 2). After B is removed,

F ’s in-degree becomes 0, so F (6) is inserted into the candidate set, which becomes {A(1), F (6)}

now. Since F (6) is bigger, so its coordinate becomes F (6, 3). This approach runs on till the second

round of topological sorting is finished. Thus, we need to define an ordering of the candidate vertices’

current coordinates. With an appropriate ordering, we can select the vertex with the largest order each

time from the candidate set and assign it a coordinate smaller than all the other vertices in the set. The

candidate set can be further indexed by a tree or heap. The followings are some heuristic conditions

that could determine the order in candidate set:

• Coordinate comparison. If ∀i ∈ [1, d], Cu,i < Cv,i, then we make Cv,d+1 bigger than Cu,d+1 in

this iteration so that v can be topologically visited earlier than u and can have a smaller order

than in the previous ones, which can break a false positive pair in the candidate set directly.

However, not all the coordinates can be compared to each other, especially when the dimension

is higher. So other conditions are needed to further determine the ordering.

• Sum of the coordinate. As shown in Figure 3.1, vertex A(1, 4), C(4, 1) and E(5, 5) should

be visited earlier than (2, 2) so that E can have a smaller topological order than B this time.

Obviously, they all have a bigger sum of the coordinates (
∑d

j=1Ci,j). So if Cu has a bigger sum

than Cv, Cu is bigger in the candidate set.

• Deviation of the coordinate. Also as indicated in Figure 3.1, if we want to set vertex v free

so that it can be inserted into the candidate set, we have to visit (1,4) and (4,1) earlier than B.

There exists cases that when applying the condition 2, the sum of the coordinates are the same.

46 REACHABILITY ON GRAPH

Thus we have to further compare the deviation of coordinates. It is obvious that the vertices on

the outer side of the graph have a bigger deviation, which satisfies our need to set E free. So

the tie of the coordinate sum can be broken by a higher deviation.

• Minimum of the previous coordinate. When all the previous conditions are all tied, which is

possible, we have to settle the order by examining the minimum topological order a vertex has

in the previous topological sorting.

With all the theorems and heuristic conditions discussed above, we can describe Algorithm 1 in

detail. The index construction algorithm is made up of 2 steps:

1. First coordinate computation. The algorithm applies the topological sort in a DFS manner and

sets each vertex a first coordinate Ci,1 (Line 2).

2. Higher coordinate computation. In order to visit the graph topologically later on, we have

to collect the vertices’ in-degree information first (Line 4-7). Then we compute the higher

dimensional coordinates iteratively. Suppose we have a coordinate of dth dimension for each

vertex. Now we want to compute the (d + 1)th dimension for each vertex. First, the algorithm

inserts all the vertices that have no in-neighbors into a tree with the order defined by the above

heuristic conditions (Line 12-14). Then, we select the largest vertex u from the tree and assign

it the current coordinate and erase it from the tree. After that, we scan u’s neighbors to reduce

their in-degrees (Line 21). If any of the neighbor’s in-degree becomes 0, we insert it into the

tree (Line 22-23). And this operation keeps running until the tree becomes empty. When the

dimension is finished, a Sample() procedure is called to randomly test the performance of the

index.

3.4 HIGH DIMENSIONAL GRAPH DOMINANCE DRAWING ALGORITHM 47

Algorithm 1: Index Construction
Input: A directed acyclic graph G(V,E), the expected dimension number k.
Output: The d-dimension coordinate (Ci,1, Ci,2..., Ci,k) of each vertex i.

1 begin
2 Ci,1 ←− TopologicalOrdering(G) //Collect the in-degree of each vertex
3 IN ←− {0, 0, ..., 0}
4 forall u ∈ V do
5 forall (u, v) ∈ u’s edge list do
6 INv ←− INv + 1
7 for d← 2 to k do
8 IN2←− IN , tree.init(), coor ←− 1
9 forall u ∈ V do

10 if IN2u = 0 then
11 tree.insert(v)
12 while tree is not empty do
13 u←− tree.rightmost, Cu,k ←− coor, coor ←− coor + 1
14 tree.erase(tree.rightmost)
15 forall (u, v) ∈ u′s edge list do
16 IN2v ← IN2v − 1
17 if IN2v = 0 then
18 tree.insert(v)

3.4.3 Reachability Query

Algorithm 2 demonstrates the pseudo-code for the reachability query. If Cu is not entirely smaller

than Cv, we can safely draw the conclusion that u cannot reach v. Otherwise, the algorithm has to

traverse descendants of u to check whether they can reach v. Only the descendants that have not been

visited and have a smaller coordinate than v need to be inserted into the queue for further testing (Line

9). In fact, such a condition prunes out most of the search space. If none of the descendants satisfies

this condition, we can draw the conclusion that u cannot reach v. If the search process reaches v, the

algorithm returns True.

Correctness

During the online search process, if Cu ≮ Cv then u 9 v according to Theorem 3.1; otherwise,

the algorithm iteratively checks the descendants of u, denoted as u′, to see whether they can reach

v. Similarly, if Cu′ ≮ Cv, u′ and all its descendants cannot reach v. In other words, u cannot reach

v through its descendant u′. When the queue becomes empty, it means none of u’s descendants can

reach v, which in turn guarantees u cannot reach v. If the search process reaches v, a directed path

from u to v has already been detected, namely u can reach v. Therefore, Algorithm 2 returns correct

answers for the reachability queries.

48 REACHABILITY ON GRAPH

Algorithm 2: Reachability Query
Input: A directed acyclic graph G(V,E), a source vertex u and a destination vertex v, the

d-dimensional coordinates Cu and Cv
Output: True if u can reach v, False if u cannot reach v

1 begin
2 if Cu < Cv then
3 queue.push(u)
4 while queue is not empty do
5 u′ ←−queue.pop()
6 forall (u′, v′) ∈ u′ edge list do
7 if v′ = v then
8 return True
9 else if v′ has not been visited AND Cv′ < Cv then

10 queue.insert(v′)
11 return False

3.4.4 Complexity

During the index construction, both the first coordinate computation and the collection of in-degree

information require O(|V | + |E|) time, and the higher coordinate computation runs for k − 1 times.

Within the higher coordinate computation, it spends O(|V |) time on tree initialization, and runs tree

insertion for |V | times with each insertion costing O(k ∗ log|V |) time. Therefore, the total time

complexity of the index construction algorithm is O(k ∗ (|V |+ |E|+ |V | ∗ k ∗ log|V |))). The space

consumption during index construction is the storage of the graphO(|V |+|E|) and the treeO(k∗|V |).

Thus the total space complexity of the index construction algorithm isO(k∗|V |+|E|). In other words,

both the time complexity and space complexity are nearly linear to O(|V |+ |E|).

The online query algorithm takes O(1) time when the unreachability information can be obtained

directly through coordinate comparison, and O(|V | + |E|) time in other cases. Although the worst

case complexity is the same as that of BFS/DFS, our query algorithm is still much faster since it uses

coordinates to prune out most of the search space. Therefore, the query time complexity is between

O(1) and O(|V |+ |E|), and it depends on the graph structure.

3.4.5 Refinement

The HD-GDD approach works well when the dimension number is not too high. However, it can be

observed from the experiment that the number of the eliminated false positive pairs is decreasing as

the dimension grows higher. In some cases, no false positive pair can be eliminated by adding a series

of coordinate dimensions. Although all the false positive pairs will be eliminated eventually, the cost

3.4 HIGH DIMENSIONAL GRAPH DOMINANCE DRAWING ALGORITHM 49

between adding a new dimension and eliminating a few or even none positive pair is high when the

dimension number is high. To further improve the accuracy of the labels, we propose two refinement

approaches: false positive cache and false positive removal.

False Positive Cache

It aims to reduce the index complexity when the coordinate dimension number is high and the re-

maining false positive number is low. It just saves the false positive pairs the algorithm gets from the

online search. When a reachability query comes, it first checks the false positive cache of the source

vertex to check if it is a false positive pair. As the size of false positive cache grows, the average

time of query answering becomes lower. Since to find the total false positive pairs takes O(|V |2), it

is impossible to test the whole graph ahead when the graph is large. So the cache procedure works

when the index is online. GRAIL [12] mentions their false positive cache approach. However, it is not

recommended in their original paper since the size of their false positive cache could be huge. This

is because the dimension number of their interval is low and generated randomly, the number of false

positive pairs is large in their algorithm. Unlike GRAIL, HD-GDD has fewer false positive pair, so

the cache size is smaller than that of GRAIL’s.

Our false positive cache is made up of two parts: a bitmap index to store the visited pairs and a

false positive cache store with each vertex. Whenever a pair of vertices is visited, the bitmap of that

pair is set. When all the bits in the bitmap are set, we can guarantee that all the false positive pairs are

detected and the online search is no longer needed, the reachability query can be answered only by

the coordinate and the false positive cache, which takes only O(1) time.

False Positive Removal

This refinement approach aims to remove the false positive pairs that are hard to be removed by

the HD-GDD itself. Since the graph structure may be very complex, those four heuristic conditions

have to run many iterations before this false positive pair can be removed. Instead of running the

basic HD-GDD repeatedly, we design an algorithm that guarantee to eliminate at least a false positive

destination vertex at a time.

Definition 3.11. (False Positive Source and Destination Vertex). Given a pair of false positive vertices

(u, v), u is called the false positive source vertex and v is called the positive destination vertex.

50 REACHABILITY ON GRAPH

It is hard to remove a false positive pair from a false positive source vertex. But it is easier to

start from a false positive destination vertex. When the dimension number is high and the HD-GDD

is not efficient, we call Sample procedure to randomly collect the false positive destination vertices

and sort by the times they act as the false positive destination. Then the algorithm traverses the

graph reversely from the false positive destination vertex to the vertices that have no in-neighbors.

By ordering the vertices into a sorted list with the topological level, we can assign a coordinate to

each vertex. Since the false positive source vertices cannot reach false positive destination vertex,

the source vertex is not in the list. So the algorithm can guarantee the false positive source vertices

have larger coordinates than this selected false positive destination vertex. For example, in Figure 3.1,

(B,E) is a false positive pair, whileB is source and E is destination. Thus, we traverse the sub-graph

(A → E,C → E) first. Therefore, E will have a smaller coordinate than B, which means this false

positive pair is broken.

Although this algorithm can prune the destination false positive vertex accurately, it is time con-

suming due to the sample procedure and only works well when most of the false positive pairs are

eliminated by the basic HD-GDD algorithm.

3.4.6 Reachability on Road Network

In this section, we discuss the scenario in road network. First of all, unlike general random graphs,

road network is near-planar. Because most of the roads are paved on the surface of earth, most parts

of a road network is planar by nature. Only some parts that have tunnels and overpasses can cause a

little degree of non-planar. Secondly, recall that for a planar graph, it takes only two dimensions to

eliminate all the false positive. Therefore, on a road network, it only takes a very small number of

dimensions to eliminate its false positives. When all the false positives are eliminated, the reachability

query answer time drops to constant. The query time dropping pattern is similar to those sudden

dropping lines in Figure 3.5 of the experiments.

3.5 Experiments

The experiment contains two parts: analysis on different graph structures and comparison with state-

of-the-art Refined Online Search algorithms on real graphs.

3.5 EXPERIMENTS 51

3.5.1 Graph Structure Analysis

Experiment Setup

To have a deep understanding of the performance on different graph structures, we use NetworkX

[123] to generate three different kinds of graphs. Because calculating the indicators needs to compare

all the vertex pairs, which is |V |2 and too time consuming when graph is large, we set the graph size

to be 10000 in this experiment.

1. Erdős–Rényi model. It is a random graph generation model often used for theoretical evaluation

of algorithm complexity. It was proposed by Erdős and Rényi in 1959 [124]. It generates a

random graph based on the given model G(n, p), where n is the vertices number and p is the

independent probability of an edge’s existence. It has a low clustering coefficient and a low

average node-to-node distance. The graph generated by this model is totally random with no

structure. In this experiment, we set d = 0.05, 0.1, 0.15, 0.2 and 0.25 to simulate the random

graphs from sparse to dense.

2. Watts and Strogatz small world. A small world is a kind of graph in which most vertices

are not neighbors to each other but can reach each other by a small number of hops or steps.

The distance between two vertices grows proportionally to the logarithm of the number of

vertices N in the network: L ∝ logN . In the Watts and Strogatz model [125], the generated

graph has a low average node-to-node distance and a high local clustering coefficient. The

graph generated by this model has many clusters which can be viewed as “small worlds”. The

generation parameter is a triplet 〈N,K, β〉, where N(10000) indicates the number of vertices,

K(10, 20, 30, 50) indicates the average neighbors and β(0.5, 0.7, 0.9, 1) indicates the possibility

to rewire an existing edge to another ending vertex(randomness).

3. Barabási–Albert model. It is used to generate a scale-free graph, which is a graph that exists

in many man-made and natural systems like web, social networks, protein-protein interaction

networks, airline networks etc. The degree distribution of the scale free graph follows a power

law. This model applies a preferential attachment mechanism, which assigns the nodes with

higher degree a higher probability to be the destination for a new link. The graph generated by

this model has a long tail distribution, in which a small number of vertices have huge degrees

while most of the vertices have small degrees. The parameter is 〈n,m〉, where n is the node

52 REACHABILITY ON GRAPH

2 3 4 5 6 10 20 50
Dimension d

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

R
fp

ER Model

p=0.05
p=0.1
p=0.15
p=0.2
p=0.25

2 3 4 5 6 10 20 50 100 200
Dimension d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
fp

BA Model
m=10
m=20
m=30
m=50
m=100

2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
fp

Dimension d

K=10K=10 K=20K=20 K=30K=30 K=50K=50

WS Model

β=0.5
β=0.7
β=0.9
β=1

FIGURE 3.2: False Positive Ratio Rfp and Accuracy Ratio Racc on Different Graph Models

number and m(10, 20, 30, 50, 100) is the number of edges attached from a new node to the

existing nodes.

We do not test the performance in road networks because they are mostly planar and have small

index sizes with constant query answering time. So the evaluations are focused on the performance

changes on the various complex graph structures.

3.5.2 Evaluation Metrics and Experimental Results

False Positive Ratio

It shows the ratio of false positive pairs in the total positive answers and is denoted as Rfp =

|false positive query|
|false positive query+true positive query| . The lower the Rfp, the higher the possibility that the coordinate

comparison can give the right answer straightly. When Rfp is 0, we can answer the reachability query

just by coordinate comparison and no online research is needed.

As shown in Figure 3.2, Rfp drops as dimension increases generally. And as the graph becomes

denser (p increases in ER Model, K increases in WS Model and m increases in BA Model), Rfp

3.5 EXPERIMENTS 53

2 3 4 5 6 10 20
Dimension d

0.0

0.1

0.2

0.3

0.4

0.5

R
on

ER Model

p=0.05
p=0.1
p=0.15
p=0.2
p=0.25

2 3 4 5 6 10 20 50 100 200
Dimension d

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

R
on

BA Model

m=10
m=20
m=30
m=50
m=100

2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200

0.0

0.1

0.2

0.3

0.4

0.5

R
on

Dimension d

K=10K=10 K=20K=20 K=30K=30 K=50K=50

WS Model

β=0.5
β=0.7
β=0.9
β=1

FIGURE 3.3: Online-Search Ratio Ron of Different Graph Models

drops dramatically. This indicates the fact that the denser the graph is (more edges in the graph),

the higher chance two vertices are reachable. As β increases in WS Model, which means the graph

becomes more random in the small world structure, Rfp soars up. This shows that HD-GDD has a

better performance in a small world structure graph than the random graphs.

Online Search Ratio

It indicates the ratio of online search queries among the total queries and is denoted as Ron =

|Online search|
|total queries| = |Positive query|

|total queries| . When Rfp is not 0, Ron indicates the ratio of online search needed

to answer a reachability query accurately, and it affects query time directly. The higher the Ron, the

longer the average query time. When Rfp → 0 , Ron → |ReachableV erticesPairs|
|AllV erticesPairs| , which is a constant

number of a specific graph. When Rfp is 0, Ron falls to 0.

As shown in Figure 3.3, Ron grows higher as the graph becomes denser. It reveals the fact that

as the chance one vertex can reach another grows higher, the times the algorithm needs to finish a

BFS grows. As shown in the WS Model, although the more random graphs may have a lower Ron

when the graph is sparse, it always needs a higher dimension to eliminate all the false positive pairs

54 REACHABILITY ON GRAPH

(β = 0.5 first drops to 0, β = 0.7 next and then β = 0.9). This is because the larger the β, the higher

randomness. When β is small, the graph is made up of several small worlds. As β grows, these small

worlds have more links, which results in higher dimension to remove false positive. On the other

hand, as K grows, the graph has more edges and becomes denser. It should be harder to remove false

positive, as shown when β is 1 and 0.9. However, when beta is small, a largerK means denser in each

small world. Therefore, it is more possible for a small world to becomes a DAG if it has more edges

within it. So the Ron drops to 0 when K = 20 and β = 0.5 when dimension is only 2. Similar for the

cases when β is 0.7 and 0.9. When β = 1, it density increases randomly over the whole graph rather

each small world. As for the cases in the BA Model, its Ron never reaches 0. This shows the fact that

the scale-free graph is hard to eliminate the false positive, thus the refinedonlinesearch methods

do not work well on it. And they perform well when on dense random graph and sparse small world

graph.

Since the false positive is the reason we need to conduct the online search, Ron should decrease

as Rfp drops. However, Ron does not decrease dramatically due to the existence of true positives. In

fact, Ron grows as total positive pair increases. At the same time, Ron should always be smaller than

0.5. This is because in DAG, we can guarantee that if s→ t, then t9 s.

Index Construction

Figure 3.4 confirms that the index construction time of each model and the index size are all almost

linear to the dimension number. As p grows higher in ER Model and m becomes larger in BA Model,

which means the graph becomes denser, the index construction time becomes larger. This meets our

time complexity analysis. As for WS Model, we take K = 10 for example. As β increases, the graph

becomes more random and the index construction time increases accordingly. This is because in

small world model, there are less edges among the vertex clusters when β is small. Thus, the average

searching length in topological sorting is small. As β increases, edges among vertex clusters increase

and more long search paths appear, which results in longer index construction time. So if the graph

has more clusters and less links among the clusters, the index construction time is smaller. Another

interesting observation in WS Model is that as β increases, the time curve becomes more non-linear.

It accords with the trend of Ron that the more random graph takes higher dimension to approximate to

the reachable pair ratio of the graph. Moreover, more randomness in small world would cause more

out-neighbors’ in-degree become 0. Therefore, its candidate set is larger than the less random graph,

3.5 EXPERIMENTS 55

0 50 100 150 200
Dimension d

0
200
400
600
800
1000
1200
1400

se
c

ER Model
p=0.05
p=0.1
p=0.15
p=0.2
p=0.25

0 50 100 150 200
Dimension d

0
20
40
60
80
100
120
140
160

se
c

BA Model
m=10
m=20
m=30
m=50
m=100

0 50 100 150 200
Dimension d

0

10

20

30

40

50

60

se
c

WS Model
β=0.5
β=0.7
β=0.9
β=1

0 50 100 150 200
Dimension d

0

2000

4000

6000

8000

10000

K
B

Index Size

FIGURE 3.4: Reachability Index Construction Time and Size of Different Models

which results in a higher time complexity.

In conclusion, the index construction time grows when graph becomes denser, more random and

has more long paths.

Query Time

As shown in BA Model and WS Model in Figure 3.5 , the query time decreases when d is small and

soars up when d is large. This is because when d is small, the most time consuming operation is

online search, while when d is large, the time is occupied by the coordinate comparison. And when

Ron falls down to 0, the query time drops to constant as well as shown in ER Model and when K

is high in WS Model. Generally, it follows the trends of Ron. In BA Model, when m grows, the

graph becomes dense and query time becomes longer. This is because the number of positive pairs

grows, which needs more online search. So it verifies the conclusion that refinedonlinesearch does

not perform well on scale-free graph. In ER Model, as the random graph becomes dense, the query

time drops to constant earlier. So our approach works well on dense random graph. And WS Model

follows the same trend. Moreover, as β decrease, the query time drops earlier.

56 REACHABILITY ON GRAPH

2 3 4 5 6 10 20 50 100 200
Dimension d

0
100
200
300
400
500
600
700

µ
s

ER Model
p=0.05
p=0.1
p=0.15
p=0.2
p=0.25

2 3 4 5 6 10 20 50 100 200
Dimension d

0

500

1000

1500

2000

2500

3000

µ
s

BA Model
m=10
m=20
m=30
m=50
m=100

2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200 2 3 4 5 6 10 20 50 100200

0
500
1000
1500
2000
2500
3000
3500
4000

µ
s

Dimension d

K=10K=10 K=20K=20 K=30K=30 K=50K=50

WS Model
β=0.5
β=0.7
β=0.9
β=1

FIGURE 3.5: Query Time on Different Graph Models

3.5.3 Results on Real Graph

Experiment Setup

We compare our method with the state-of-the-art Refined Online Search algorithms: Grail [12], Fer-

rari [13] and Feline [14]. We compare the query time with HD-GDD when d is set to 3, 4 and 5.

Table 3.2 shows the size and source of five real large graphs.

TABLE 3.2: Information of Real Graphs for Reachability Test

Dataset |V | |E| davg Source

EU institution Email 265,214 420,045 3.1676 [126, 127, 128]

CiteSeer 384,413 1,751,463 9.1124 [129, 130]

Google Webpage 875,713 5,105,039 11.659 [126, 131, 132]

Baidu Internal 2,141,300 17,794,839 16.621 [126, 133, 134]

US-Patent 3,774,768 16,518,947 8.7523 [126, 135, 136]

3.6 SUMMARY 57

EU Institution Email CiteSeer Google Webpage US-Patent Baidu Internal0

100

200

300

400

500

µ
s

Grail

Ferrari

Feline

d=3

d=4

d=5

FIGURE 3.6: Reachability Query Time on Real Graphs

Query Time

We randomly test 1 million queries for each dataset and Figure 3.6 shows the average query time. It

is worth noting that although US-Patent is larger than Google Webpage, its query time is obviously

smaller. It indicates that the query time is not only dominated by the graph size, but also affected by

the evaluation metrics we talked about previously. And HD-GDD always has a better performance

than the others.

3.6 Summary

In this chapter, we analyze the cause of the false positive problem confronted by existing Refined

Online Search algorithms, and study the graph drawing approach to answer reachability queries. We

propose an efficient and scalable HD-GDD approach to improve query performance. It only takes no

more than 5 dimensions to bring the false positive ratio in road network to 0, so it can help answer

path query in constant time. We conduct extensive experiments on synthetic graphs with different

graph structures and some real large graphs. The empirical results demonstrate certain relationship

between query performance and graph structure, and verify that our proposal consistently outperforms

state-of-the-art approaches on real graphs.

58 REACHABILITY ON GRAPH

Chapter 4

Speed Profile Generation from Trajectory

In this chapter, we explain how we derive the speed profile from the trajectory data. We first talk about

how to obtain the road speed from the trajectory in Section 4.1. Then we present our observations

on the effects of different granularities of the speed collections in Section 4.2. After selecting an

appropriate time slot size, we use several approaches to estimate missing values in Section 4.3. In

Section 4.4, we test three compression algorithms on our speed profiles in order to reduce the storage

space. Finally, we present the evaluation results in Section 4.5.

4.1 From Trajectory to Road Speed

First of all, we match the trajectory tri =< (xi1, y
i
1, t

i
1), ..., (x

i
m, y

i
m, t

i
m) > to the graph G. There are

several methods [32, 137, 138] in this field. After that, we obtain a sequence of consecutive edges

Ei =< e1, ..., em >, with ∀1 ≤ j ≤ m, (xij, y
i
j, t

i
j) is on some edge ek ∈ Ei. It should be noted that

an edge could have several points attached to it, while some edges might have no attaching points.

For any consecutive pair of points pij = (xij, y
i
j, t

i
j) and pij+1 = (xij+1, y

i
j+1, t

i
j+1), we can retrieve a set

of edges Ei
j =< ek, ek+1, ..., en > between them. We assume the travel between pij and pij+1 keeps

an even speed. The distance dij,j+1 between them is the sum of corresponding traveled edge length.

Thus, the speed is vij = dij,j+1/(t
i
j+1 − tij). Then we attach this speed to the corresponding edges in

Ei
j , with time proportional to the distance to pjj . By repeating this procedure from the first GPS point

to the last one, we can get all the roads’ speed along this trajectory, together with their corresponding

starting time.

59

60 SPEED PROFILE GENERATION FROM TRAJECTORY

4.2 Speed Data Collection

Before collecting the data into time slots, we first categorized them into weekday and weekend, or by

date. Then for each edge ei in one specific category, it has a set of speed data< (vi1, t
i
1), ..., (v

i
n, t

i
n) >.

The next step is converting it into a usable speed profile.

The most straightforward method is to use these speed data directly, which would result in a set of

linear piecewise speed functions. However, it is not practical for the following reasons. Firstly, some

speeds are either much smaller than the others because the driver may wait for the traffic light or even

stop to wait for a passenger, or bigger than the average due to some emergency cases. If we line up

these speed points directly, we will get a zigzag speed profile that apparently cannot describe the road

network’s actual traffic condition. In fact, it falls into the terrible situation of over-fitting. Secondly, a

speed profile with a random bunch of functions is both hard to use and compress. Another approach

is approximating the speed data using some regression methods [139, 140]. Although it can represent

the speed profile as functions, it is unable to deal with missing value since it estimates the missing

speed only by the values on each edge itself, which is highly inaccurate.

To address the problems mentioned above, we use a histogram-based approach to collect the speed

data. Specifically, we divide one day’s time into T- slots with the same length. Then the speed data that

fall into the same slot will be added up together to get an average speed. Thus, the influence of the

outliers is reduced dramatically. However, the granularity of the histogram is another important issue

to consider. If T- is small, it cannot reflect the difference of traffic conditions during different time of

a day. While if T- is big, there will be not enough speed data within each time slot and the size of

the speed profile will soar up at the same time. We test the granularity of 1-day, 1-hour, 30-minutes,

15-minutes and 5-minutes in section 4.5.2. Based on the experiment results, we choose the 5-minutes

time slot, whose number is 288 for each edge in a day, to collect the speed.

One may think if we increase the granularity further to 1-minute, we might have a speed profile

with better accuracy (lower MAE). However, it is not realistic in our experiment. Firstly, the missing

value problem becomes more severe. Much more slot are void now, making the estimation process

harder and more time-consuming. Moreover, when we collect the data, we have to remove the outliers

of each slot. But we cannot tell one speed data is an outlier or not in a 1-minute speed profile. This

would pollute the histogram with abnormal data. In fact, if we have a larger amount of data, we could

generate a 1-minute speed profile. But in our case, the 5-minute one is the best we can achieve.

4.3 MISSING VALUE ESTIMATION 61

4.3 Missing Value Estimation

Even though the GPS-based trajectory data has a higher coverage of the road network than other

approaches, it is still hardly possible to cover every edge. So it also faces the sparsity problem. To

make the matter worse, the data becomes even sparer as the number of time slots grows. In our test,

although the 5-minutes granularity is not too small to produce too many void time slots, there are still

85% of them have no value. In this section, we propose two approaches to estimate the missing values

in the histogram data: Cosine Similarity and Spatial-Temporal Neighboring Average.

4.3.1 Cosine Similarity

This approach compares the similarity between an edge and its neighbors and uses the similar ones’

data to fill its missing values. Each road ei’s speed profile can be viewed as a speed vector SPi with

T- values: SPi =< SPi,0, SPi,1, ..., SPi,T-−1 >, where SPi,j is the speed of edge ei at time slot j. If

there is a missing value, we just use 0 to denote it. |SPi| denotes the number of time slots without

missing values. Thus, the similarity between the speed profiles of two edges ei, ej can be evaluated

by the cosine similarity:

Similarity(SPi, SPj) =
SPi·SPj

‖ SPi ‖‖ SPj ‖

=

T-−1∑
k=0

SPi,k × SPj,k√
T-−1∑
k=0

(SPi,k)2 ×

√
T-−1∑
k=0

(SPj,k)2

We use SPi ∩ SPj = {k|SPi,k 6= 0 ∧ SPj,k 6= 0} to denote the time slots that are not empty on

both edges. Furthermore, in order to eliminate the bias from the edges with sparse speed profile, we

calculate the similarity only when |SPi ∩ SPj| > 25%× T-. For each edge we compute its similarities

between its 3-hop neighboring edges and find the top-3 similar ones. Then, it uses the speed in these

three profiles to fill its missing speeds. For a specific time slot, if the most similar one is also empty,

then we check the second most similar one. If still empty, then check the third.

The computation works iteratively from the edges with higher |SPi| to lower ones. As the process

proceeds, the |SPi| changes at the same time. Eventually, the edges with |SPi| larger than 25% × T-

would get fully filled. For those sparse ones, we apply the Spatial-Temporal Neighboring Average

approach described in Section 4.3.2. This is because the similarity between a pair of sparse vector is

62 SPEED PROFILE GENERATION FROM TRAJECTORY

not accurate, and for most cases it is not even computable due to the value position’s mismatch.

4.3.2 Spatial-Temporal Neighboring Average

This is the simple approach that averages the speed of a road’s neighbor and its neighboring time

slots.

SPi,j = Avg(SPk,j, SPi,j−1, SPi,j+1),∀ek ∩ ei 6= φ

where SPi,j is edge ei’s speed at its jth time slot. If its neighbors are also empty at certain time slots,

we extend the search to the 3-hop neighbors and 3-hop time slots. The computation also computes

iteratively starting from the roads that have fewer missing values. This is because these roads always

link to roads that have a relatively complete speed profile. Then it propagates all the roads in the road

network eventually.

4.4 Speed Profile Compression

As mentioned previously, the smaller the time slot size, the less space-efficient the speed profile is,

especially when the neighboring slots have the same or similar speeds. To save the space for storing

the speed profiles on disk and in memory, we propose an adaptive speed profile. The term adaptive

means this speed profile is derived from the histogram-based profile and adapts the occasions where

the nearby time slots have similar speed values. In this subsection, we aim to reduce the speed

profile size from the perspective of each road. We test three different kinds of Piecewise Linear

Approximation [45, 46] algorithms to convert the 5-minutes histogram based speed profile to a set of

piecewise linear functions. The actual speed of each road at different time can be computed by the

corresponding function.

The histogram-based speed profile can be viewed as a type of Time Series Data [44], and building

the adaptive speed profile from the histogram-based speed profile falls into the category of Time Series

Segmentation and is defined as below:

Definition 4.1. (Speed Profile Segmentation). Given a speed time series SPi =< SPi,0, SPi,1, ...,

SPi,T-−1 >, construct a model ˆSPi =< SPi,0, ..., SPi,d̂ > of reduced dimensionality d̂, (d̂ � T- − 1)

such that R(ˆSPi, SPi) < ε, where R is a reconstruction function and ε is a given error threshold.

4.4 SPEED PROFILE COMPRESSION 63

The reconstruction function R calculates the difference of speed value between adaptive speed

profile and the original one. It serves as the evaluation method of compression quality. We choose

the residual error as the reconstruction function, which adds up the square of the differences. PLA

(Piecewise Linear Approximation) [45] is the compression approach which aims at transferring the

original SPi into a set of approximate lines while retaining the essential features. There are two ways

of approximation:

• Linear Interpolation: Use a line connecting the two ending points to approximate.

• Linear Regression: Use the linear regression algorithms to find the best fitting line.

Apparently, linear interpolation has a smooth look while linear regression produces a set of disjoint

segments. We choose linear interpolation approach because of the following reasons. Firstly, it is

obviously faster to implement and compute. Secondly, it is more space saving than linear regression.

Linear interpolation only needs to store the turning points while linear regression has to store all

the end points of the segments, which is twice larger. Moreover, since the speeds in profile are all

approximate, the more accurate algorithm in this step cannot promise a better approximation. There

Algorithm 3: Sliding Window Algorithm
Input: The speed profile of an edge SPi =< SPi,0, ..., SPi,T-−1 >, error threshold ε
Output: The adaptive speed profile of a road ˆSP sw

i =< SPi,0, ..., SPi,d̂ >
1 begin
2 ŜP

sw

i .insert(SPi,0)
3 for j from 0 to T-− 1 do
4 for k from j + 1 to T-− 1 do
5 if R(SPi,j,kŜP

sw

i,j,k) > ε then
6 ŜP

sw

i .insert(SPi,k)
7 j = k − 1
8 break

9 if SPi,T-−1 not in ŜP
sw

i then
10 ŜP

sw

i .insert(SPi,T-−1)

11 return ŜP
sw

r

are three basic categories of PLA: sliding window [45], top-down [47] and bottom-up [49]. They are

described in the following sections:

64 SPEED PROFILE GENERATION FROM TRAJECTORY

4.4.1 Sliding Window Algorithm

The sliding window algorithm is a fast online algorithm whose time complexity is O(n), where n is

the speed profile length of an edge. It keeps expanding the approximate line from the left starting

point to the right until the error surpasses a user specified threshold ε. Then it uses the end point of

the last generated segment as the next starting point and repeats until all the points are visited. Since

each point in the speed profile is visited only once, it has a linear complexity. The detail is shown in

Algorithm 3. SPi,j,k denotes the speed profile segment of edge ei from its jth speed point to kth speed

point.

4.4.2 Top-Down Algorithm

The top-down algorithm finds the best speed point that splits the original speed profile into segments

each time (i.e. where the two resulting segments have the smallest combined error). If the any of the

two resulting segment’s error is larger than threshold ε, the algorithm repeats recursively to find the

best splitting speed points in it. The algorithm terminates when all the speed profile segments’ errors

are smaller than ε.

Algorithm 4: Top Down Algorithm
Input: The speed profile of an edge SPi =< SPi,0, ..., SPi,T-−1 >, error threshold ε
Output: The adaptive speed profile of a road ˆSP td

i =< SPi,0, ..., SPi,d̂ >
1 begin
2 Function TDFindBreakPoint(int low, int high)
3 best so far = inf
4 for j from low + 1 to high− 1 do
5 BestTmp = R(SPi,low,j, ŜP

td

i,low,j) +R(SPi,j,high, ŜP
td

i,j,high)
6 if BestTmp < best so far then
7 best so far = BestTmp
8 k = j

9 ŜP
td

i .insert(SPi,k)

10 if R(SPi,low,k, ŜP
td

i,low,k) > ε then
11 TDFindBreakPoint(low, k)

12 if R(SPi,k,high, ŜP
td

i,k,high) > ε then
13 TDFindBreakPoint(k, high)

It breaks the search space into two pieces each time and calls for itself recursively at most twice.

At the same time, theR function calculates the difference between the result speed profile segment and

the original one, which takesO(n) times. So the overall time complexity of the top-down algorithm is

4.5 EXPERIMENT 65

Algorithm 5: Bottom-Up Algorithm
Input: The speed profile of an edge SPi =< SPi,0, ..., SPi,T-−1 >, error threshold ε
Output: The adaptive speed profile of a road ˆSP bu

i =< SPi,0, ..., SPi,d̂ >
1 begin
2 ŜP

bu

i =< SPi,0, ..., SPi,T-−1 >
3 do
4 minError = inf
5 for j from 1 to T-− 1 do
6 errorTmp = R(SPi,j−1,j+1, SP

bu
i,j−1,j+1)

7 if errorTmp < minError then
8 minError = errorTmp
9 bp = SPi,j

10 if minError < ε then
11 ŜP

bu

i .erase(bp)
12 while minError 6 ε

O(n log n).As the threshold ε grows, less recursion is needed, and the overall running time decreases.

4.4.3 Bottom-Up Algorithm

The bottom-up algorithm is reverse to the top-down algorithm. In the initial step, it connects the points

in the original speed profile, so errors are all 0. After that, it merges consecutive lines, by erasing the

intermediate point, with the smallest error iteratively until the smallest error exceeds the threshold ε.

In the worst case, we have to erase all the intermediate points, which runs
n(n− 1)

2
times. Therefore,

the time complexity of bottom-up algorithm is O(n2). The detail is shown in Algorithm 5.

4.5 Experiment

In this section, we first describe the experiment setup in terms of datasets, online query setup and

speed profile evaluation metrics. After that, we present the result of a comprehensive performance

study to demonstrate the effectiveness and efficiency of our MORT algorithms. Finally, we show the

experiment results of the offline speed profile generation.

66 SPEED PROFILE GENERATION FROM TRAJECTORY

TABLE 4.1: Trajectory Data Sets

City Num 4.1 4.2 4.3 4.4 4.5

Beijing
Traj 532868 143998 541650 310976 642390

GPS 17698668 5164315 17069156 11402483 23614206

Shanghai
Traj 389733 103411 378968 180670 349265

GPS 10747519 2949734 10039956 5519847 10946567

4.5.1 Experiment Setup

Datasets

We first describe the map datasets we use for the whole system. Then we present the trajectory data

we use for the speed profile generation.

We get two maps of Beijing and Shanghai from Navinfo1. The Beijing map consists of 302,364

intersections and 387,588 roads, which covers a 184km×185km spatial range and has a total length

of 51,666km of roads. The road network of Shanghai has 243,842 intersections and 310,058 roads.

It covers a 120km×143km spatial range. The total length of road segments is 42,930km. As for the

parking vertices, we attach them on maps randomly to test its influence on the algorithms.

We obtain our trajectory data from DiDi2. It has the trajectory data of five consecutive days

from 2015.4.1 to 2015.4.5, collected from taxis in Beijing and Shanghai, respectively. The total data

set has 2,171,882 trajectories and 74,948,829 GPS points in Beijing, and 1,402,047 trajectories and

40,203,623 GPS points in Shanghai. The details of each day’s basic information is shown in Table

4.1. The trajectory’s length distribution of each city on each day is present in Figure 4.1 (a)-(b). It

shows that the number of trajectory decreases as the length grows, so most of our trajectories are not

too long. As for the last value point that soars up, that is because it is the accumulation of the all

the trajectories that have length no shorter than 10km. The starting time distribution along 24 hours

is shown in Figure 4.1 (c)-(d). Except for 2015.4.2, which lacks some data, most trajectories are

collected during daytime and few trajectory appears after midnight. This distribution corresponds to

the people daily behavior, and we build our test speed profile on daily basis.

1http://www.navinfo.com/
2http://www.xiaojukeji.com/news/newslisten

4.5 EXPERIMENT 67

FIGURE 4.1: Trajectory Starting Time and Length Distribution

Speed Profile Evaluation Metrics

We use 80% of the trajectories that are selected randomly to build the speed profiles and test them

on the remaining 20% trajectories. In the evaluation, we re-travel the testing trajectories using the

speed from the generated speed profile since these trajectories are the only ground truth we have. For

any trajectory Tri, we first match it on map and convert it into a sequence of consecutive edges like

< Tri.e0, T ri.e1, ..., T ri.ek >, which starts on time t0 and stops on tk+1, its average speed along this

trajectory is

Tri.speed =
Σk
j=0Len(Tri.ej)

tk+1 − t0
(4.1)

Then we re-travel this trajectory by following exactly the same roads in the same order from t0 using

the testing speed profile, and it will finish traveling Trj.ek on t′k+1. The new average speed is

Tri.speed
′ =

Σk
j=0Len(Tri.ei)

t′k+1 − t0
(4.2)

68 SPEED PROFILE GENERATION FROM TRAJECTORY

Then we can calculate the mean absolute error (MAE) of each speed profile as

MAE =

∑N
i=0 |Tri.speed− Tri.speed′|

|Tr|
(4.3)

where |Tr| is the number of testing trajectories. The smaller the MAE, the better the speed profile.

During the test, we omit those trajectories that are short since they are more easily affected by the

abnormal driving behavior while the longer ones suffer less from it.

Experiment Environment

We ran all the experiments on a Dell R720 PowerEdge Rack Mount Server which has two Xeon E5-

2690 2.90GHz CPUs, 192GB memory, 1TB hard disk, and runs Ubuntu Server 14.04 LTS operating

system.

4.5.2 Speed Profile Generation Evaluation

Granularity

We compare the MAE of speed profiles under granularities of 1-day(Universal), 1-hour, -30-minutes,

15-minutes and 5-minutes on five days in Beijing and Shanghai, respectively. The results are shown

in Figure 4.2 (a)-(b). We can observe clearly that the 5-minutes speed profile outperforms the others.

The MAE increases as the time slot size grows. The universal granularity, which is actually a static

graph, has the largest MAE obviously. So for the rest of the tests we only present the results of the

5-minutes speed profile.

Missing Value Estimation

We compare three missing value estimation approaches in this test: Cosine Similarity, Matrix-Factorization

based Collaborative-Filtering (MF-CF)[41] and Spatial-Temporal Neighboring. The MAE of these

three missing value estimation approaches are shown in Figure 4.2 (c)-(d). It is clear that the MF-CF

approach is much worse than the other two. In the Beijing road network, the spatial-temporal ap-

proach has a better performance, while in the Shanghai road network, the cosine similarity approach

is better. The best missing value estimation method of each day has a MAE around 1. It means that

in a travel of an hour, our speed profile has a travel distance difference about 3 km, which is quite

acceptable because different drivers have different driving behavior.

4.5 EXPERIMENT 69

FIGURE 4.2: MAE of Speed Profiles under Different Granularity and using different Missing Value Estima-
tion

TABLE 4.2: Size of Speed Profiles under Different Granularity

1 Day 1 Hour 30 Min 15 Min 5 Min

Beijing 4.9MB 68MB 135MB 369MB 861MB

Shanghai 4.1MB 56MB 112MB 223MB 718MB

Speed Profile Compression

We compare three compression algorithms on Beijing Map 2015.4.1 in this test: Sliding Window (SW),

Top-Down (TD) and Bottom-Up (BU). The compression result is shown in Figure 4.3. We compare

the error MAE, compression time and the storage size of each algorithm under error threshold ε of

0.1, 0.5, 1, 2 and 5. As shown in Figure 4.3 (a), the MAE of the three algorithms are nearly the

same, while the Bottom-up is always slightly better than the other two, and it is almost as good as

the original one. As expected, the accuracy becomes worse as the compression error threshold ε

grows. When it comes to the construction time and space consumption shown in Figure 4.3 (b)-(c),

the sliding window algorithm is the fastest to compute and its compression rate is not bad. The top-

down algorithm is slow and has the worst takes the largest space. The bottom-up algorithm takes

the longest time to compute but its compression is the best. In fact, it only takes 18% of original

70 SPEED PROFILE GENERATION FROM TRAJECTORY

FIGURE 4.3: Compression Performance on Beijing Map 2015.4.1

space. So if the compression time is not a problem, we can use the bottom-up algorithm to compress.

Otherwise, the sliding window algorithm is a better choice.

4.6 Summary

In this chapter, we describe how we obtain our speed profile from historical trajectories. It involves

map matching, speed data collection, missing value estimation and compression. Each step has sev-

eral approaches and we test their performance. In conclusion, we use 5 minutes time slot to collect

the speed data, use spatial-temporal neighboring average and cosine similarity to estimate the missing

values, and use bottom-up PLA algorithm to compress the histogram into linear piecewise functions.

The output of this chapter serves as the time-dependent function for the next two chapters.

Chapter 5

Minimal On-Road Traveling Time Route

Scheduling

5.1 Introduction

With the prevalence of GPS enabled devices and wireless networks, navigation systems have been

widely adopted by public transportation, logistics, private vehicles and a broad range of location-

based services. Essentially, it is the path planning algorithm that plays the vital role in those navi-

gation systems, which helps people travel more smartly and more predictively. In the past decades,

different path planning algorithms are proposed for various application scenarios and requirements.

For example, shortest path algorithms [20, 80, 141] find a path with the minimal distance between

origin and destination, while fastest path algorithms return a path with the least total travel time given

a static traffic condition [92]. If a user is allowed to depart from any time during a certain period, an-

other set of fastest path algorithms can be used [96, 21, 95, 86, 101, 142] to find the optimal departure

time with the least total travel time. Moreover, path planning algorithms for earliest arrival and latest

departure [82, 90] are also important in transportation.

The common optimization goal of the above path planning algorithms is the total travel time,

which is the difference between departure time and arrival time, and is made up of on-road time and

waiting time. In a time-dependent road network where the cost associated with road segment can

change over time, the existing path planning problem makes use of an important observation known

as the FIFO property, which means a vehicle enters a road segment first will also reach the end of

road segment first in spite of the time-dependent nature [92]. So for an FIFO road network, there is

71

72 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

no need to consider waiting during travel since waiting can only increase the total time. However,

for many users such as logistics companies with heavy trucks, the actual on-road time (i.e., the time

when the engine is running) becomes critical as it directly relates to fuel consumption which can be

as high as 80% of their operational cost. As long as the goods can be delivered on time, reducing the

actual on-road time can be more economic than arriving the destination earlier. On the other hand,

tourists would also like to reduce their time spent on road so that they can spend more time on the

tourist attractions. On a bigger view, the more cars that reduce their on-road time, the better traffic

condition there would be, which would lead to less exhausted emission and a better environment.

This motivates us to study a new kind of path planning algorithm that optimizes the on-road time

by waiting strategically in certain places along the route in order to avoid predictable traffic jam.

To better understand how waiting can shorten the on-road time when traveling, consider the road

network with five vertices shown in Figure 5.1. Three of them are ordinary vertices, and two of them

are parking vertices that allow waiting. The traveling cost functions are shown in Figure 5.1(b)-(f).

Suppose the starting time from v1 is 0 and the latest arrival time at v5 is 130. The fastest path takes

105 time units (v1 → v2 : 40; v2 → v3 : 70; v3 → v5 : 105), and its on-road travel time is also 105.

However, if we still start from v1 at 0 and arrive v2 at 40, but travel from v2 to v4 and arrive v4 at 95,

the current on-road time is 95. Then we wait on v4 and depart on 120, the cost from v4 to v5 reduces

to 5. So the on-road travel time of this path is 100. So by taking advantages of these parking vertices,

we can obtain a route that has shorter on-road travel time. More application scenarios are explained

in Section 5.4.4 after the algorithm is fully described.

In this work, we model a road network as a time-dependent graph, whereas each edge is associated

with a function that returns the time cost of traveling the edge for a given departure time from the

starting vertex. There are two types of vertices in this graph: ordinary vertices that do not allow

waiting, and parking vertices that do. This model considers the phenomenon that some vehicles

may choose to stop at some places to avoid traffic jams. The proposed query, minimal on-road time

path query (MORT), aims to find a path that consists of not only a consecutive of edges in the road

network, but also a waiting plan that determines the amount of time to stop at a parking vertex in order

to minimize on-road time. So it is actually a route scheduling algorithm rather than a path planning

problem. This is different to the previous problems that aim at minimizing the total travel time which

includes both the on-road time and waiting time. Clearly, a MORT query is more complicated than

traditional path planning queries that minimize the total travel time. First of all, it needs to decide

5.1 INTRODUCTION 73

FIGURE 5.1: A Road Network with Parking Vertices

(a) The example graph.

(b) - (f) The corresponding time-dependent weight for each edge over time domain (0 - 150)

whether waiting at certain parking vertices, or even taking a detour to a parking vertex, can save on-

road time at all. Secondly, if waiting on this parking vertex has benefit, it needs to further determine

the waiting time on it. Finally, because waiting on any vertex is allowed, the graph that MORT query

runs on does not need to follow FIFO property, which is the basis of all the existing algorithms.

In fact, the existing path planning algorithms cannot solve this problem even under FIFO setup.

First of all, the shortest path algorithms [20, 80, 141, 143] only works with static edge weights. Thus,

it cannot handle the time-dependent costs. Secondly, the single starting-time fastest path (SSFP)

algorithm [92] does not allow waiting at any vertex. Even though it has the ability to cope with

time-dependent costs, it cannot solve our problem. Finally, the interval starting-time fastest path

(ISFP) algorithms [96, 21] allow waiting on the starting vertex, but they do not allow waiting on the

intermediate vertices since it would simply result in a longer total travel time. One naive approach to

find an approximate MORT path based on ISFP algorithms is to select the optimal waiting time on

each parking vertex along the path in a greedy fashion. Firstly, it runs ISFP algorithm on the starting

vertex to get the optimal departure time t∗s on starting vertex vs. Then, it runs ISFP algorithm on the

first parking vertex vp1 along the path with its arrival time from vs at time t∗s as the starting time, and

74 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

FIGURE 5.2: Comparison between MORT Path and Other Paths

MORT Path (Red Dotted), Fastest Path (Blue Dashed) and Recursive Fastest Path (Pink Solid).

gets the optimal departure time t∗p1 from vp1. After that, it runs the ISFP on the first parking vertex

along the new path from vp1 again to get its optimal departure time. The procedure runs iteratively

until the destination vertex is reached. However, this approach has two problems: Obviously, it runs

ISFP multiple times, so its computation time is long. A more serious problem is that this approach has

no guarantee to find the optimal solution at all as it is a greedy method with no backtracking (the first

parking site on a route is just an accidental stop point from a path that has not considered parking as an

optimization option). Figure. 5.2 shows a real life example of the comparison of our algorithm, ISFP

[21] and the iterative approach. The example illustrates paths from location A(31.2414, 121.304) to

B(31.2559, 121.386) in Shanghai, whose shortest distance is 10km. The starting time interval is set

from 10:00 to 16:00 and the latest arrival time is 19:00. ISFP finds a path with a on-road travel time

of 1385s, iterative approach finds a path of 1130s, while our algorithm finds a path of 986s.

In this work, we propose two algorithms to find the minimal on-road travel route. Both of them

construct and maintain a set of Minimum Cost Functions to record the minimal on-road time from the

starting vertex to the other vertices at different arrival time. The first algorithm builds the minimum

cost functions over the whole query time interval iteratively in a Dijkstra way, while the second

algorithm constructs it sub-time-interval by sub-time-interval instead. We observe a non-increasing

property for the parking vertices, which integrates the waiting time benefit into the minimum cost

5.1 INTRODUCTION 75

function. Both of them support user specifying different minimum staying times when waiting on

parking vertices. We also provide a route retrieval solution to return routing schedule satisfying user’s

requirement on the arrival time. It is worth noting that our MORT algorithm is more general than

the existing time-dependent path algorithms. First of all, if we treat the parking vertices as normal

vertices, our algorithm can solve the ISFP problem. Moreover, if we further prohibit waiting on

starting vertex, our algorithm can solve the SSFP problem. In fact, both ISFP and SSFP are the

special cases of MORT.

In summary, our contributions are listed as follows:

• We identify a general form of time-dependent route scheduling problem, called MORT, to make

use of parking facilities in a road network to minimize the on-road travel time, instead of the

total travel time.

• We propose a minimum cost function and two novel algorithms to solve the MORT route

scheduling problem efficiently. Our algorithms can handle real-life road network with dy-

namic and complex speed profiles. Both of them are able to address other existing types of

time-dependent path planning problems if no parking vertices are considered.

• The Basic MORT Algorithm performs the MORT search for a vertex after each iteration, until

the destination is reached. We show that its time complexity is O(T |V | log |V | + T 2|E|). The

Incremental MORT Algorithm runs MORT search for each vertex starting from a small subin-

terval to fill the full time interval incrementally, and its time complexity is O(L(|V | log |V |

+|E|)). Both algorithms require O(T (|V | + |E|)) space. T is the average number of turning

points in minimum cost functions, and L > T is the average number of subintervals created

during computation.

• We evaluate the effectiveness and efficiency of our MORT algorithms with extensive experi-

ments in road network and small world graphs, measuring both the reduction of the minimal

on-road time and the algorithm running time.

The rest of the chapter is organized as follows. Section 5.2 discusses the related work. We for-

mally define the minimal on-road time problem in Section 5.3. Section 5.4 presents the two MORT

algorithms with correctness and complexity analysis. We present our approximation method in Sec-

tion 5.5. An empirical study is shown in Section 5.6. Our summary can be found in Section 5.7.

76 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

5.2 Related Work

In this section, we review the previous works on modeling time-dependent road network and position

our work by discussing the difference from the fastest path problems.

The simplest model of the time-dependent road network is the discrete time-dependent graph (or

“timetable” graph), of which the existence of each edge is time-dependent. A few path planning

algorithms such as earliest arrival time path, latest departure time path, shortest path and shortest

duration time path have been proposed on such graphs. [50] proved that these queries could be solved

with a modified version of the Dijkstra algorithm. However, it does not scale well with the size of the

network. Several techniques are proposed to improve the efficiency [89, 82, 90], but they only work

on timetable graphs.

A more precise way to describe a time-dependent road network is to use the continuous time-

dependent cost function. Fastest path query has been well studied that aims to find a path with the

minimum wTOT including waiting time. Dreyfus [92] first showed the time-dependent fastest path

problem was solvable in polynomial time if the graph is restricted to have FIFO property. Other early

theoretical works on this problem include [93] and [94]. However, these algorithms are very difficult

to implement, and no empirical evaluation results were reported. Most of the recent path planning

algorithms in road network share a common assumption that the travel along a road follows FIFO

property, which means a vehicle starting earlier will not arrive destination later regardless of the time

cost of edges. Due to this property, waiting on a vertex always results in a longer total travel time. So

these algorithms do not consider waiting on vertices actually. We briefly discuss some representative

fastest path algorithms below.

Single Starting-Time Fastest Path (SSFP) algorithm does not allow waiting on the starting vertex.

This problem can be solved in O(|V | log |V | + |E|) time by minor modification on Dijkstra’s Algo-

rithm if FIFO property holds [92]. The algorithm can answer both Earliest Arrival Path and Latest

Departure Path, with the same computational complexity.

Interval Starting-Time Fastest Path (ISFP) algorithm allows waiting on the starting vertex in a

given starting time interval. But once departing, no waiting is allowed along the path. The difference

between ISFP and MORT is illustrated in Figure 5.3. Moreover, ISFP only returns the optimal depar-

ture time from starting vertex vs, while MORT needs to determine the optimal departure time from

each parking vertex along the path. It is proved in [144] that the theoretical lower-bound of ISFP is

5.2 RELATED WORK 77

… … …

…

Total Travel Time () = () ()

On-Road Travel Time () = (, , ())

Time

FIGURE 5.3: Comparison between total travel time and on-road travel time.

Thick bar: Waiting time on a parking vertex; Circle: No waiting on the vertex; Arrow: Travel time

from one vertex to another

Ω(T (|V | log |V | + |E|)) [144], where T is the average number turning points in the result functions

if the weight functions are piecewise linear. Currently no existing algorithm can achieve this bound

because T could be large and it is hard to find the departure time points that would result in the T

turning points. Some early works like DOI [95] and [145, 142] select k � T starting time points in

the starting time interval and run SSFP k times. Obviously, this approach has no guarantee to find

the optimal departure time, and both the running time and accuracy highly depend on the choice of

k. [96] proposed a path selection and time refinement approach using the heuristic of A*-algorithm.

They computed an arrival time function for each vertex iteratively and used A*-algorithm to reduce

the searching space. However, it is hard to find an appropriate heuristic condition on a time-dependent

graph. [21] applied a more precise refinement approach that expanded the time interval step by step

rather than computing the entire time interval iteratively. It could avoid unnecessary computations

and achieve better performance, although time complexity remained the same. It has a complexity of

O(α(T̂)(|V | log |V |+|E|)), where T̂ is the size of the whole time domain, and α(T̂) is the complexity

to maintain the time-dependent functions. Although it is not pointed out in their paper, α(T̂) actually

has a much larger value than the turning point number in the final functions. Other works further

build different kinds of indexes to speed up fastest path query, such as time-dependent CH [105] and

time-dependent SHARC [107].

Although ISFP is different from MORT, we can adopt it as our baseline algorithm by invoking the

algorithms in [96, 21] recursively to get an approximate result. [25, 146] take waiting on intermediate

vertices into consideration in their problems. But they allow waiting on any vertex, which does not

78 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

make sense in real life. In fact, [25] cannot solve our problem directly and has a time complexity of

O(|V | log |V | + T |V | + T 2|E|), which means it cannot guarantee the optimal result actually since

each vertex is visited once. As for [146], they define a time-dependent weight function w(vi, vj, t)

and a cost function c(vi, vj, t) for each edge (vi, vj), and aim to find the path with minimum cost, not

the minimum weight. But they set the cost functions to linear constants. So rather than confronting

with the complex linear piecewise weight functions, they only have to deal with a small set of constant

values, which actually simplifies the problem by converting the complex functions to constant values,

even though the problem description looks more complicated. Thus, their algorithm cannot find the

minimum on-road time (or the minimum weight under their scenario).

From the network point of view, the road network with parking vertices can be treated as a kind

of graph with special nodes. Electric vehicle shortest walk problem[147, 148] adopted this model but

on static road network. In this problem setting, an electric vehicle has a driving distance limit, and

it has to recharge its battery at a power station before it is running out. Given a source vertex and a

destination vertex, the problem aims to find the shortest path that the vehicle is able to travel through

it. Both [148] and [147] build a sub-network of power station first to solve this problem. It is possible

to do this since the network is static and the driving limit is predefined. Essentially it is a special case

of Constraint Shortest Path Problem[149]. If the problem is generalized to be independent on driving

distance, the problem becomes NP-H. [150, 151] use Lagrange Relaxation to find approximate result.

Although network model is similar to ours, they do not consider time-dependent cost on edges, which

makes impossible to pre-built a sub-network just as what they do on static graph.

5.3 Problem Definition

A time-dependent road network can be represented as a directed graph G(V,E), where V is a set of

vertices and E ⊆ V × V is a set of ordered pairs of vertices, with a weight function w : (E, t) → R

mapping edges to time-dependent real-valued weights. The weight of an edge e(u, v) ∈ E at time t in

a time domain T is w(u, v, t), which represents the amount of time required to reach v starting from u

at time t. In this paper, we only consider the case where the weight of an edge can change over time,

but not the case where the structure of a graph can change over time (i.e., V and/or E remain to be

static over time). This is a reasonable assumption, as the structure of a road network changes much

less frequently compared with the traffic situations. We also define w(u, v, t) =∞ if there is no edge

5.3 PROBLEM DEFINITION 79

from u to v.

A path from u to v in G can be represented as p =< v0, v1, . . . , vk >, where v0 = u, vk = v,

and (vi−1, vi) ∈ E for any 1 ≤ i ≤ k. Let α(vi) and β(vi) be the arrival and departure time at

vi ∈ p, the time-dependent cost of p is the sum of the time-dependent weights of its edges w(p) =∑k
i=1w(vi−1, vi, β(vi−1)). This cost is∞ by definition if there is no path from u to v in G.

Now let us differentiate two different types of cost for a path: the total travel time wTOT (p) =

α(vk)− β(v0) and the on-road travel time wORT (p) =
∑k

i=1w(vi−1, vi, β(vi−1)). Although wORT (p)

looks identical to w(p) above, the difference here is that for a vertex vi ∈ p, it is no longer necessary

to have α(vi) = β(vi). In other words, the traveler can stop at a vertex if that can help to reduce the

on-road travel time. It is trivial to see that α(vi) = β(vi−1) +w(vi−1, vi, β(vi−1)) for i > 0, and β(v0)

is the selected depart time by a path planning algorithm.

The problem to find shortest/fastest path from u to v is to find such a path p(u, v) with minimum

cost w(p). Most existing works on this topic have an implicit assumption that for any vertex v ∈ p,

α(v) = β(v) (e.g., a traveler cannot stop at any vertices along the path). These algorithms focus on

wTOT cost. In that case, a traveler departs earlier will always get to the destination earlier (known

as the FIFO property [92]). With this setting, travelers always keep β(v) = α(v) for any vertex

v on a path to achieve optimal wTOT . Some recent works have noticed that, in order to optimize

wORT instead of wTOT , it can be beneficial to delay the departure time at the starting vertex [96, 21].

However, there are more vertices than just the source vertex in a road network where a vehicle can stop

for a period of time. Let V ′ ⊆ V be a set of parking vertices inG where a vehicle can wait voluntarily

for a minimum amount of time tmin before traveling again. In other words, β(v) − α(v) ≥ v.tmin if

v ∈ V ′, and β(v) = α(v) if v ∈ V −V ′. This should not be confused with the case that a vehicle stops

in a traffic jam or in front of a traffic light; these forced stops are captured by the weight function of

w(u, v, t) already.

We are ready to define the problem we address in this paper as follows.

Definition 5.1. (Minimal On-Road Time Route Scheduling Problem). Given a directed graph G =

(V,E) with a set of parking vertices V ′ ⊆ V , each of which has a minimum staying time vi.tmin and

a time-dependent edge weight function w, a query QMORT (vs, vd, ts1, ts2, td) is to find a path from vs

to vd, represented as p =< v0, v1, . . . vk >, such that: (1) vs = v0 and vd = vk; (2) β(vi) = α(vi)

if vi ∈ V − V ′ and β(vi) − α(vi) ≥ vi.tmin if vi ∈ V ′; (3) ts1 ≤ β(vs) ≤ ts2; (4) α(vd) ≤ td; and

(5) w(p) =
∑k

i=1w(vi−1, vi, β(vi−1)) is minimal among all possible paths meeting the conditions (1),

80 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

(2), (3) and (4).

Condition (1) means that p is a path from vs to vd and condition (2) allows the traveler to stop

and wait only at a parking node for a minimum period of time. Conditions (3) and (4) define that the

traveler must depart vs during the specified time interval and must arrive at vd before the given latest

arrival time td. If there does not exist a path meeting these four conditions, the cost to travel from vs

to vd is defined as∞. Condition 5 requires the path to have the minimal on-road travel time.

If the edge weight is not time-dependent (i.e., the weight for each edge is static), a MORT query

reduces to traditional shortest path queries in a static road network [20]. Besides, the time-dependent

query studied in [96, 21] is a special case of the MORT query where parking node set V ′ = {vs}.

5.4 Algorithm

In this section, we describe our MORT algorithms in detail. The key idea is that we define and main-

tain a variational piecewise Minimum Cost Function Ci(t) for each vertex vi. Ci(t) returns different

minimal on-road travel time from vs to vi given different arrival time t, so it has the potential to model

traffic tendency more accurately. Based on the new cost function, we design two algorithms to expand

the MORT path step by step in a Dijkstra way: (1) the Basic MORT Algorithm constructs Cd(t) by

updating Ci(t) of each visited vertex over the whole time interval, and finishes expanding until Cd(t)

is stable; (2) the Incremental MORT Algorithm decomposes Cd(t) into different parts according to

the query time sub-intervals, and finishes expanding until each part of Cd(t) is complete. Both of

these algorithms do not require the graph to follow FIFO property. Although our path expanding

algorithms are able to find the MORT time, its result is not a route schedule, which is the expected

output of MORT problem. To address that, path retrieval is introduced to generate the final results.

Considering scalability is important for route scheduling, we present the correctness and complexity

analysis of the proposed method at the end of each subsection.

5.4.1 Algorithm Outline

Given a time-dependent graph G(V,E) and a MORT query QMORT (vs, vd, ts1, ts2, td), the proposed

algorithm generates the minimal on-road timeRp∗s,d
and the corresponding route with traveling sched-

ule p∗s,d. The whole process can be divided into three parts as below:

5.4 ALGORITHM 81

1. Active Time Interval Profiling (ATI) computes the active time interval Ti for each vertex vi,

which is bounded by a pair of earliest arrival time vi.tEA and latest departure time vi.tLD.

2. Path Expansion finds the path with minimum on-road travel time in a Dijkstra way and pro-

duces the Minimum Cost Functions of the visited vertices.

3. Route Retrieval returns the actual route schedule with user specified arrival time.

In the following subsections, we will introduce each part of the proposed algorithm thoroughly

except for the path expansion part. The full details of the path expansion which are the major contri-

butions in this work will be presented in Section 4.2 and 4.3, respectively. We further explain how to

apply our algorithms to different scenarios in Section 5.4.4.

Active Time Interval Computation (ATI)

The MORT query specifies a departure interval [ts1, ts2] on vs and a latest arrival time td on vd. With

these constraints, the route schedule is roughly outlined but loose for other vertices. If the graph does

not follow FIFO, we have to use this loose time interval. Otherwise, we could reduce the computation

load by computing an active time interval (ATI) for each vertex in the proposed algorithms. An ATI

of a vertex vi is denoted as Ti = [vi.tEA, vi.tLD], which is bounded by a earliest arrival time vi.tEA

(we cannot arrive vi any earlier) and a latest departure time vi.tLD (we will never arrive vd before td if

it departs from vi any later). It models a vehicle’s possible occurrence interval on the corresponding

vertex under the query constraints (ts and td). ATI is very important for the proposed algorithm since

it is the basis of the other parts. In the following, we will introduce how the ATI is computed for each

vertex.

ATI, as well as all the following calculations, are computed from speed profile. In a speed profile,

each edge (vi, vj) is associated with a function w(vi, vj, t) whose parameter is t and output is time

cost. Compared to [146], function w(vi, vj, t) is a combination of consecutive linear functions rather

than constant values. It obeys the FIFO and serves in the path expansion. Notice that when t is given,

we use w(vi, vj, t) to represent the time cost of travelling from vi to vj at time t. The speed profile is

then instantiated as {(t0, w(vi, vj, t0)), . . . , (tk, w(vi, vj, tk))}, and the intermediate values between

points are computed linearly. Figure 5.1(b)-(f) illustrate an example of speed profile.

Given the proposed speed profile, the earliest arrival time of each vertex is computed by perform-

ing SSFP from vs at ts1. As for the latest departure time, we have to compute from vd at td reversely,

82 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

TABLE 5.1: MORT Important Notations

Notation Description

Ti Active Time Interval of vi

Ii [vi.tEA, τi] ⊆ Ti

τi upper bound of Ii

Ci(t) minimum cost function of vi

gf,i(t) Cf (t) + w(vf , vi, t)

g′f,i(t) non-increasing version of gf,i(t)

C ′i(t) min(Ci(t)), gf,i(t)

both in time and in vertex order, respectively. After two rounds of SSFP, each vertex obtains its active

time interval, and all the future computations will be based on the active time intervals. The ATI has

the same time complexity as Dijkstra, which is O(|V | log |V |+ |E|).

We query the road network in Figure 5.1 withQMORT (v1, v5, 0, 30, 130) as an example. ATI(v1,

v5, 0, 30, 130) generates the following active time intervals: T1 = [0, 25], T2 = [40, 65], T3 =

[70, 95], T4 = [95, 125] and T5 = [105, 130].

Minimum Cost Function

In order to model the correlations between time and cost, we construct a minimum cost function

whose value varies with arrival time for each vertex, instead of defining the minimum cost which is

constant over time in [146]. Accordingly, the output of path expansion in our work is the minimal of

vd’s minimum cost function. Since the minimum cost function is the basis of the two proposed path

expansion algorithms, we present the definition and construction of the minimum cost function in this

part.

The minimum cost function, denoted as Ci(t), monitors the minimum on-road cost of traveling

from vs to vi that arrives on time t. The minimum value of Ci(t) is equivalent to the minimum on-road

time (MORT) from vs to vi . For example, Ci(300) = 50 means when it starts traveling from vs at

ts and arrives on vi at time 300, the minimum on-road travel time (MORT) is 50. Accordingly, for

the destination vertex vd, the MORT is min(Cd(t)). In addition, for a parking vertex vpi , the value of

dependent variable of Cp
i (t) has a non-increasing property:

Lemma 5.1. ∀vi ∈ V ′ and ∀vi.tEA ≤ ta < tb ≤ vi.tLD, C
p
i (ta) ≥ Cp

i (tb)

5.4 ALGORITHM 83

Proof. Suppose route schedule pa arrives parking vertex vi at ta with cost Ci(ta), and another route

schedule pb arrives vi at tb with cost Cp
i (tb), ta < tb. If Cp

i (ta) ≥ Cp
i (tb), then the lemma holds.

If Cp
i (ta) < Cp

i (tb), the vehicle can wait on vi from ta to tb until Cp
i (tb) = Cp

i (ta). Thus, the non-

increasing property still holds.

The non-increasing property reveals a natural fact: If one route schedule arriving at tb takes higher

cost than another arriving at ta, we should choose the latter one and wait from ta to tb, which reduces

the on-road time from Cp
i (tb) to Cp

i (ta). The non-increasing property indicates that waiting is neces-

sary to decrease the on-road travel time.

Ci(t) is linear piecewise because it is constructed from the speed profile which is also linear

piecewise. Thus, a minimum cost function Ci(t) equals a set of consecutive discrete linear functions.

These functions share the end points and are maintained in the ascending order of time. Based on that,

the cost function of a vertex is denoted as an ordered point set Si = {(t0, Ci(t0)), ..., (tk, Ci(tk))}.

The update of Si is achieved by merge. For instance, suppose C ′i(t) is the current minimum cost

function of vi, and C ′′i (t) is another minimum cost function provided by another path to vi, the new

Ci(t) is formed by merging the smaller parts of these two functions: min(C ′i(t), C
′′
i (t)).

Route Retrieval

The route retrieval generates the route schedule based on the user specified arrival time using the

minimum cost functions. For each turning point in the ordinary vertices’ minimum cost functions,

we store its predecessors. For the parking vertices, apart from the predecessors for the turning points,

we also need to store the points that happen to have the same value as the current cost (no turning

point added because it is not smaller). This predecessor cache has the same space complexity as the

minimum cost functions.

If t is a user-specified arrival time, we can traverse the vertices back from vd at time t. In this

backward traversal, suppose we are visiting vi at ti. Firstly, if vi is an ordinary vertex, we find the

latest turning point (t′i, Ci(t
′
i)) in Ci(t) such that t′i ≤ ti, and use its predecessor as the next visiting

vertex. The arrival time is the same as ti. Secondly, if vi is a parking vertex, we also find the latest

turning point (t′i, Ci(t
′
i)) in Ci(t) with t′i ≤ ti. However, the arrival time is t′i rather than ti. If the

turning point has more than one predecessor, or the parking vertex has more than one points with the

same cost, we can traverse the graph in a DFS way to output more than one routes for users to choose.

Obviously, this approach takes O(k) time, where k is the number of vertices along the route.

84 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

FIGURE 5.4: Minimum Cost Function Update

(a) gf,i(t) and Ci(t) for ordinary vertex vi. (b) Result of min(gf,i(t), Ci(t)) for ordinary vertex vi. (c)

gf,i(t) and Ci(t) for parking vertex vi, Ci(t) is non-increasing. (d) gf,i(t) applies non-increasing. (e)

Result of min(gf,i(t), Ci(t)) for parking vertex vi

5.4.2 Basic MORT Algorithm

The Path Expansion in Basic MORT algorithm uses a Dijkstra way to find the MORT from vs to other

vertices. Instead of using the shortest distance as the sorting key, we use the minimum value of each

vertex’s min(Ci(t)). Each time we visit a vertex, we update its neighbors’ Ci(t) over their ATI, until

Cd(t) is guaranteed stable. We first describe how to update the minimum cost function in Minimum

Cost Function Updat , then present path expansion in Basic Path Expansion Algorithm. Correctness

and complexity are proved after them.

Minimum Cost Function Update (MCFU)

Each time we visit a vertex, we update its out-neighbor’s Ci(t). From vi’s point of view , its Ci(t)

can only be updated by its in-neighbors. Suppose vf is vi’s in-neighbor, Cf (t) is vf ’s minimum

cost function and w(vf , vi, t) is the weight function on edge (vf , vi). We use gf,i(t′) = Cf (t) +

w(vf , vi, t), t
′ = t + w(vf , vi, t) to denote the cost to travel from vs to vi via vf . Depending on

whether vi is a parking vertex or not, we update Ci(t) differently.

5.4 ALGORITHM 85

The update of ordinary Ci(t) has two steps as shown in Figure 5.4(a)-(b). We first calculate

gf,i(t)(dot line). Then we compare gf,i(t) with original Ci(t) (dash line) and use the smaller parts

of the two functions as the new minimum cost function C ′i(t) (solid line). We use the line segment

intersection detection technique to compute C ′i(t) = min(Ci(t), gf,i(t)).

However, if vi is a parking vertex, we cannot use gf,i(t) directly since the result ofmin(Ci(t), gf,i(t))

may not follow non-increasing property. So we convert gf,i(t) to its non-increasing version g′f,i(t) first

before computing C ′i(t). Figure 5.4(c) shows the non-increasing Ci(t) and an ordinary gf,i(t). We

convert gf,i(t) into its non-increasing version g′f,i(t) in Figure 5.4(d), and then computeC ′i(t) in Figure

5.4(e). The correctness is guaranteed by the following lemma.

Lemma 5.2. If both Ci(t) and g′f,i(t) are non-increasing, then C ′i(t) = min(Ci(t), g
′
f,i(t)) is also

non-increasing.

Proof. ∀ta < tb ⇒ Ci(ta) ≥ Ci(tb), gf,i(ta) ≥ gf,i(tb). (1) If min(Ci(ta), gf,i(ta)) = Ci(ta) and

min(Ci(tb), gf,i(tb) = Ci(tb), Ci(ta) ≥ Ci(tb), non-increasing holds. (2) If min(Ci(ta), gf,i(ta)) =

gf,i(ta) and min(Ci(tb), gf,i(tb) = Ci(tb), gf,i(ta)¬gf,i(tb)¬Ci(tb), non-increasing holds. The re-

maining two situations are similar.

In order to guarantee the minimum staying time on the parking vertices, we attach a user specified

value vi.tmin on each vi ∈ V ′. When computing gf,i(t) from a parking vertex vf to vi, the departure

time from vf is changed to t′ = t + vf .tmin. Thus, the arrival time on vi further grows to t′′ =

t′ + w(vf , vi, t
′). So gf,i(t′′)← Cf (t

′) + w(vf , vi, t
′).

The details of MCFU is shown in Algorithm 6. Suppose vf is the current visiting vertex and vi is

vf ’s out-neighbor. MCFU computes the updated C ′i(t) using Cf (t) and the edge weight w(vf , vi, t).

It works in a sweeping-line way. Line 2-6 compute the cost to vi via vf . If vf is a parking vertex,

then minimum staying time is applied. If vi is a parking vertex, a non-increasing version g′f,i(t) is

generated (Line 7-8). Then it visits the line segments in the Ci(t) and g′f,i(t) together one by one.

Initially, it retrieves the first line segment in Ci(t) and g′f,i(t) (Line 9-10), and their corresponding

end points (p1, p2) and (p′1, p
′
2) (Line 12-13). Line 14-17 use the line segment intersection technique,

which tells the position relation of two lines by computing d1, d2, d3 and d4, as illustrated in Figure

5.5. If d1 > 0, d2 < 0, d3 < 0 and d4 > 0 (Line 18), it is guaranteed that the line segments has an

intersection point p′ and line segment (p1, p
′) should appear in C ′i(t). If d1 < 0, d2 > 0, d3 > 0 and

d4 < 0 (Line 22), the line segment (p′1, p
′) should appear in C ′i(t). Then the corresponding points are

86 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

p
p

p

p

P’

d > 0

d < 0

d < 0

d > 0

p
p

p

p

P’

d > 0

d < 0

d < 0

d > 0

(a) (b)

FIGURE 5.5: Line Segment Intersection

updated in Line 21 or Line 25. The loop recurs until it reaches the last end points.Given the active

time interval has T time units. In the worst case, there are T end points in the cost function. Within

the update of each line segment, it only costs constant time. So the time complexity of the Algorithm

6 is O(T).

Basic Path Expansion Algorithm

Path expansion algorithm maintains a priority queue Q that uses min(Ci(t)) as keys to store all the

vertices. Each time we pop out the top vertex and update its out-neighbors’ Ci(t). This procedure

runs on until Cd(t) is guaranteed stable. The details are described in Algorithm 7. Line 2-5 initialize

the minimum cost function of each vertex by adding the two end points (vi.tEA, vi.tEA − ts1) and

(vi.tLD,∞). Obviously, the source vertex’s cost is alway 0. Then these minimum cost functions are

organized into a priority queue Q ordered by their min(Ci(t)). Each time we pop up the vertex vi

with the smallest min(Ci(t)) value in Q and use it to update the minimum cost functions of its out-

neighbors vj using algorithm 6 (Line 12). If Cj(t) has changed and vj is out of Q, we insert the new

function back to Q. If it is changed but still in Q, we just update its key (Line 13-17). The algorithm

terminates either when Q becomes empty (Line 7) or when the top function’s smallest value is larger

than vd’s minimum on road cost (Line 9-10).

Correctness

Theorem 5.3. Algorithm 7 finds the MORT.

5.4 ALGORITHM 87

Algorithm 6: Minimum Cost Function Update(MCFU)
Input: vi’s minimum cost function Ci(t), vf ’s minimum cost function Cf (t), the cost

function from vf to vi: w(vf , vi, t) and minimum staying time vf .tmin on vf
Output: vi’s new minimum cost function C ′i(t)

1 begin
2 if vf ∈ V ′ then
3 gf,i(t

′′)← Cf (t
′) + w(vf , vi, t

′)
4 t′ ← t+ vf .tmin, t

′′ ← t′ + w(vf , vi, t
′)

5 else
6 gf,i(t

′)← Cf (t) + w(vf , vi, t), t
′ ← t+ w(vf , vi, t)

7 if vi ∈ V ′ then
8 g′f,i(t)← Non− Increase((gf,i(t))
9 t1 ← Si[0], t′1 ← Si[1] //Si: time points in Ci(t)

10 t2 ← Sf [0], t′2 ← Sj[1] //Sf : time points in g′f,i(t)
11 while t1 6= Si.end and t2 6= Sj.end do
12 p1 ← (t1, Ci(t1)), p2 ← (t2, Ci(t2))
13 p′1 ← (t′1, g

′
f,i(t

′
1)), p

′
2 ← (t′2, g

′
f,i(t

′
2))

14 d1 ← Direction(p′1, p
′
2, p1)

15 d2 ← Direction(p′1, p
′
2, p2)

16 d3 ← Direction(p1, p2, p
′
1)

17 d4 ← Direction(p1, p2, p
′
2)

18 if d1 > 0 and d2 < 0 and d3 < 0 and d4 > 0 then
19 (t′, Ci(t

′))← intersection point
20 C ′i(t).insert(t

′, Ci(t
′))

21 t1 ← t′, t′1 ← t′2, t
′
2 ← Sj.next

22 else if d1 < 0 and d2 > 0 and d3 > 0 and d4 < 0 then
23 (t′, Ci(t

′))← intersection point
24 C ′i(t).insert(t

′, Ci(t
′))

25 t′1 ← t′, t1 ← t2, t2 ← Si.next
26 return C ′i(t)
27 Function Direction(pi, pj, pk)
28 return (pk − pi)× (pj − pi)

Proof. Initially, the top of Q is min(Cs(t)), which is 0 because vs is the starting vertex. Then, its out-

neighbors can all get their MORT after updated from vs. Suppose vi is the current top item ofQ and vj

is vi’s out-neighbor. If min(Cj(t)) < min(Ci(t)), then ∀∆ > 0,min(Ci(t)) + ∆ > min(Cj(t)). So

vi cannot update Cj(t)’s minimum value. In fact, vj has already found its MORT that no vertex in Q

can reduce it. But the other parts of Cj(t) could be changed. So if Cj(t) is changed, it is inserted back

to Q. If min(Ci(t)) < min(Cj(t)), vj might find a better path via vi and gets updated. And since

min(Ci(t)) < min(Ck(t)),∀vk ∈ Q, it is ensured that min(Ci(t)) < min(Cj(t)) + ∆,∀∆ > 0.

Thus, vi has found its MORT that no vertex in Q can reduce it. Finally, after the min(Ci(t)) >

min(Cd(t)) pops out from Q, it is guaranteed that no vertex in Q can update min(Cd(t)). Thus, vd

has found its MORT.

88 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

Algorithm 7: Path Expansion Algorithm
Input: G(V,E), QMORT (vs, vd, ts1, ts2, td)
Output: Rp∗s,d

1 begin
2 for vi ∈ V do
3 Ci(vi.tEA)← vi.tEA − ts1
4 Ci(vi.tLD)←∞
5 Let Q be a priority queue initially containing pairs (min(Cit), vi), ordered by min(Cit)

in ascending order
6 Q.insert(min(Cs(t)), vs)
7 while Q is not empty do
8 vi ← Q.pop()
9 if min(Ci(t)) ≥ min(Cd(t)) then

10 break
11 for vj ∈ vi’s out-neighbors do
12 C ′j(t) = MCFU(Cj(t), Ci(t), w(vi, vj, t))
13 if C ′j(t) 6= Cj(t) then
14 if vj ∈ Q then
15 Q.Update(min(Cj(t)), vj)
16 else
17 Q.insert(min(Cj(t)), vj)
18 return min(Cd(t))

Complexity Analysis

As mentioned previously, the time complexity of the ATI algorithm isO(|V | log |V |+ |E|). As for the

Path Expansion algorithm, we use Fibonacci Heap [51] to implement the priority queue. T is used to

denote the average number of turning points in Ci(t), which indicates the average number of times a

vertex’s minimum cost function would be updated among all the vertices. So on average, Ci(t) could

be updated T times, which means vi is visited T times. The maximum number of elements inQ is |V |,

and it takes log |V | time to pop out the top element. So it takesO(T |V | log |V |) time in total to retrieve

the top elements in Q. Each edge might be visited T times to update the corresponding minimum cost

function, And MCFU also takes O(T) time. So the update part of the algorithm takes O(T 2|E|) time.

Thus, the total time complexity of Basic MORT Algorithm is O(T |V | log |V |+ T 2|E|).

As for the space complexity, the speed profile takes O(T |E|) space, the minimum cost function

takesO(T |V |) space, and the graph itself takesO(|V |+ |E|) space. Hence, the total space complexity

is O(T (|V |+ |E|)).

5.4 ALGORITHM 89

5.4.3 Incremental MORT Algorithm

Unlike Basic MORT which updates the minimum cost function on the whole active time interval

repeatedly, Incremental MORT Algorithm uses Incremental Path Expansion to build the minimum

cost function for each vertex vi in its Ti = [vi.tEA, vi.tLD] sub-interval by sub-interval incrementally,

which could reduce unnecessary computations.

Incremental Path Expansion Algorithm

Suppose for a subinterval Ii = [vi.tEA, τi] ⊆ Ti = [vi.tEA, vi.tLD] , we have already computed its

minimum cost function Ci(Ii). Then we extend Ii to a larger sub-interval I ′i = [vi.tEA, τ
′
i] ⊆ Ti where

τ ′i > τi and make sure Ci(I ′) is refined. It should be noted that the current Ci(t) is constructed by vi’s

in-neighbors, and refinement means specifying a larger sub-interval within which the minimum cost

function is stable. After that, we update vi’s out-neighbor vj’s Cj(t) in its corresponding time interval

[τ 1j , τ
2
j]. v′js Cj(t) will be refined when we visit them. When τi reaches vi.tLD, Ci(t) is guaranteed to

be refined over Ti. When τd reaches td, the algorithm terminates. The details are shown in Algorithm

8. It is made up of two main parts: Arrival Time Interval Extension to determine the next sub-interval

to refine, and Minimum Cost Function Update.

Initially, we set vs’s cost function to 0 in its active time interval and set τs to the query’s starting

time (Line 2). Then we set the other vertices’ cost functions to their earliest arrival time minus ts

and the corresponding τi to their earliest arrival time vi.tEA (Line 3-4). At this stage, the subintervals

of the vertices are empty. So all cost functions are refined. We use a priority queue Q to organize

the information. The elements we insert into Q are pairs of (τi, Ci(t)) ordered by τi. The while loop

(Line 6-28) updates the minimum cost functions and refines the subintervals. For each element in Q,

it is ensured that its minimum cost function is well refined in its subinterval [vi.tEA, τi].

Arrival Time Interval Extension (Line 7-9): Each time we pop out the top pair (τi, Ci(t)) from

Q. As defined, Ci(t) is well refined within subinterval [vi.tEA, τi]. Then we need to expand this

subinterval to a later arrival time such that its well refined claim still holds. Recall that the elements

in Q are sorted by τ which is the arrival time of each vertex. It is obvious that τi is no bigger than

any τ in Q, and the current top pair (τk, Ck(t)) has the smallest τ in Q. Thus, for any vi’s in-neighbor

vf , its refined time interval’s upper bound τf ≥ τk. If Ci(t) needs to be updated by vf , it would be

later than τf +w(vf , vi, τk). Suppose vf has the smallest travel cost at τk among all vi’s in-neighbors,

90 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

Algorithm 8: Incremental Path Expansion Algorithm
Input: G(V,E), QMORT (vs, vd, ts1, ts2, td)
Output: Rp∗s,d

1 begin
2 Cs(ts)← 0, Cs(vs.tLD)← 0, τs ← ts
3 for vi ∈ V/{vs} do
4 Ci(vi.tEA) = vi.tEA − ts, τi ← vi.tEA
5 Let Q be a priority queue initially containing pairs (τi, Ci(t)), ordered by τi in ascending

order
6 while |Q| ≥ 2 do
7 (τi, Ci(t))← Q.pop()
8 (τk, Ck(t))← Q.top()
9 τ ′i ← τk +min{w(vf , vi, τk)|vf is vi’s in-neighbor}

10 for vj is vi’s out-neighbor do
11 if vi ∈ v′ then
12 C ′j(t

′′)← Ci(t
′) + w(vi, vj, t

′)
13 t′ ← t+ w(vi, vj, t), t

′′ ← t′ + vi.tmin
14 else
15 C ′j(t

′)← Ci(t) + w(vi, vj, t)
16 t′ ← t+ w(vi, vj, t)
17 t ∈ [τi, τ

′
i]

18 if vj ∈ V ′ then
19 C ′j(t)← Non− Increase(C ′j(t))
20 τ 1j = τi + w(vi, vj, τi)

21 τ 2j = τ ′i + w(vi, vj, τ
′
i)

22 Cj(t)← min(Cj(t), C
′
j(t), t ∈ [τ 1j , τ

2
j]

23 Q.update(τj, Cj(t))
24 τi ← τ ′i
25 if vi = vd and τi ≥ td then
26 return min(Ci(t))
27 else if τi < vi.tLD then
28 Q.insert((τi, Ci(t)))
29 Rp∗s,d

= min(Cd(t))

then no vertex can change Ci(t) before τk + w(vf , vi, τk)). That is to say, Ci(t) is well refined in

subinterval [τi, τ
′
i], where τ ′i = τk + w(vf , vi, τk) (Line 9).

Minimum Cost Function Update (Line 10-23): For each out-neighbor vj of vi, we compute its

Cj(t) that departs from vi within [τi, τ
′
i]. This part is similar to Basic MORT’s but it works on a

smaller time interval. If vi is a parking vertex, we apply minimum staying time on it (Line 11-

13). If its neighbor vj is a parking vertex, we apply the non-increasing property on it. Then we

compute the corresponding new subinterval: lower bound τ 1j is τi + w(vi, vj, τi) and upper bound τ 2j

is τ ′i + w(vi, vj, τ
′
i). Finally, we compare the new C ′j(t) with the existing Cj(t) and use the smaller

one as the newly computed Cj(t), and update vj’s function in Q. It should be noted that although

5.4 ALGORITHM 91

we have updated Cj(t) in a new subinterval, it is still not well refined within it. It is only when we

actually visit vj as the top element in Q that its refined subinterval can be expanded.

After updating, we go back to see vi itself. We first set τi to its new value τ ′i (Line 24). If τi has

already reached its latest departure time, then Ci(t) is fully refined and we will not need it anymore.

Otherwise, it is still not well refined and thus we insert it back to Q with the new τi as the sorting key

(Line 28). If vd is fully refined within its active time interval, the algorithm terminates. As for the

minimum value of Cd(t), it is trivial to maintain.

Running Example

We continue with the example used in Section 5.4.1. After running ATI(v1, v5, 0, 30, 130), we can

get the corresponding initial τ values (earliest arrival times): τ1 = 0, τ2 = 40, τ3 = 70, τ4 = 95

and τ5 = 105. Thus, the initial elements in Q are < (τ1 = 0, C1(t)), (τ2 = 40, C2(t)), (τ3 =

70, C3(t)), (τ4 = 95, C4(t)), (τ5 = 105, C5(t)) >. C0(t) has two points (0, 0) and (25, 0), and the

other Ci(t) only has one point (τi, τi).

In the first iteration, v1 has the smallest τ in Q, so we pop v1 out of Q. The current top element in

Q is (τ2 = 40, C2(t)), which has the earliest refined arrival time in Q. Thus, we use τ2 = 40 as the

base time. v1 has no in-neighbor, so min(w(vf , v1, 40)) =∞ > v1.tLD. Then v1 is well refined in its

active time interval. Now we update v1’s out-neighbors in the refined time interval [0,25]. Because

v2 is v1’s only out-neighbor and the edge cost function is w(v1, v2, t), we compute C2(t) on time

interval [0 + w(v1, v2, 0), 25 + w(v1, v2, 25)] = [40, 65]. It should be noted that although C2(t) is

newly computed, τ2 remains 40, which means the C2(t) from t = 40 is still unrefined and might be

changed by other vertices.

In the second iteration, the currentQ is< (τ2 = 40, C2(t)), (τ3 = 70, C3(t)), (τ4 = 95, C4(t)), (τ5 =

105, C5(t)) >. We pop out the top element v2 and visit it. The current top element is τ3 = 70,

so none of the in-queue vertices’ refined latest arrival time is earlier than 70, which means all the

vertices’ time interval before 70 has been used to update their out-neighbors. For v2’s in-neighbor

v1, if it departs at t = 70, it will arrive v2 at 70 + w(v1, v2, 70) = 97.5. So it is guaranteed

that no vertices can change C2(t) in time interval [40, 97.5]. Thus, C2(t) is refined in [40, 97.5],

and its new τ2 is extended to 97.5. However, since 97.5 > v2.tLD, v2 is also well refined in its

active time interval. Then we update v2’s out-neighbors (v3 and v4). First we consider v3. The

new time interval for v3 is [40 + w(v2, v3, 40), 65 + w(v2, v3, 65)] = [70, 95]. Since the previous

92 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

C3(t) has no value in [70,95], we use the new one directly. Then we update v4 in time interval

[40 +w(v2, v4, 40), 65 +w(v2, v4, 65)] = [95, 138.75]. However, since v4 is a parking vertex, it has to

follow the non-increasing property.

In the third iteration, Q becomes < (τ3 = 70, C3(t)), (τ4 = 95, C4(t)), (τ5 = 105, C5(t)) >.

We pop out top element and visit v3. The current top is τ4 = 95 and w(v2, v3, 95) = 30. So v3’s

refined time interval is extended to [70, 95 + 30] = [70, 125], which is larger than v3’s active time

interval. So v3 is also well refined. v3’ out-neighbor v5’s minimum cost function will be computed in

time interval [70 + w(v3, v5, 70), 95 + w(v3, v5, 95)] = [105, 130]. τ5 remains 105. The current Q is

< (τ4 = 95, C4(t)), (τ5 = 105, C5(t)) >.

In the fourth iteration, we visit v4 and the top element is τ5 = 105. w(v2, v4, 105) = 100 and it

extends τ4 to 205, which exceeds v4’s active time interval, so v4 is also well refined. We update v4’s

out-neighbor v5 in time interval [95 + w(v4, v5, 95), 125 + w(v4, v5, 125)] = [108.75, 130]. The new

C ′5(t) has some lower values compared with the previous one, so we take the lower one as the C5(t).

Finally, the Q has only one element, and we can guarantee that no vertex can update v5 now. So the

minimum on-road travel time from v1 to v5 is 100.

Correctness

Before we prove the correctness of Incremental MORT Algorithm in Theorem 5.6, we first prove the

minimum cost function is correctly computed. Lemma 5.4 proves Line 7-9 is correct. Lemma 5.5

proves Line 10-23 is correct.

Lemma 5.4. When vi is popped out and visited, it is guaranteed that Ci(t) will not change in [τi, τ
′
i].

Proof. Suppose τj is the current top τ in Q. Thus, ∀τk ∈ Q, τk ≥ τj ⇒ Ck(t) is well refined before

τk, which means ∀vk → vo, Co(t) has been updated from vk before τk. In other words, no update

before time τj is possible from now on. The earliest possible time to update from vk to vo is τj .

Suppose vf → vi, so the earliest possible time to update from vf to vi is also τj . If we depart from vf

at τj , the earliest arrival time at vi is τj +w(vf , vi, τj). Suppose w(vf , vi, τj) is the smallest among all

in-neighbors of vi, then the earliest change of Ci(t) will not happen before τ ′i = τj +w(vf , vi, τj). So

Ci(t) will not change in [τi, τ
′
i].

Lemma 5.5. Ci(t), where t ∈ [τi, τ
′
i], has been updated before it is refined.

5.4 ALGORITHM 93

Proof. τi = min{τj + w(vf , vi, τj)|∀vi}. If vf is not in Q, then Cf (t) is already refined. So when

we finish refining Cf (t), we will update Ci(t) from vf . If vf is in Q, then τf ≥ τj ≥ τi. Otherwise

we should have visited vf earlier than vi. Thus, vf ’s refinement lower bound is no earlier than τj , so

Ci(t) has been updated from vf at τf , which leads to τf + w(vf , vi, τf) ≥ τ ′i . Hence, Ci(t) has been

updated in subinterval [τi, τ
′
i].

Theorem 5.6. Algorithm 8 finds the MORT.

Proof. Lemma 5.5 guarantees each Ci(t) is fully updated, and Lemma 5.4 ensures the final Ci(t) is

validated incrementally. When vd’s τd reaches the latest arrival time td, vd’s minimum cost function

Cd(t) is fully refined and will not be changed even if the while loop runs on. All the Ci(t) are updated

by its in-neighbors, so they are the same as Basic MORT’s minimum cost functions. Therefore, the

minimum value of Cd(t) is the minimal on-road travel time.

Complexity Analysis

The ATI takes O(|V | log |V | + |E|) time. The initialization phase (Line 2-5) takes O(V) time. We

use Fibonacci Heap [51] to implement the priority queue. The size of Q is at most |V |, so the

extract-min operation on Q takes O(log |V |) time. Since each vertex vi’s minimum cost function

is constructed incrementally, we use Li to denote the number of its subintervals. Therefore, Li is

actually the number of times vi would be extracted from Q, which takes Li log |V | time. The update

and insert on Fibonacci Heap take O(1) time, so the maintaining of Q takes O(Σ
|V |
i=0Li|V | log |V |) =

O(L(|V | log |V |)) time, where L is the average number of subintervals. On the other hand, during

the update, we visit all vi’s in-neighbors, which is the same as in-edges Ein
i . So if we visit all the

in-neighbors of all the vertices, we actually visit every edge. Thus, Σ|V |i=0|Ein
i | = |E|. So the total time

complexity is O(Σ
|V |
i=0Li(log |V |+ |Ein

i |)) = O(L(|V | log |V |+ |E|)).

Now let’s analyze the lower-bound of Li. Firstly, suppose τ ji is the top value in Q and τk is the

head value, τ ji ≤ τk. Then τk + min(w(vf , vi, τk)) = τ j+1
i , so τk < τ j+1

i . Eventually, we can have a

Li such that τLii ≥ vi.td. Next, we define η0i = vi.ts and ηj+1
i = ηji +min(w(vf , vi, η

j
i)). Eventually,

we can get a Ji such that ηJii ≥ vi.td. Since for the same j, τ ji is always smaller than ηji , so we can get

Li > Ji. If we use J to denote the average number of Ji, then the lower-bound of L is J . Obviously,

J > T , so L is also bigger than T .

For the space complexity, the time-dependent parking graph takes O(|V | + T |E|) space. Each

94 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

minimum cost function Ci(t) takes O(T) space. Q has at most |V | elements, so the size of Q is

O(T |V |). Hence, the overall space complexity is O(T (|V |+ |E|)).

5.4.4 Application Scenarios

In this section, we provide three examples to explain how our algorithm works in different scenarios.

It should be noted that the graph structure and time-dependent information are crucial for finding the

desired results.

First, suppose a commuter wants to arrive office faster and depart later. In fact, this is just an ISFP

problem, so we can run our algorithm on a road network that only allows waiting on the departure

vertex with a user predefined departure time interval.

Second, consider a truck driver who needs a forced rest every period of time at the service stations

along the highway. In this case, the graph is a network of highway, and the parking vertices are

some service stations, each has a pre-defined minimum staying time. The traveling time between

these stations roughly equals to the driver’s maximum driving time. Therefore, the force waiting is

included in the computation and the minimum rest time is guaranteed for safe driving.

Finally, suppose a traveler is planning a journey from one city to another in several weeks time and

wants to visit national parks along the route. In this case, the graph should only contain the national

parks as vertices and allows waiting on all of them, which is another extreme case of our model. The

graph structure should express the rough traveling order. In this case, it could be organized into a

layered graph, and we only visit one of the vertices on the same layer. In an extreme case when the

traveler wants to visit every park, the graph should be organized as a linear line. The edges only exist

between the vertices in neighboring layers. It should be noted the graph structure can also reflect

the distribution of waiting schedule. We can set the distribution of parking vertex manually to meet

users’ waiting requirement (e.g. a forced rest every period of time). Next, we should not use the

traffic condition as the only parameter to determine the time-dependent weight functions. In fact,

the functions should take both travel cost and drivers’ willingness into account. For instance, it is

a journey rather than hurrying on the way, so we should avoid the unsafe night driving. Thus, the

weights during night time should be set much higher even though the traffic condition is good. In

fact, all the weights for the time that are not suitable for driving, either due to bad traffic condition

or due to travelers’ preference, should be set higher. After that, our algorithm could find a MORT

traveling schedule on this time-dependent graph.

5.5 α-MORT APPROXIMATION 95

5.5 α-MORT Approximation

In this section, we present several approximation methods to solve the MORT problem faster with a

guaranteed lower bound α. As analyzed in Section 18, the time complexity is significantly affected

by the number of turning points in Ci(t). What is worse it grows larger as the expansion grows, which

makes the computation slower and slower. So the key to speed up is decreasing the number of turning

points, especially the useless ones. However, we cannot determine if one turning point will end up

with the optimal result until the final Cd(t) is constructed. Therefore, we design an approximation

approach that can guarantee the final result is no less than αC∗d(t), α ∈ (0, 1]. Section 5.5.1 introduce

the approximation error α and how the error grows as the path grows, Section 5.5.2 to 5.5.4 describe

three approximate methods in detail.

5.5.1 Error Bound α and Turning Point Pruning

Given an input approximation ratio α, we aim to compute a path whose MORT time A∗d(t) ≥ αC∗d(t).

However, the approximation cannot be applied on each edge along the path directly.

Suppose a path is made up of a series of consecutive edges Ê =< e1, e2, ..., en > and ||Ê|| is the

length of Ê. If we apply an approximation factor α1 on e1, α2 on e2 and so on, the error of the final

result does not grow linearly, as shown below.

||Ê||′ = ((((e1α1 + e2)α2) + e3)α3 + ...en)αn

= α1α2α3...αn e1 + α2α3...αne2 + ...+ αnen

=
n∏
j=1

αje1 +
n∏
j=2

αje2 + ...+
n∏
j=n

αjen

=
n∑
i=1

n∏
j=i

αjei

To achieve ||Ê||′ ≥ ||Ê||, we have to guarantee
∏n

j=1 αj ≥ α. In another word, we can view α

as a total budget of pruning power along the path, the larger the budget assigned to a vertex, the

stronger pruning power it has to reduce the turning points. Because the turning point numbers of

the earlier visited vertices are much smaller than those of the latter visited ones, we concentrate

the pruning power to the latter vertices by setting a global turning point number threshold ρ: Only

those vertices whose turning point numbers are larger than ρ will be pruned. Because in the ATI

computation we already have two functions of earliest arrival path and latest departure path, we

96 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

FIGURE 5.6: Ci(t) Turning Points Pruning Example

p2 can be pruned because its new point p2,3 represented by line (p1, p3) is larger than αip2. p3 can be

pruned because p2,4 > αip2 and p3,4 > αip3. But p4 cannot be pruned because their new values on

the new approximate line (p1, p5) are smaller than αip2, αip3 and αip4.

use min(|EA(vd)|,|LD(vs)|)
3

as a heuristic threshold value, where |EA(vd)| and |LD(vs)| are the turning

point numbers of those two paths. The details of how to assign pruning power αj are discussed from

Section 5.5.2 to Section 5.5.4.

At this stage, we assume |Ci(t)| > ρ and it has a pruning power αi. The pruning process visits the

turning points one by one in a sliding window way, as shown in Algorithm 9. Each time we visit a

turning point pi, we put it into a PointList (line 4). It can be pruned only if all the points pj in PointList

can be safely represented by point pj,i+1 on line (pi−1, pi+1) (line 7). The safe representation has two

conditions (Line 8). Firstly, pj,i+1 has to be no smaller than αipj , as required by approximation bound.

Secondly, pj is no smaller than pj,i+1, because the smaller value has a higher possibility to result in the

final optimal result. If any pj does not satisfy these two conditions, pi cannot be pruned and we empty

the PointList. When all the points are visited, we return the remaining points as the approximate

function Ai(t). Since pj,i+1 ≥ αipj is strictly required, Ai(t) ≥ αiCi(t). In the worst case when all

the points within Ci(t) is pruned, the testing in line 8 has to run O(|Ci(t)|2) times. However, it has a

near linear running time in practice.

5.5 α-MORT APPROXIMATION 97

Algorithm 9: Ci(t) Pruning Algorithm
Input: Ci(t) = (p1, p2, ..., pn), pruning power αi
Output: αi-approximate Ai(t)

1 begin
2 i← 2
3 while i ≤ |Ci(t)| − 1 do
4 PointList.insert(pi)
5 for pj ∈ PointList do
6 //compute pj,i+1 on (pi−1, pi+1)
7 pj,i+1 ← Compute(pi−1, pi+1, pj)
8 if pj,i+1 ≥ αipj and pj ≥ pj,i+1 then
9 i← i+ 1

10 PointList.clear()
11 break
12 Ci(t).prune(pi)
13 return Ai(t)← Ci(t)

Figure 5.6 shows a pruning example.

5.5.2 Even Distribution

The first way to assign pruning power is distributing them evenly. Suppose |Ê| is number of edges in

path Ê. The most straightforward way is to assign αi = α
1
|Ê| . Obviously,

n∑
i=1

n∏
j=i

αjei =
n∑
i=1

n∏
j=i

α
1
|Ê| ei =

n∑
i=1

α
∑n
j=i

1
|Ê| > α

n∑
i=1

ei

However, pruning power α
1
|Ê| becomes weaker when |Ê| is larger, which makes the pruning insuffi-

cient. Therefore, we restrict the pruning power α shared by only ˇ|E| vertices along the path, where
ˇ|E| � ˆ|E|. Thus, the vertices has larger pruning power when their turning point numbers surpass the

threshold ρ.

5.5.3 Exponential Distribution

The second way to distribute pruning power is decreasing the power exponentially. In this way, the

first pruning vertex can have a much larger power than those in then even distribution. We assign

98 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

α1 = α
1
2 , α2 = α

1
22 and so on. In this way, the approximate bound is guaranteed, as proved below:

||Ê||′ = α1α2α3...αn e1 + α2α3...αne2 + ...+ αnen

= α
1
2α

1
22 ...α

1
2n e1 + α

1
22 ...α

1
2n e2 + ...+ α

1
2n en

= α
∑n
i=1

1

2i e1 + α
∑n
i=2

1

2i e2 + ...+ α
∑n
i=n

1

2i en+

> αe1 + α
1
2 e2 + ...+ α

1
2n en > α

n∑
i=1

ei = α||Ê||

Although the pruning is large in the beginning, it decreases fast as the pruned vertices grows. So

similar to the Even Distribution, we also set a small upper-bound of n to avoid useless pruning.

5.5.4 Dynamic Exponential Distribution

The previous two methods assign fixed pruning power to each vertices and do not care whether the

power is fully utilized or not. In fact, most of the vertices only use part of their power, which is a

waste of the precious budget. In order to take the most advantages of the precious pruning budget, we

propose the Dynamic Exponential Distribution method.

Like the Exponential Distribution, the pruning power also decreases exponentially. However,

instead of dividing the previous pruning power’s logarithm by 2, we divide the remaining pruning

power’s logarithm by 2. Initially, the algorithm keeps pruning power’s logarithm ∆i for each vertex

and set them to 1. The first pruning vertex vk has the pruning budget α
∆k
2 = α

1
2 . During the pruning,

we can get its actual pruning usage by β = max(pi,j/pi), where pi is the pruned point. Then the

remaining pruning power logarithm for v′ks out-neighbor vj is δk − logαβ. If vj is to be pruned, its

pruning budget is α
δk−logαβ

2 . We also set a lower bound for αi to avoid the useless pruning.

The proof of bound guarantee is similar to Exponential Distribution.

5.6 Experiments

In this section, we present the results of a comprehensive performance study on one real-world road

networks and a small-world graph with different speed profiles, to demonstrate the effectiveness and

efficiency of our algorithms.

5.6 EXPERIMENTS 99

5.6.1 Experiment Setup

We use the same Beijing and Shanghai maps as in Section 4. The corresponding speed profiles are

compressed using Bottom-Up PLA Algorithm.

We test the algorithms under four variations. The first one is the distance of two vertices in road

network. The second one varies the starting time interval size from 1 hour, 2 hours, 3 hours to 4 hours.

The next one tests the performance under different speed profiles (50, 100, 200, 400 turning points),

and the last one varies the percentage of parking vertices (5%, 10%, 50%, 100%). Except for the third

test, which uses synthetic speed profile, all the experiments use the speed profiles generated from the

trajectory data.

We ran all the experiments on a Dell R720 PowerEdge Rack Mount Server which has two Xeon

E5-2690 2.90GHz CPUs, 192GB memory, 1TB hard disk, and runs Ubuntu Server 14.04 LTS oper-

ating system.

5.6.2 Comparison with Existing Algorithms

In this section, we compare the minimal on-road time routes computed by our algorithm with paths

generated by the other path planning algorithms under different configurations. We compared our

methods with the following algorithms: 1) SP (Shortest Path) which computes the shortest path be-

tween two vertices. We set the departure time randomly within the time interval. 2) EAP (Earliest

Arrival Path) and LDP (Latest Departure Path), which are two bypass results when computing the

minimal on-road time. 3) FP (Fastest Path) [21]. 4) IFP (Iterative Fastest Path) which uses the FP

(Fastest Path) algorithm iteratively to get the approximate minimal on-road time path, as described in

Section 5.1. The results achieved by our algorithms are labeled with MORT. We do not distinguish

the two versions of our algorithms in this experiment since they produce the same on-road travel time.

In the first test, we change the distance between vs and vd. We randomly select four sets of vertex

pairs with the approximate distance of around 10km, 20km, 30km, and 50km in the two maps. The

starting time interval is set to be 4 hours. 10% of the vertices are selected as parking vertices. The

results are shown in Figure 5.7(a)-(b). It is obvious that our algorithms always produce the shortest on-

road travel time, followed by IFP and FP. As for the other three algorithms, they do not have a chance

to achieve a shorter on-road time by changing the departure or waiting time, so their performance is

unstable and worse than the previous algorithms in average.

100 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

FIGURE 5.7: Results of Minimal On-Road Time

The second test varies the length of starting time interval from 1 hour to 4 hours. The distance is

set to be 20, speed profile is 100 and parking vertex is 10%. Figure 5.7(c)-(d) show the results. As the

length of the time interval grows, more possible starting time emerge, so the on-road time of FP and

IFP decrease. As for MORT, it also decreases because it has a longer time to wait for a faster path

on the parking vertices. And it decreases faster than FP because it can get more benefits. As for the

other algorithms, they do not change much correspondingly due to the same reason as the previous

test.

The third test evaluates the influence of the speed profile granularity, whose turning point numbers

are 50, 100, 200 and 400. The distance is also 20, parking vertex is 10% and the starting time interval

5.6 EXPERIMENTS 101

is 4 hours. We can see from Figure 5.7(e)-(f) that as the total number of turning points grows, the

number of the turning points that have smaller traveling cost also increases. So there is a higher

chance for FP and IFP to find paths with smaller on-road time. And MORT also decreases more

distinctly for the same reason.

The last test studies the influence of the park vertex percentage, which varies from 5%, 10%, 50%

to 100%. The distance is 20, the speed profile has 100 turning points and time interval is 4 hours.

Figure 5.7(g)-(h) only show the on-road time of MORT because the results of all the other methods

do not change along with the percentage of parking vertices. It is easy to draw the conclusion that as

the percentage rises, the on-road time drops accordingly since it has more vertices able to wait for a

shorter on-road time.

5.6.3 Algorithm Running Time

In this section, we compare the running time of our algorithms on the three graphs under the same

setting of the previous experiments. Apart from the running time of our Basic and Incremental algo-

rithms, we also show the performance of IFP in the first test, and Fastest Path in the second and third

tests.

Firstly, Figure 5.8(a)-(b) show the results under different distances. As the distance grows, the

numbers of the visited vertices and edges also grow, so the running time increases. Not surprisingly,

the running time of IFP soars up, so we demonstrate it in exponential step. Secondly, the impact of

time interval is illustrated in Figure 5.8(c)-(d). As the interval grows longer, the active time interval

also grows, which makes the minimum cost function longer. Both algorithms run slower because

more turning points appear in the minimum cost functions.

Furthermore, we demonstrate the running time on different speed profiles in Figure 5.8(e)-(f). If

the density of the speed profile rises, the number of the turning points in the minimum cost function

also increases. However, different from the growth of the time interval, which increases the turning

points linearly, the growth of time points in speed profile raises the point number in minimum cost

functions more dramatically. And the Basic algorithm has higher cost on maintaining larger cost

function, so it becomes slower than the Incremental algorithm. In addition, as shown in Figure 5.8(c)-

(f), FP is always slower than MORT. The reason is that FP cannot apply non-increasing, so it always

has more turning points in the minimum cost functions.

Finally, we present the influence of the percentage of parking vertices in Figure 5.8(g)-(h). Since

102 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

FIGURE 5.8: Algorithm Running Time

the minimum cost function of a parking vertex is non-increasing, the number of its turning point is

smaller than the ordinary vertices. Therefore, as the percentage of the parking vertices increases, the

total number of the turning points decreases. So the running time drops correspondingly. We do no

present the running time of FP because its running time is not affected by the parking vertices.

Even if our algorithms are faster than the state-of-art fastest path algorithm, it is still slow for the

long distance query. So we will present an index to answer the time-dependent path queries under a

5.6 EXPERIMENTS 103

FIGURE 5.9: Running time and accuracy of α−MORT

second in the future work. But algorithms in this paper are the basis for the index.

5.6.4 Approximation Algorithm

In this section, we test the running time and accuracy of our approximation algorithms on two road

networks. The results are shown in Figure 5.9. As analyzed in Section 5.5.1, the error decreases

as the path grows longer. In fact, we can still get a good approximation result even if the initial

error bound is small. We show the results of α = 0.2 in this test. First of all, as the distance

grows, the approximation performs better. For example, the running time is nearly half of the original

algorithm in the 50km test, while the accuracy is around 97%. This is because the longer paths

have much more turning points than the short ones, and pruning those points could lead to more

benefit. And the pruning power are the same for all the paths regardless of their lengths, so the longer

paths have higher accuracy. Secondly, even though the Even Distribution can reduce the running

time dramatically, the Exponential Distribution has an even better performance, while the Dynamic

Exponential Distribution is only slightly better the Exponential Distribution. The reason of it is that

although Dynamic Exponential makes better use of the pruning budget, its dynamic mechanism takes

extra costs. Finally, the percentage of parking vertices also affects the approximation performance.

104 MINIMAL ON-ROAD TRAVELING TIME ROUTE SCHEDULING

The no parking tests have higher accuracy and speedup. The reason is the same as the distance: less

parking vertices along the route results in more turning points.

5.7 Summary

In this chapter, we have studied a new route scheduling problem called MORT query that aims to

minimize on-road time in time-dependent graphs with parking vertices. MORT query further general-

izes the path planning problem studied before in time-dependent graphs from allowing the traveler to

choose the optimal departure time to minimize on-road travel time that allows multiple stops at park-

ing vertices. From theoretical point of view, MORT is the most general type of time-dependent route

scheduling problem, which covers all previous problems both in terms of problem formulation and

also algorithms. From practical point of view, MORT query is useful in many applications, to name a

few, minimizing fuel consumption for trucks and advising people to stop and do other things to avoid

getting stuck in heavy traffic. From algorithm design and database query processing points of view,

MORT queries are significantly more complex than time-dependent shortest/fastest path queries. We

have proposed two algorithms to do MORT route scheduling. The Basic MORT Algorithm computes

a minimum cost function directly and takes O(T |V | log |V | + T 2|E|) time. The Incremental MORT

Algorithm reduces the time complexity by computing the minimum cost function incrementally and

takes O(L(|V | log |V | + |E|)) time. Our extensive studies in road network and small-world graph

have confirmed that our algorithms could find minimal on-road time paths more efficiently.

Chapter 6

Time Dependent 2-Hop Labeling

Route scheduling on time-dependent road network is slow due to it has a problem complexity of

Ω(T (|V | log |V | + |E|), where T is the number of turning points in the result’s minimum cost func-

tion, |V | is the number of vertices and |E| is the number of edges. To make things worse, T grows

larger as the route becomes longer or the query time interval becomes bigger, especially for a fastest

path profile query where the length of query’s time interval is 24 hours. In this chapter, we aim to

answer the fastest path profile query on time-dependent road network faster by extending the 2-hop

labeling approach, which is fast in answering shortest distance query on the static graph. However,

building an index on a time-dependent graph is both time and space consuming, so currently only

online-search approaches exist, like time-dependent CH and time-dependent SHARC. Apparently,

their query answering power is limited by the online searching. To further speed up the query an-

swering, we first propose the time-dependent 2-Hop on the small graph. To expand on the large

road network, we partition the road network into smaller subgraphs, and build time-dependent 2-hops

within and between partitions. Furthermore, we propose an approximation version to reduce the index

size several times down and accelerate the query answering even more, with a user given error bound.

Experiments on a real road network and its linear piecewise speed profile show that our approach

outperforms the state-of-art fastest path index approaches and can speed up the query answering by

hundreds of times.

105

106 TIME DEPENDENT 2-HOP LABELING

6.1 Introduction

With the fast development of GPS technology and mobile network, traffic condition is easier to obtain

than ever. For example, Google Map has provided a feature called Google Traffic, which displays traf-

fic conditions in real time on major roads and highways by analyzing the GPS-determined locations

transmitted to Google from a large number of mobile phone users. GPS navigators like TomTom also

have collected traffic data during the past decade to provide traffic prediction feature. In addition to

that, lots of approaches and applications are developed to infer traffic speed on roads from the drivers’

trajectory data [38, 36, 41, 33]. With traffic condition information at hand, the measurement used in

path planning has changed from the distance to travel time. So finding the fastest path from one place

to another has become an essential query. In fact, it has a much wider range of applications other

than trip planning, such as the spreading of information [152] and disease [153], metabolic pathway

analysis in biochemist[154] and within cells [155], just to name a few.

It is fast to compute the single starting time fastest path (SSFP), whose departure time is given as

a single time point, because its time complexity is same as Dijkstra’s O(|V | log |V | + |E|) [20, 92],

where |V | is the number of vertices and |E| is the number of edges. However, when the departure

time is a time interval, its complexity lower-bound grows to Ω(T (|V | log |V |+ |E|)) [144], where T

is the number of turning points in the result’s function. We call it interval starting time fastest path

(ISFP). Such a query is often used to find an optimal departure time that would result in a path with

least traveling time. If we extend the departure time interval to the whole time span, we are facing the

fastest path profile query (FPP), which is useful in bulk query answering and is a fundamental query

for traffic analysis. In fact, it is a general query that can answer any SSFP and ISFP. Unfortunately, it

is even slower than ISFP because it has a larger T . Therefore, in this paper, we study the problem of

how to answer FPP query faster. Additionally, we use term fastest path to denote FPP throughout this

paper because FPP is essentially a fastest path, and fastest path is widely used and can self-explain.

Furthermore, all the edges’ time-dependent weight functions follow FIFO property, which forbids

overtaking.

In this work, we aim to speed up the fastest path query answering even faster by taking advan-

tages of 2-hop labeling [6]. By assigning two sets of labels for each vertex’s in- and out-distance

information to other vertices, static 2-hop labeling can answer the shortest path query only using the

labels [67, 156, 68, 65, 62]. However, no existing work ever tries to extend it to the time-dependent

6.1 INTRODUCTION 107

FIGURE 6.1: Example of a Time-Dependent Graph

(a):Directed graph. (b)-(p):Linear piecewise cost functions for each edge, time span is [0, 100]

FIGURE 6.2: Time-Dependent 2-Hop Query Example

(a)-(c):Out label functions of v7. (d)-(f):In label functions of v3. (g):Result functions via hop v0, v1

and v4.

scenario due to the following challenges: Firstly, achieving the minimum label size (Ω(|V ||E|1/2) on

the static graph is already NP-H, adding another temporal dimension would definitely make it even

harder. Moreover, there is no time-dependent index ever exists actually using linear piecewise func-

tion. It is already hard enough for online speed-up approaches to stay away from it and only test on

histogram-based speed profile. Last but not least, unlike in the static version, where the shortest path

between a vertex pair is fixed, the fastest path between a vertex pair changes over time. In another

word, there could be a set of hops instead of only one, for the query result. Therefore, answering a

query is no longer finding the minimum value, but constructing a result minimum function from a set

of functions.

108 TIME DEPENDENT 2-HOP LABELING

TABLE 6.1: Time Dependent 2 Hop Labels of v7 and v3

Node Out Label In Label

v7 (v0, fv7,v0(t)) (v4, fv4,v7(t))

(v1, fv7,v1(t)) (v5, fv5,v7(t))

(v4, fv7,v4(t)) (v6, fv5,v7(t))

(v8, fv7,v8(t))

v3 (v4, fv3,v4(t)) (v0, fv0,v3(t))

(v1, fv1,v3(t))

(v4, fv4,v3(t))

(v5, fv5,v3(t))

(v6, fv6,v3(t))

Figure 6.1 shows an example of the time-dependent graph we use in this paper. Figure 6.1-(a)

is a directed graph with nine vertices, Figure 6.1-(b)-(p) are its corresponding time-dependent cost

functions of the edges. To save space, Table 6.1 only presents the labels of v7 and v3 we precomputed.

Suppose we are answering the fastest query from v7 to v3, we only need to use v7’s out-labels and v3’s

in-labels. The intersection of these two label sets is (v0, v1, v4), and the corresponding cost functions

are illustrated in Figure 6.2-(a)-(f). Thus, we only need to compute the cost functions from v7 to v3

via v0, v1 and v4, and return the minimum of them as the result. The three result functions are shown

in Figure 6.2-(g). Since the one that uses v0 as hop dominates the others over the whole time period,

the query result only uses one hop. Also, it is the same as the result returned by the other fastest path

algorithms. It should be noted that this might not always be the case. If for some time intervals, v1’s

functions is smaller than v0’s, while bigger for the rest, the final result should be the combination of

v0’s and v1’s functions.

In this work, we propose a time-dependent 2-hop labeling approach to answer the fastest path

query efficiently. Depending on the graph size, we present two ways to construct it. Both of them

using pruned landmark approach to build 2-hop cover. Such an approach can reduce the construction

time significantly [65]. The first one works on small graphs, typically under 5K vertices. We build the

time-dependent 2-hop on it directly. The second one works on the large road network, which is often

planar. We first split the graph into partitions that each has only a small number of boundary vertices.

Then we build time-dependent 2-hop between the boundary vertices over the original road network.

6.2 RELATED WORK 109

After that, the time-dependent 2-hop within each partition is built with the help of the boundary 2-

hop. Furthermore, since we have separate labels for partitions and boundary, we can answer a query

in parallel. Finally, we reduce the label size by applying a piecewise linear approximation approach,

which has a guaranteed error bound. Extensive experiments using real road network and speed profile

shows that we can speed up fastest path query answering by hundreds of times. We also re-construct

the state-of-art online search approaches time-dependent CH and time-dependent SHARC using linear

piecewise functions, and shows that our approach outperforms them by hundreds of times.

Our contributions are listed as follows:

• We propose a time-dependent 2-hop labeling approach to speed up the fastest path query an-

swering on small graph by hundreds of times.

• We propose a partition-based time-dependent 2-hop labeling to the answer fastest path query

on the large road network.

• We apply a piecewise linear approximation approach on the label set to reduce the index size

and further speed up the query answering.

• We thoroughly evaluate our approach with extensive experiments on the real-life road network

and linear-piecewise-function-based speed profile. Results show than our approach outperforms

the linear piecewise version of time-dependent CH and SHARC.

The rest of this chapter is organized as following: We discuss the related works in Section 6.2.

Section 6.3 defines the problem and its corresponding notions. Section 6.4 presents the algorithm of

time-dependent 2-hop on small graph, while Section 6.5 extends it on large road network and presents

the approximation method. We evaluate our methods in Section 6.6 and summarize the chapter in

Section 6.7.

6.2 Related Work

6.2.1 Fastest Path Speed-up Techniques

Just like many speed-up techniques are proposed for answering reachability and shortest distance

queries, there are some time-dependent online search speedup techniques, which are extended from

their static versions, to support fastest path queries on the time-dependent graph.

110 TIME DEPENDENT 2-HOP LABELING

The first category of approaches apply simple augmentation on their original static versions. Bidi-

rectional A∗ Search [102] augments A∗ Search Using Landmarks(ALT) [103, 80, 104] by applying

the landmarks on the lower bound graph G, whose edge weights are the lower bounds of their corre-

sponding time-dependent functions. Although the correctness is guaranteed by using the lower bound,

it is a loose approximation of the original time-dependent graph so its effectiveness is weak. [107]

extends Arc-Flag [108, 109] by counting an edge as important if it appears in a fastest path at least

once. Therefore, unlike the original Arc-Flag, this approach has to label much more edges because the

fastest path changes over time. And it is time-consuming to construct so [107] applies approximation

on preprocessing. Time-dependent contraction hierarchies [105, 106] expands the original CH [66]

by adding a shortcut when it is the fastest path for at least once within the whole time period. The

second category of approaches combine the previous methods in different ways. Core-ALT [110, 111]

is the combination of time-dependent Landmark, bidirectional search and CH, while time-dependent

SHARC [157, 107] is the combination of time-dependent CH and Arc-Flag.

It is obvious that all of the above speed-up approaches only apply basic extension to time-dependent

scenario by projecting the time dimension to the static graph. In this way, the time-dependent graph is

treated as a denser static graph, and those speed-up techniques can be applied directly. Although the

query has to adapt to the time-dependent version, the speed-up performance is limited by these static

structures since the temporal information is actually discarded. The reason of it is that the number

of the interpolation points is much larger than the edge number and the vertex number, which would

result in a much longer preprocessing time, although it would speed up the query.

Finally, all of them are online search approaches, which are actually different search space pruning

strategies, so they still have to run a search on the time-dependent graph when answering a query.

6.2.2 2-Hop Labeling

The 2-Hop labeling was originally proposed by [6] to answer the shortest distance and reachability

query efficiently on the static graph. The basic idea of 2-hop labeling is to pre-compute a set of labels

for each vertex and answer the query only by the labels of the involved vertices. For example, on

an undirected graph, each vertex vi keeps a label set L(vi) = {(vj, dvi,vj)}, which stores its shortest

distance to vj (dvi,vj). When answering a shortest distance query from vs to vd, we only need to find

the vertices {vj} that exist in both of L(vs) and L(vd), and selects the smallest dvs,vj + dvj ,vd as the

result. By deriving it into a 3-SAT problem, they proved that finding a 2-hop labeling with the minimal

6.3 PRELIMINARY 111

size Ω(nm1/2)) is NP-H. So they provided an approximate algorithm that can return a label size of

log(n) times the optimal lower bound.

From then on, several works are proposed to build the label faster while keeping the size small.

However, not too many of them work on the large graph. Highway-centric labeling [68] is inspired

by the highway structures in the road network and the existing works of the online search approaches

like [158]. By selecting a set of vertices as highway vertices, and can answer the query between them

in constant time, the 2-hop is converted into three parts: the distance from the source vertex to one

of the entries in highway, the distance from one entry to exit, and the distance from the exit to the

destination. IS-Label [159] breaks the graph into a set of independent sets, such that the graph can be

represented in a hierarchical structure. The distance information is preserved in the process of vertex

hierarchy construction. Thus, the vertex order is generated directly from the hierarchical structure. By

visiting the vertices in this order, and only visiting the vertices of higher level, we can attach labels

to the starting vertex. Pruned Labeling [65] mainly focuses on undirected and unweighted graph.

By running BFS vertices one by one, the labels are created incrementally. During the search, if the

distance to the current vertex can be answered by the existing labels, the searching would not expand

from it. The label size can be further compressed in bit, which could speed up the query processing

and index construction. Hop Doubling [62] can only works on unweighted scale-free graph. Under

the constraint of scale-free, a vertex’s betweenness centrality can be approximated by its degree,

which derives an effective vertex order naturally.

6.3 Preliminary

6.3.1 Time-Dependent Road Network

A time-dependent road network is represented as a directed graphG(V,E), where V is a set of vertices

and E ⊆ V × V is a set of directed edges, which has a weight function w(E, t)→ R mapping edges

to time-dependent real-valued weights. The weight of an edge e(u, v) ∈ E at time t in a time domain

T is w(u, v, t), which represents the amount of time required to reach v starting from u at time t.

w(u, v, t) =∞ if there is no edge from u to v.

A path p from u to v in G is represented as p =< v0, v1, . . . , vk >, where v0 = u, vk = v and

(vi−1, vi) ∈ E, ∀1 ≤ i ≤ k. Let α(vi) be the arrival time of vi, and β(vi) be the departure time

112 TIME DEPENDENT 2-HOP LABELING

of vi. The time-dependent cost of p is the sum of the weights on edges at each vi’s departure time:

w(p) = Σk
i=1w(wi−1, wi, β(vi−1)). The single starting time fastest path problem on time-dependent

road network is defined below.

Definition 6.1. (Single Starting-Time Fastest Path Problem (SSFP)). Given a time-dependent graph

G(V,E) and a query Q(vs, vd, t), where t is the departure time, SSFP is to find a path with minimal

w(p, t) = Σk
i=1w(wi−1, wi, β(vi−1)), where β(vs) = t, v0 = vs and vk = vd.

The road network naturally follows FIFO property: ∀t1 ≤ t2, t1 + w(u, v, t1) ≤ t2 + w(u, v, t2),

which means no overtaking in reality. Such a property ensures waiting on a vertex would increase

w(p). In another word, β(vi) = α(vi) is essential to minimize w(p).

If we extend the departure time β(vs) to the whole time span, we can get a minimum cost function

from vs to vd fvs,vd(t) that records the least travel time at different departure time.

Definition 6.2. (Fastest Path Profile Problem (FPP)). Given a time-dependent graph G(V,E) and

a query Q(vs, vd), FPP is to compute a minimum cost function fvs,vd(t) such that fvs,vd(β(vs)) =

min(w(p, β(vs))), ∀β(vs) ∈ T .

Problem Definition: We study the following problem: given a time-dependent graph G(V,E),

construct an index L, for processing fastest path profile problem that given any pair of (vs, vd), return

fvs,vd(t) only using L.

6.3.2 Time-Dependent 2-Hop Cover

For each vertex v ∈ V , we pre-compute two sets of labels: out-labels Lout(vi) = {(vj, fvi,vj(t))} and

in-labels Lin(vi) = {(vj, fvj ,vi(t)}, where vj is a hop vertex and fvi,vj(t) returns the minimal cost

from vi to j at different departure time t. We use L = {(Lout(vi), Lin(vi))|∀vi ∈ V } to denote the set

of all the labels. If L can answer all the queries on G, then we say L is a time-dependent 2-hop cover.

A minimum cost function query Qf (vs, vd, L) returns fvs,vd(t) only using the labels, as shown

6.3 PRELIMINARY 113

TABLE 6.2: Time-Dependent 2-Hop Labeling Important Notations

Notation Description

fvs,vd(t) Minimum cost function from vs to vd

fvs,vd,vi(t) Minimum cost function from vs to vd via hop vi

Vs,d Set of vertices along paths from vs to vd

⊕ Concatenation of two minimum cost functions

Min() Min function of a set of minimum cost functions

Lout(vi) = {vj, fvi,vj(t)} Out-label of vertex vi

Lin(vi) = {vj, fvj ,vi(t)} In-label of vertex vi

Q(vs, vd) Fastest path profile query from vs to vd

Qf (vs, vd, L) Minimum cost function query using hop cover L

Hvs,vd Hop vertex set Lout(vs) ∩ Lin(vd)

Gi A subgraph of G

L̂Gi Labels of subgraph Gi

L̂B Labels of boundary vertices

below:
Qf (vs, vd, L)) = Min(fvs,vd,vi(t))

= Min(fvs,vi(t)⊕ fvi,vd(t))

= Min(fvi,vd(fvs,vi(t)))

= fvs,vd(t), t ∈ T

∀vi ∈ Hvs,vd = Lout(vs) ∩ Lin(vd)

If vi exists in both vs’s out-label set and vd’s in-label set, vi is a hop vertex of this query. For

all the hop vertices vi ∈ Hvs,vd , we compute the minimum cost functions from vs to vd via vi:

{fvs,vd,vi(t)} by the concatenation operation ⊕ of two time-dependent functions, which is computed

as fvs,vd,vi(t) = fvs,vi(t) ⊕ fvi,vd(t) = fvi,vd(fvs,i(t) + t). Min() is a function that takes all the

{fvs,vd,vi(t)} as input, and combines the smallest function pieces at each sub-time interval as the min-

imum cost function fvs,vd(t). An example is shown in Figure 6.3. As for the example of Figure

6.2, the input functions are {f7,3,0(t), f7,1,0(t), f7,4,0(t)}. Because f7,3,0(t) is always smaller than the

others, f7,3(t) = Min({f7,3,i(t)}) = f7,3,0(t).

Within each minimum cost function piece fvs,vd,vi(t), we use Vs,d,i to denote the set of vertices

114 TIME DEPENDENT 2-HOP LABELING

fvs,vd,vi1
(t)fvs,vd,vi1
(t)

fvs,vd,vi2
(t)fvs,vd,vi2
(t)

fvs,vd,vi3
(t)fvs,vd,vi3
(t)

fvs,vd
(t)fvs,vd
(t)

t1t1 t2t2 t3t3 t4t4 t5t5 t6t6

FIGURE 6.3: Example of Min() function

Hop vertex set Hvs,vd = {vi1, vi2, vi3}. Three dashed lines are the inputs, the solid red line is the

output fvs,vd(t). Different parts of it come from different input lines: (1)fvs,vd(t) = fvs,vd,vi1(t) for

t ∈ [t2, t3] ∪ [t5, t6]; (2)fvs,vd(t) = fvs,vd,vi2(t) for t ∈ [t1, t2] ∪ [t4, t5]; (3)fvs,vd(t) = fvs,vd,vi3(t) for

t ∈ [t3, t4].

along the fastest paths from vs to vd via vi. The number of hops in the 2-hop cover L is |L| =

Σ
|V |
i=1(|Lin(vi)|+ |Lout(vi)|).

In the following two sections, we present the construction and query of time-dependent 2-hop

labels on the small graph and large road network, respectively.

6.4 Time-Dependent 2-Hop Labeling on Small Graph

6.4.1 Index Construction

In order to help understand our approach to construct a time-dependent 2-hop labeling, we first present

a naive one. Suppose the vertices are ordered in V = {v1, v2, . . . , vn} and we visit them in this order.

Intuitively, we run a single source fastest path search from each vi ∈ V to get all the minimum cost

functions fvi,vj(t) from vi to all the other vertices vj ∈ V − {vi}, and run another reverse backward

fastest path search to get all the minimum cost functions fvj ,vi(t) from all the other vertices vj to

vi. We use Li = {(Liout(vj), Liin(vj))|∀vj ∈ V } to denote the label set we get after the searchings

from vi. Initially, L0 = φ. Suppose after the searchings from vk−1, we obtain a label set Lk−1 =

6.4 TIME-DEPENDENT 2-HOP LABELING ON SMALL GRAPH 115

FIGURE 6.4: Continuous Time Dependent 2-Hop Labeling Construction Example

{(Lk−1out (vj), L
k−1
in (vj))|∀vj ∈ V }. Then we run a fastest path search from vk, and get all the minimum

cost functions from vk: {fvk,vj(t)}. Therefore, we update the in-label sets Lkin(vj) = Lk−1in (vj) ∪

(vk, fvk,vj(t)), ∀vj 6= vk. Meanwhile, we run a reverse backward fastest path search from vk and get

all the minimum cost functions from vj to vk: {fvj ,vk(t)}. Correspondingly, we update the out-label

sets Lkout(vj) = Lk−1out (vj) ∪ (vk, fvj ,vk(t)), ∀vj 6= vk. This procedure continues until the last vertex vn

finishes the searchings.

Obviously, the result of this approach is exactly the same as all-pair pre-computation, so it

has generated a 2-hop cover that can answer query correctly. However, it is inefficient in both

construction time and label size. Therefore, we apply a pruning approach to reduce the search

space, which could further reduce the construction time and Size(L). We use L̂i to denote the re-

116 TIME DEPENDENT 2-HOP LABELING

sult after the ith pruning search on vi. Suppose we just finish visiting vk−1 and get a label set of

L̂k−1 = {(L̂k−1out (vj), L̂
k−1
in (vj))|∀vj ∈ V }. Then we start a fastest path searching from vk. During the

search, each time when we settle a vertex vi, we can obtain a minimum cost function fvk,vi(t). At the

same time, we also run a minimum cost function query Qf (vk, vi, L̂
k−1) to obtain the intermediate

minimum cost function fk−1vk,vi
(t) = Min({fvk,vj(t)⊕ fvj ,vi(t)|vj ∈ L̂k−1out (vk)∩ L̂k−1in (vi)}). If fvk,vi(t)

is dominated by query result fk−1vk,vi
(t), i.e., fvk,vi(t) ≥ fk−1vk,vi

(t), ∀t ∈ T . Then we prune the search

from vi, which means we do not add (vi, fvk,vi(t)) to L̂k and we also do not visit the edges from vi.

The same pruning strategy also applies on the reverse backward fastest path search. The detailed is

illustrated in Algorithm 10.

Algorithm 10: Time-Dependent 2-Hop Construction
Input: G(V,E)
Output: L

1 begin
2 for i = 1, . . . , |V | do
3 //Forward search, create in-labels FM stores all temporay labels FM [vd] = fvi,vd(t)
4 //FQ is a priority queue, key is fvi,vj t.min
5 FQ.push(vi)
6 while !FQ.empty() do
7 vj ← FQ.pop()

8 if Qf (vi, vj, L̂
i−1) domintes MF [vj] then

9 continue
10 for vk ← vj’s out-neighbor do
11 fvi,vk,vj(t)← fvi,vj(t)⊕ fvj ,vk(t)
12 FM [vk] = Min(FM [vk], fvi,vk,vj(t))
13 FQ.push/update(vk)
14 for vd ∈ FM and vd was not skipped do
15 L̂iin(vd) = L̂i−1in ∪ (vi, FM [vd])
16 //Backward search, create out-labels BM stores all temporay labels:

BM [vd] = fvd,vi(t)
17 //BQ is a priority queue, key is fvi,vj t.min
18 BQ.push(vi)
19 while !BQ.empty() do
20 vj ← BQ.pop()

21 if Qf (vj, vi, L̂
i−1) domintes BM [vj] then

22 continue
23 for vk ← vj’s in-neighbor do
24 fvk,vi,vj(t)← fvk,vj(t)⊕ fvj ,vi(t)
25 BM [vk] = Min(BM [vk], fvk,vi,vj(t))
26 BQ.push/update(vk)
27 for vd ∈ BM and vd was not skipped do
28 L̂iout(vd) = Li−1out ∪ (vi, BM [vd])

29 return L̂|V |

6.4 TIME-DEPENDENT 2-HOP LABELING ON SMALL GRAPH 117

Figure 6.4 demonstrates an example of the index construction using the time dependent graph

of Figure 6.1. We visit the vertices in order < v4, v1, v5, v6, v3, v0, v2, v7, v8 > (from Figure 6.4-

(a) to Figure 6.4-(i)). The first line shows the behavior of pruned forward search while the second

line shows the pruned backward search. We use blue vertex to denote the vertex we start the search

from. Red vertex denotes the vertices that are dominated by the existing time-dependent 2-hop labels.

We do not update the red vertex’s neighbors. The yellow ones are the vertices that we visit during

the search, and the white vertices are not visited in the current search. For example, Figure 6.4-(e)

demonstrates the fifth searches starting from v3. The forward search only visits v4 and stops on v5

and v6 since their minimum cost functions are dominated by query results f 4
v3,v5

(t) = Qf (v3, v5, L̂
4)

and f 4
v3,v6

(t) = Qf (v3, v6, L̂
4), respectively. f 4

v3,v5
(t) is created by (v4, fv3,v4(t))) ∈ Lout(v3) and

(v4, fv4,v5(t)) ∈ Lin(v5) via v4, which are introduced by the first searches from v4 as shown in Figure

6.4-(a). f 4
v3,v6

(t) is also created by hop v4. The backward search from v3 only visits v1 and pruned

v0 because fv0,v3(t) is dominated by f 4(v0, v3)(t), which is created by hop v1 in Lout(v0) and Lin(v3)

introduced in the second searches, as shown in Figure 6.4-(b). It is obvious that the searching spaces

of latter searches are smaller than the earlier ones.

6.4.2 Query

A straightforward way to answer a minimum cost function query Qf (vs, vd, L̂) is checking the hops

Hvs,vd one by one. Firstly, we use a hash table to retrieve the common hop vertex set Hvs,vd =

L̂out(vs)∩L̂in(vd). This process takesO(min(L̂out(vs), L̂in(vd))) time. If vs exists in L̂in(vd) or vd ex-

ists in L̂out(vs), we can answer the query by using the hop function directly. Otherwise, we construct

cost functions fvs,vd,vi(t) using the concatenation operation fvs,vi(t)⊕ fvi,vd(t) = fvi,vd(fvs,vi(t) + t)

on each vi ∈ Hvs,vd . The final result fvs,vd(t) is generated by Min({fvs,vd,vi(t)}). So the query pro-

cess takes O(|T | ∗ |Hvs,vd |) time, where |T | is the average number of linear piecewise functions of

fvs,vd(t).

However, the size of |Hvs,vd | could be large when the graph contains more vertices and L̂ grows

bigger, which not only slows down the query answering, but also prolongs the index construction time.

Therefore, we propose a pruning strategy to reduce the actual concatenation and minimization times.

First of all, along with the linear piecewise function’s turning points, we also store the minimum

value fvs,vd(t).min and maximum values fvs,vd(t).max. Then we organize the hop vertices in a

heap, by using the estimated lower bound fvs,vi(t).min + fvi,vd(t).min as key. At this stage, no

118 TIME DEPENDENT 2-HOP LABELING

concatenation or minimization has conducted. After that, we visit the hops in heap one by one. Each

time we visit a hop vi, the temporary result f ′vs,vd(t) is updated (by Min). For a normal query, if

fvs,vi(t).min + fvi,vd(t).min > f ′vs,vd(t).max, we are safe to stop and use the current f ′vs,vd(t) as the

query result. For a query during index construction, we compare the temporary result fkvs,vd(t) with

the direct searching result fvs,vd(t). If the current fkvs,vd(t) already is able to dominate fvs,vd(t), we

stop traversing the heap and avoid searching from vd.

6.4.3 Correctness and Minimality

In this part, we prove L̂ is a time-dependent 2-hop cover. Firstly, the following lemma gives an

instance of correct time-dependent 2-hop cover.

Lemma 6.1. Ln is a time-dependent 2-hop cover.

Proof. Since Ln is an all pair fastest path index, then ∀vs, vd ∈ V , both of (vd, fvs,vd) ∈ Lnout(vs) and

(vs, fvs,vd) ∈ Lnin(vd) hold. Therefore, Lnout(vs) ∩ Lnin(vd) contains at least {(vs, fvs,vd), (vd, fvs,vd)},

and their functions are the same. Thus, Qf (vs, vd) = Qf (vs, vd, L
n) = fvs,vd(t). So Ln is a time-

dependent 2-hop cover.

Then, to prove L̂ is a time-dependent 2-hop cover, we only need to prove Qf (vs, vd, L̂
n) =

Qf (vs, vd, L
n),∀vs, vd ∈ V . In fact, we prove it by showing the both label sets created in iteration k

has the same cover capability in Theorem 6.2.

Theorem 6.2. Qf (vs, vd, L̂
k) = Qf (vs, vd, L

k), ∀k ∈ [0, n].

Proof. We prove it by math induction on the search iteration number i. Initially, i = 0⇒ L0 = L̂0 =

φ. Then suppose Qf (vs, vd, L̂
i) = Qf (vs, vd, L

i) for 0 ≤ i ≤ k − 1. Now we prove it still holds for

i = k.

First of all, suppose the minimum cost function query Qf (vs, vd, L
k−1) that using label set Lk−1

can return a result fk−1vs,vd
(t). Otherwise, just simply ignore the query and use the search result as

the hop labels. Thus, we need to prove the result of Qf (vs, vd, L̂
k−1), f̂k−1vs,vd

(t), is exactly same as

fk−1vs,vd
(t). Secondly, as mentioned in section 6.3.2 which describes Min() function, fk−1vs,vd

(t) is made

up of a set of functions from different vertices in Hvs,vd . Thus, we only need to prove one of the

functions fvs,vd,vh(t), which is created by hop vertex vh, can also be created by query using L̂k−1. In

6.4 TIME-DEPENDENT 2-HOP LABELING ON SMALL GRAPH 119

this way, we can prove each part of f̂k−1vs,vd
(t) equals to the corresponding part of fk−1vs,vd

(t), which leads

to f̂k−1vs,vd
(t) = fk−1vs,vd

(t).

Although the paths of minimum cost function change over time, we can still break it into pieces

based on the time interval such that within each piece, the vertices along each fast path is fixed. As

simple example was illustrated in Figure 4. For any piece of fk−1vs,vd
(t), suppose h is the smallest vertex

order (or earliest search iteration) that creates that piece. Otherwise, we use a smaller one to replace

vh for proof. Obviously, (vh, fvs,vh(t)) ∈ Lk−1out (vs) and (vh, fvh,vd(t)) ∈ Lin(vd)
k−1. All we need

to prove is that both of (vh, fvs,vh(t)) and (vh, fvh,vd(t)) also exist in the pruned sets L̂k−1out (vs) and

L̂k−1in (vd), respectively.

We prove (vh, fvs,vh(t)) ∈ L̂k−1out (vs) first. In fact, we prove ∀vx ∈ Vvs,vh , (vh, fvx,vh(t)) ∈

L̂k−1out (vx), where Vvs,vh is the set of vertices along the path from vs to vh during that piece of time

interval. In anther word, we prove labels (vh, fvx,vh(t)) are added to L̂out(vx) at the hth iteration.

Firstly, these labels that contain vh can only be inserted when we run the hth search from vh. Sec-

ondly, Vvx,vh ⊆ Vvs,vh obviously, because vs is the source vertex along the path vs to vh while vx is an

inner vertex. Since vh is the smallest hop vertex that results in fk−1vs,vd,vh
(t), then ∀i < h, hop vertex

vi /∈ Vvx,vh . In another word, no hop vertex exists along the path vs to vh, so label set L̂h−1 cannot

return a result same as fvx,vh(t). Therefore, the result of Qf (vx, vh, L̂
h−1) cannot dominate fvx,vh(t),

so (vh, fvx,vh(t)) is added to L̂h−1out (vx) during the hth backward search. Thus, (vh, fvs,vh(t)) exists in

L̂k−1out (vs). As for (vh, fvh,vd(t)) ∈ L̂k−1in (vd), it can be proved symmetrically.

So when k = n, we can safely draw the conclusion that Qf (vs, vd, L̂
n) = Qf (vs, vd, L

n), which

means the result of the pruned approach is the same as all pair approach.

Corollary 6.3. The label set L̂ constructed from Section 6.4.1 is a time-dependent 2-hop cover.

Theorem 6.4. If we remove any hop vh from any vertex vi’s L̂out(vi) or L̂in(vi), then L̂ is not a

time-dependent 2-hop cover.

Proof. Suppose we remove (vh, fvs,vh(t)) from L̂out(vs). This would directly cause fvs,vh(t) 6=

Qf (vs, vh, L̂). First of all, ∀i < h, Qf (vs, vh, L̂
i) cannot dominate fvs,vh(t), otherwise (vh, fvs,vh(t)

would not be added to L̂out(s) during the hth iteration. Secondly, because vh was in vs’s out-label, vh

appeared earlier during the construction. Therefore, vs would not be added in vh’s in-label set during

the sth iteration since it was dominated by Qf (vs, vh, L̂
s−1) and (vh, fvs,vh(t)) ∈ L̂s−1out (vs). Thus, the

incomplete L̂ is not a time-dependent 2-hop cover.

120 TIME DEPENDENT 2-HOP LABELING

6.4.4 Complexity Analysis

As proved in [6], the static graph’s 2-hop label size is bounded byΩ(|V ||E|1/2) andO(|V |2). A direct

extension by time-dependent information would result in a loose lower bound ω(T |V ||E|1/2), where

T is the number of turning points in the minimum cost function. This is because when we construct a

minimum cost function from the existing label sets, it has to completely dominate fvs,vd(t) at all time

points. If any piece of the function cannot be dominated, we cannot prune the search and also have to

add fvs,vd(t) to the label set. As for the upper bound, it is O(T |V |2).

Next, we analyze the querying answering time. The average label number of each vertex is

|L|/2|V |. During the query time, we check the common hop vertices of vs and vd. Obviously,

|Hvs,vd | = O(min(|L|/|V |)). For each hop vertex, it takes O(T) time to concatenate and minimize.

Therefore, the worst case is O(T |L|/|V |).

Finally, we analyze the index construction time. The iteration runs |V | times. Within each itera-

tion, there are two fastest path searches. Each of them take O(T |V | log |V | + T 2|E|) time as proved

in [24]. Therefore, the construction takes O(T |V |2 log |V |+ T 2|V ||E|)) time in the worst case.

6.5 Partition-based Time-Dependent 2-Hop on Road Network

As analyzed in Section 6.4.4, both the construction time and index size grow fast as the graph becomes

larger. It could work well on a graph with thousands of vertices, but cannot scale to an ordinary city

road network with hundreds of thousands of vertices. Therefore, we propose a partition-based struc-

ture to extend the time-dependent 2-hop. Section 6.5.1 describes the partitions and overall structure;

Section 6.5.2 explains the index construction of the boundaries vertices of the partitions; Section

6.5.3 explains how to construct the index inside of each partition; Section 6.5.4 elaborates on query

processing; Section 6.5.5 proves the correctness and 6.5.6 analyzes the complexity. We provide an

approximation method to reduce the space complexity with a guaranteed error bound in Section 6.5.7.

Finally, we provide the query extension on any time interval in Section 6.5.8

6.5.1 Graph Partition

Given an input graph G, we partition it into a set C = {G1, G2, . . . , G|C|} of edge-disjoint subgraphs

of G, such that
⋃
i∈[1,|C|]Gi = G. Each subgraph contains thousands of vertices. If a vertex appears

6.5 PARTITION-BASED TIME-DEPENDENT 2-HOP ON ROAD NETWORK 121

in more than one subgraphs in C, then it is a boundary vertex. We use the Natural Cut method [160]

to partition our road network. Such a approach can create only a small number of boundary vertices.

Based on if a vertex is a boundary vertex or not, we construct the time-dependent 2-hop differently.

For all the boundary vertices, we create a time-dependent 2-hop for them, where all the hops are

boundary vertices, and the path information is still computed from the original graph. For all those

vertices that belong to the same subgraph, we construct a time-dependent 2-hop for each subgraph,

which also includes the boundary vertices it contains. When answering a query, we use three sets of

labels to compute the result: labels from vs’s subgraph L̂Gs , labels from vd’s subgraph L̂Gd and labels

of the boundary vertices L̂B.

6.5.2 Boundary 2-Hop Construction

This subsection describes the construction of boundary time-dependent 2-Hop. Since the boundary

vertices separate the vertices from different subgraphs, all the paths that involve different subgraphs

have to pass through them. Therefore, the boundary vertices are naturally hop vertices. Although

the number of the boundary vertices is on the same level of the subgraphs’, its space consumption

is larger. This is because the paths between boundary vertices are longer than the paths within each

subgraph, and longer paths have more turning points in their minimum cost functions.

One straightforward approach is to construct the labels directly like what we described in Section

6.4 on the small graph. However, it would be much slower than running on the small graph because

the fastest path searches actually run on the entire large graph. And the space consumption is also

too huge to tolerate. Moreover, searches of different iterations can only run one by one rather than in

parallel, which further prolongs the construction time.

Our boundary time-dependent 2-hop construction actually runs in 2 phases: parallel all-pair con-

struction phase and pruning phase. During the first phase, we take advantage of the modern multi-

thread computing and compute the all-pair fastest paths between all the boundary vertices in parallel.

The searches still origins from each boundary vertex. The result of each fastest path search is written

down to disk right after it finishes. When all the searches finish, we have cached all the searching

results of each boundary vertex. Then in the pruning phase, we load these searching results in a pre-

defined order and prune them in a similar way as described in Section 6.4.1. We use L̂Bi to denote the

result after processing the ith boundary vertex. Suppose we just finish visiting vBk−1 and get a label set

of L̂Bk−1. Then we load results of vk and test each fastest path fvk,vd(t) (or fvd,vk(t)). If it is dominated

122 TIME DEPENDENT 2-HOP LABELING

by the result of query Qf (vk, vd, L̂
B
k−1) (or Qf (vd, vk, L̂

B
k−1)), we can safely drop it. Otherwise, it is

added to L̂Bk . After the last result is processed, we get a time-dependent 2-hop cover on boundary

vertices L̂B.

6.5.3 Inner 2-Hop Construction

One may think the construction of inner 2-hop is the same as Section 6.4.1 at first glance. However,

although the vertex number is the same and the vertices used as hop are also the same, they still have

a little difference.

Unlike a unique small graph, which computes over its own vertices and edges, a subgraph Gi still

has connections to other subgraphs in G. Then a fast path may not only traverse the vertices in Gi,

but also traverses vertices in other subgraphs. In another word, the fastest path on the original graph

G between two vertices in the same subgraph cannot be answered only by the vertices within that

subgraph.

One straightforward approach is running the construction on G directly and stops searching when

all the vertices in that subgraph are visited. However, it involves other vertices in searching, which

increases the number of vertices involved. Moreover, the searching time is much longer for those

vertices near the boundary of the subgraph.

To avoid stepping into other subgraphs, we need to make full use of boundary vertices. Suppose vs

and vd are in subgraph Gi, and their fastest path needs to visit another subgraph Gj . Obviously, there

are at least two boundary vertices exist along that path (one from Gi to Gj , another from Gj to Gi).

Thanks to the previous subsection, we can take advantages of the existing boundary time-dependent

2-hop. When the search from vs reaches a boundary vertex vb, we use labels to compute all the

minimum cost functions from vb to all the other boundaries vertices in the Gi. Then we concatenate

fvs,vb(t) to these minimum cost functions and get minimum cost functions from vs to all the boundary

vertices in Gi via vb. In this way, all the searching related to Gj are settled by fast query answering.

Since the constructions within each subgraph are unrelated to each other, we can also construct

them in parallel, with each thread is responsible for the time-dependent 2-hop labels of one subgraph.

6.5 PARTITION-BASED TIME-DEPENDENT 2-HOP ON ROAD NETWORK 123

6.5.4 Query

The query answering has two situations. If the vs and vd are in the same subgraph, we can use the

inner 2-hop to answer the query directly. If they are from different subgraphs Gi and Gj , we first

break the query answering in three parts: vs to its boundary vertices GB
i , GB

i to GB
j , and GB

j to vd.

Then we concatenate the results and construct the final result.

The query from vs to GB
i is made up of queries from vs to each boundary vertex in GB

i . These

queries can run in parallel, so the actual query running time is the same as single inner query’s. The

result set is denoted as Fvd,GBi (t). The result set of the query fromGB
j to vd is denoted as FGBj ,vd(t). Its

construction procedure is symmetric to the previous one, and we do not discuss it. The query between

GB
i and GB

j can also run in parallel, and we denote its result set as FGBi ,GBj (t).

After obtaining three result sets, we first sort the functions in FGBi ,GBj (t) based on their minimum

values. Then we retrieve the boundary function in that order. This is based on the observation that

those boundary functions that is made up of two boundary vertices from opposite directions of the

search would result in much longer results and are useless, and we try to avoid visiting them. Each

time we retrieve a fvBi ,vBj (t), we concatenate it with two inner results: fvs,vBi (t)⊕fvBi ,vBj (t)⊕fvBj ,vd(t).

Then use this result to update the current existing fvs,vd(t). For the next boundary function, if its

minimum value is larger than the fvs,vd(t).min and can be dominated by fvs,vd(t), we skip it. If its

minimum value is larger than fvs,vd(t).max, we can drop it directly. After no function can update

fvs,vd(t), we return it as the query result.

6.5.5 Correctness

The correctness of the inner and boundary time-dependent 2-hops are the same as 6.4.3 with simple

variations. Because these results are correct, and the assembling of them to get the query result is

nothing but time-dependent function expansion used in the fastest path search, the query result of

vertices from different subgraphs is also correct.

6.5.6 Complexity Analysis

Suppose the graph is partitioned into |C| subgraphs, and these subgraphs have |B| boundary vertices.

Then each subgraph has an average number of 2|B|/|C| boundary vertices because each boundary

vertex is shared by two subgraphs. Each subgraph has |V |/|C| vertices and |E|/|C| edges. The size

124 TIME DEPENDENT 2-HOP LABELING

of inner 2-hop of each subgraph is ω(T
|V |
|C|

(
|E|
|C|

)1/2). The total size of the inner 2-hop on the whole

graph is ω(T |C| |V |
|C|

(
|E|
|C|

)1/2) = ω(T |V |(|E|
|C|

)1/2). We derive the boundary 2-hop from the all pair

result, which is actually a complete graph that has |B| vertices and |B|2 edges. Although we use

pruning strategy to reduce its size in practice, the theoretic size is still θ(|T |B|2|). Therefore, the

overall space complexity is ω(T (
|V |
|C|

(
|E|
|C|

)1/2 + |B|2)).

The total inner 2-hop construction time is same as that of each individual: O((T |V |2 log(
|V |
|C|

+

T 2|V ||E|)/|C|2), because they are constructed in parallel. The boundary 2-hop construction time is

made up of parallel all-pair generation and pruning: O((T |V | log |V |+ T 2|E|) + |B|2T).

The query time of inner subgraph query is O(T |LC ||V |/|C|), where |LC | is label size of the

subgraph. The query time of the boundary query is O(T |LB| × (2|B|/|C|)2) = O(
T |B|2|LB|
|C|2

). The

concatenation and update operation takes O(
T |LB|2

|C|2
) time. So the overall query time is the sum of

inner subgraph query time, boundary query time and update time.

6.5.7 Approximation

Although the partition approach can reduce the label size of the direct time-dependent 2-hop, it is still

large for many users. Therefore, we provide a Piecewise Linear Approximation method to reduce the

label size, while the error bound is guaranteed.

As observed in the actual label sets, we find many of the turning points in the label functions have

similar values among nearby time points. If we remove some of them while preserving the important

ones, we can have a cost function with fewer turning points, which would result in smaller index size.

The detail of the approximation is shown in Algorithm 5. It takes a minimum cost function

fvs,vd(t) and an error bound as input, and returns the approximated function f̂vs,vd(t). The algorithm

runs in iterations. With each iteration, it removes the turning points that would introduce the smallest

error. It stops when no remaining turning point can produce an error smaller than the error bound.

We use an array B to store the indexes of the remaining turning points, initially from 0 to the number

of turning points in fvs,vd(t) (line 2-3). For all the turning points except the two ending points, we

compute the error that introduced by removing every single one of them at a time (line 6-7), and

actually remove the one introducing the minimum error. The removal is implemented by erasing the

index in B (line 11-12). The introduced error is computed by a function R (line 7). It first constructs

6.5 PARTITION-BASED TIME-DEPENDENT 2-HOP ON ROAD NETWORK 125

Algorithm 11: Approximation Algorithm
Input: fvs,vd(t), error threshold ε
Output: f̂vs,vd(t)

1 begin
2 size← |fvs,vd(t)|
3 B =< 0, 1, ..., size− 1 >
4 do
5 minError = inf
6 for j from 1 to |B| − 1 do
7 errorTmp = R(fvs,vd(t), B[j − 1], B[j + 1])
8 if errorTmp < minError then
9 minError = errorTmp

10 breakPoint = j
11 if minError < ε then
12 B.erase(breakPoint)
13 while minError 6 ε
14 return fvs,vd(B)
15

16 Function R(fvs,vd(t), B[i], B[j])
17 error ← 0
18 //compute a linear function with points
19 //(t[B[i]], fvs,vd(t[B[i]])) and (t[B[j]], fvs,vd(t[B[j]]))
20 f ′(t)← linear < fvs,vd(t[B[i]]), fvs,vd(t[B[j]]) >
21 for k from B[i] + 1 to B[j] do
22 error ← error + f ′(t[k])− fvs,vd(t[k])
23 return error

a linear function f ′(t) with two ending points (t[B[i]], fvs,vd(t[B[i]])) and (t[B[j]], fvs,vd(t[B[j]])),

where t[B[i]] is the B[i]th time point (line 20). It should be noted that although j − 1 and j + 1 is

separated by only one number, their actual valuesB[j−1] andB[j+1] could be separated by multiple

numbers because they were erased in the previous iteration. We need to accumulate the errors of all

these intermediate values, by computing the differences between original value and its corresponding

value on the linear function f ′(t) , to get the total error (line 21-22). When no error is smaller than the

input error bound, the iteration stops and a new minimum cost function is returned by only keeping

the remaining turning points in B.

Because the query answering considers two labels, the error bound of inner partition result is 2ε.

As for the query between partitions, it is 6ε obviously.

126 TIME DEPENDENT 2-HOP LABELING

6.5.8 Fastest Path Query

It is easy to use our time-dependent 2-hop to answer any fastest path query. Suppose the query is

issued in time interval [t1, t2]. A straightforward approach is getting the profile result first, then re-

trieve the sub-function during [t1, t2]. A more efficient way is constructing the intermediate functions

only during [t1, t2]. Because the turning points are sorted in temporal order, we can locate the desired

positions (t1 and t2) in O(log T) time. All the other procedures are the same, only on a smaller time

interval.

6.6 Experiment

In this section, we experimentally evaluate the proposed time-dependent 2-hop labeling on both small

graph and real-life road network against the current state-of-the-art methods. Section 6.6.1 describes

the experiment settings. Section 6.6.2 and Section 6.6.3 present the evaluations on small graph and

large road network, respectively.

6.6.1 Experiment Setup

All the algorithms are implemented in C++, compiled with full optimizations, and tested on a Dell

R730 PowerEdge Rack Mount Server which has two Xeon E5-2630 2.2GHz (each has 10 cores and

20 threads) and 378G memory. The data are stored on a 12 × 4TB raid-50 disk.

Dataset. The dataset are the same as Chapter 5, as generated from Chapter 4. We partition it into

83 subgraphs using Natural Cut [160]. These subgraphs have various sizes between 1000 and 4000

vertices, and 3011 boundary vertices totally (less than 40 boundary vertices per subgraph averagely).

We use these subgraphs as testing small graphs. The average turning point number is 26. Most roads

in the inner city have more than 60 turning points, while the rural roads typically have less than 20

turning points.

Query sets. The experiment on small graph is first categorized by the graph size: 1000, 2000,

3000 and 4000 vertices. Within each category, they are further categorized into three sub-categories

based on the densities of their speed profiles: Sparse (around 10 turning points per edge), Medium

(around 30 turning points per edge) and Dense (around 50 turning points per edge). On each sub-

category, we run three sets of tests based on the distance between the source and destination. Because

6.6 EXPERIMENT 127

TABLE 6.3: Time-Dependent 2-Hop Experiment Result of Small Graph

Time unit is ms. Speed up value is the running time compared with FP’s. Sparse graphs’ speed

profiles have around 10 turning points per edge, medium graphs’ are around 30 and dense graphs’

are around 50.

Size
Algorithm Sparse Medium Dense

Distance 5km 10km 15km Size 2km 4km 6km Size 6km 8km 10km Size

1k

T2Hop
Time 0.88 0.88 0.87

181M
3 3.6 3.7

736m
13.7 17 22

5.1G
Speedup 26.58 37.57 39.55 40.2 84 231 92.7 151.4 176.41

T2HopA20
Time 0.32 0.33 0.33

37M
0.76 0.92 0.96

138M
3.3 2.9 4.1

883M
Speedup 41.5 97 102 160 329 890 386 628 896

T2HopA30
Time 0.31 0.32 0.33

33M
0.67 0.8 0.86

117M
2.67 2.33 3.44

742M
Speedup 75.7 100.4 103 181 375 993 480 771 996

TCH
Time 28 31 32

15M
97 151 141

60M
305 350 399

131M
Speedup 0.84 1.07 1.1 1.25 2 6.1 4.2 5.13 8.6

FP Time 23.4 33.22 34.4 121 304 854 1280 1797 3423

2k

Distance 10km 20km 30km Size 3km 5km 7km Size 3km 4km 5km Size

T2Hop
Time 1.48 1.54 1.33

736M
18.8 17.8 18.9

8.5G
26.8 26.7 28.2

11G
Speedup 71.8 423 3099 16 52 159 20 43 104

T2HopA20
Time 0.55 0.51 0.38

139M
0.47 0.45 0.48

1.6G
7 6.9 7.1

1.9G
Speedup 194 1273 10820 666 2060 6304 77 165 417

T2HopA30
Time 0.5 0.48 0.36

123M
0.39 0.38 0.4

1.3G
6.1 5.9 6.2

1.6G
Speedup 216 1369 11356 802 2439 7565 88.4 193 477

TCH
Time 22.3 25.8 23.9

16M
344 527 497

206M
379 470 457

254M
Speedup 4.75 25.23 173 0.91 1.76 6.1 1.42 2.42 6.74

FP Time 106 651 4136 313 927 3026 539 1140 2959

3k

Distance 20km 40km 60km Size 10km 15km 20km Size 4km 5km 6km Size

T2Hop
Time 4.8 6 4.7

2.9G
7.9 9.7 9.2

6.3G
38.7 48.9 47.7

27G
Speedup 29 1098 8179 32 30 52 12 42 79

T2HopA20
Time 1.7 1.5 1.3

543M
1.88 2.3 2.2

1.2G
8.2 10.3 10.2

4.8G
Speedup 82 4393 30061 136 129 222 57.7 202 367

T2HopA30
Time 1.5 1.4 1.4

466M
1.68 2 1.9

1002M
7.8 9.3 9.1

4G
Speedup 93 4707 27914 154 148 257 60.6 224 412

TCH
Time 53 57 72

40M
300 289 284

159M
581 1106 1350

599M
Speedup 2.64 115.6 543 0.85 1.02 1.72 0.84 1.88 2.78

FP Time 140 6590 39080 256 297 489 473 2083 3751

4k

Distance 10km 15km 20km Size 6km 8km 10km Size 3km 4km 5km Size

T2Hop
Time 2.7 2.8 2.9

1.5G
24 26 31

19G
53.9 64.5 50.1

33G
Speedup 345 432 321 15 28 45 28 42 185

T2HopA20
Time 0.73 0.59 0.69

288M
7.2 7.9 8.2

3.3G
9.4 9.9 9.2

5.5G
Speedup 1275 2103 1353 52.7 93 175 160 275 1021

T2HopA30
Time 0.65 0.49 0.57

252M
6.3 6.7 6.9

2.8G
7.7 8.1 7.4

4.6G
Speedup 1432 2534 1638 60 110 207 195 336 1267

TCH
Time 99.6 95.2 85.7

53M
381 516 731

298M
1109 1566 1918

669M
Speedup 9.3 13 10.9 0.99 1.43 2 1.36 1.74 4.9

FP Time 931 1242 934 379 738 1434 1505 2721 9379

128 TIME DEPENDENT 2-HOP LABELING

TABLE 6.4: Time-Dependent 2-Hop Experiment Result of Road Network

Time unit is second. Size is the total index size, and Space is the index actually used for query. T is

short for Time and S is short for Speedup.
Algorithm Sparse Medium Dense Size

Distance 70km 80km 90km Space 40km 50km 60km Space 15km 20km 25km Space Size

T2Hop
T 0.388 0.368 0.37

5.4G
1.65 1.71 1.81

32.3G
6.26 6.12 6.6

82.4G 1.48T
S 505 766 986 262 262 256 31.5 33.17 44.1

T2HopA20
T 0.021 0.0137 0.0141

760M
0.025 0.026 0.026

5.3G
0.115 0.117 0.118

14G 224G
S 9333 20583 25886 17320 17230 17846 1713 1735 2466

T2HopA30
T 0.0153 0.0149 0.016

557M
0.023 0.025 0.026

4.2G
0.077 0.081 0.083

11.4G 208G
S 12810 18926 22813 18826 17920 17846 2558 2506 3506

TCH
T 38.7 35.53 39.3

85G
24.8 23.85 22.4

85G
24.3 19.67 18.5

85G 85G
S 5.1 7.9 9.2 17.5 18.88 20.7 8.1 10.3 15.7

TSHARC
T 31.9 29.4 33.2

86.8G
18.7 19.3 18.2

86.8G
19.3 16.4 15.9

86.8G 86.8G
S 6.1 9.6 11 23 23.2 25.5 10.2 12.4 18.3

FP T 196 282 365 433 448 464 197 203 291

the actual regions of each small graph vary, the distance ranges are different. For each test set, we

generate 100 vertex pairs randomly.

The experiment in road network tests the source and destination vertex pairs from different sub-

graphs. Based on the speed profile density of their origin subgraphs, we categorize the tests into three

sets: Sparse, Medium and Dense. For example, in the Sparse test, both of the source and destination

come from sparse subgraphs. So do Medium and Dense. Under each category, we also run three sets

of tests based on the distance between the source and destination. Each set contains 100 randomly

generated vertex pairs.

Methods. Our time-dependent 2-hop method is denoted as T2Hop. We also applied approxi-

mation on it with error bound of 20 and 30. They are denoted as T2HopA20 and T2HopA30. We

implement the time-dependent CH (TCH) using the heuristic method described in[105], with hop

limit set to 20. The time-dependent SHARC (TSHARC) is implemented using the method of [107].

The baseline approach is the fastest path algorithm (FP) [24].

6.6.2 Evaluation on Small Graph

The experiment results are shown in Table 6.3. The four big rows are the graph sizes, and the three

big columns are the speed profile density. For each method, we list its index size, the actual query

running time (in ms) on different distance sets, and the speedup gain compared with the fastest path.

6.6 EXPERIMENT 129

Firstly, all three time-dependent 2-hop approaches have shorter query time than the direct fastest

path algorithm and the two online speedup approaches. As the approximation error bound grows, the

index size drops, which further leads to shorter query time and higher speedup. This is because their

hop sets are the same, but the approximate ones have smaller minimum cost function of each hop, and

the cost of linear piecewise function operations drops.

Secondly, the speed profile density has a higher impact on query time than the vertex number and

distance. For example, the 1k graph with medium density has queries around 4km length, but its

query time is shorter than the 4k graph with sparse density running querier on 20km tests. However,

the FP time on 20km-4k-sparse graph is similar to 10km-4k-sparse graph. This is because this sparse

graph is in the rural region, the longer queries are derived from the rural roads that are long and have

sparser speed profile, while the shorter queries are derived from the near-city roads which are shorter

but have denser speed profile.

Thirdly, the query answering time increases a little bit as the distance increase, but on a much

smaller scale than FP. Thus, even though the query answering time does not increase a lot, the speedup

increases dramatically. In fact, it is also affected by the order to visit the vertices when we create the

labels.

Lastly, the graph size also affects the query performance. For the graphs with similar density, the

larger ones have longer query time. This is because the larger ones have more hop labels than the

smaller ones. Moreover, for the FP, it also needs to visit more vertices through shorter edges.

Finally, the distance between two vertices does not have a significant effect on TCH as expected.

For some short queries, it is even slower than FP. As the distance grows, its speedup performance

becomes better but still worse than time-dependent 2-hop. This is because it contains many shortcuts

on the vertices. Among these shortcuts, some link to the vertices far away, which help reduce the

searching space for long queries. However, for those short queries, we still have to visit those short-

cuts, as long as they still have the possibility to contribute to the final result. Therefore, TCH might

have to visit more vertices than FP when the query is short, which makes it slower. On the other hand,

it could have speedup performance up to several hundred times, as long as the query distance is long.

Nevertheless, it is still slower than our approach.

130 TIME DEPENDENT 2-HOP LABELING

6.6.3 Evaluation on Large Road Network

The experiment results are shown in Table 6.4. The three big columns are the speed profile densities,

and the last small column shows the total index sizes. Under each density category, we test three sets

of different distances. Unlike the evaluation on the small graph, the query running time here is in

second. The speedup gain is also compared with FP.

Apparently, our time-dependent 2-hop approach has a shorter query time than the online speedup

approaches, and the approximate methods are even much faster. Like the evaluation on the small

graph, the speed profile density also plays an important role. Even when the testing distances are

shorter than the sparse tests, the dense tests still have longer query time. On the other hand, the query

time does not change too much as the distance increases, because it involves concatenation of three

result sets, which takes much longer time than the queries in the subgraphs. Therefore, the main factor

that affects the query time is the size of minimum cost functions.

The running time of TCH and TSHARC does not change too much. Because they need to visit

a large number of shortcuts for each vertex, no matter the path is short or long. For the short paths,

they suffer from the wasteful computation; For the long paths, they benefit from it. The TSHARC is

slightly faster than TCH, because it is essentially a pruning strategy of TCH that avoids visiting some

of the apparently useless shortcuts. And its index size is also slightly bigger.

The Space columns within each category are the actual space it takes to answer the query. Because

our approach is partition based, we only need to load the used indexes of the subgraphs and their

corresponding boundary labels. Therefore, the actual space that our approaches consume is smaller

than TCH and TSHARC, which have to load the entire index into memory.

6.7 Summary

In this chapter, we extend the 2-hop label approach to time-dependent environment and use it to an-

swer the fastest path profile query quickly. Unlike the case under static environment, where the short-

est path indexes are well studied and widely used, little work has been done on the time-dependent

environment. Even the state-of-art approaches fall into the easier and smaller but slower online search

category, and only tested on the simple histogram-based speed profile rather than the common linear

piecewise function. In this work, we first propose a time-dependent 2-hop labeling approach to answer

fastest path profile query on small graph, using the linear piecewise function. After that, we extend it

6.7 SUMMARY 131

to real-life large road network by exploiting graph partition. Both of the construction and query an-

swering can work in parallel. To further reduce the space consumption and boost the query answering,

we provide a approximation method using PLA. Our extensive experiments show the query answering

time is sped up to hundreds of times and also much faster than the online search approaches.

132 TIME DEPENDENT 2-HOP LABELING

Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we study the route scheduling in road network thoroughly. From map data preparation

and speed profile generation, to MORT path finding and fast query answering.

In Chapter 3, we study the reachability problem on general graphs. By extending the graph domi-

nance drawing to higher dimension space, we propose our HD-GDD method. It has smaller index size

and faster construction time than the accurate indexes, and is faster in query answering than the online

search approaches. Evaluations on various graphs with different configurations have fully tested its

performance. When it is applied in road network, which is mostly planar, it can achieve constant time

query answering with a small dimension number like four or 5. Therefore, we can use it to prune out

the isolated vertices on a raw map data, and tests if a pair of query vertices are reachable or not before

the actual search starts. In fact, its best using scenario is the near-planar graph like road network.

In Chapter 4, we present our solution to generate speed profile from trajectory data. Because it

is expensive and actually impossible to use traffic sensors to generate the speed profile of an entire

city, we take advantage of the pervasive trajectories that generated by drivers everyday. However,

few work exists to cover the whole process from trajectory to speed profile, so most of the works

in the time-dependent road network field just generate a speed profile synthetically. We first map

the trajectories on the background road network. Then we test different granularities to collect the

speed values. After that, we propose two simple but effective methods to estimate the missing values.

Finally, we introduce the piecewise linear approximation algorithms to compress the big speed profile.

The generated speed profile is used in the latter part of our research.

133

134 CONCLUSION AND FUTURE WORK

In Chapter 5, we propose a general form of time-dependent path problem, the MORT problem. By

allowing waiting on some predefined vertices, the optimization object converts to the actual driving

time on road. Various users like logistic companies, tourists and urban planning facilities have needs

to find paths like this. Moreover, by configuring some parameters, our problem can reduce to all the

other existing single-objective path problems. We propose two algorithm to solve it accurately and

analyze their complexity. To further speed up the computation, we provide several approximation

techniques with worst case error guaranteed. Extensive experiments are conducted to fully study the

algorithm performance.

In Chapter 6, we propose a time-dependent 2-hop labeling approach to answer the slow time-

dependent path problem queries faster in road network. Similar approaches are studied extensively

on static, but no extension on time-dependent environment ever exists. This is because the index

size and construction time would soar up. Therefore, only extension on online search approaches

were proposed in the past ten years. To make the 2-hop applicable, we first propose a pruning based

approach on small graph. After that, we take advantages of graph partition methods to split the large

road network into subgraphs. By constructing indexes with and between these subgraphs, we obtain

our time-dependent 2-hop. To further reduce the index size and speedup query answering, we propose

an approximation method with error bounded by a small number. Comparison with the direct path

algorithms and existing online speedup approaches shows than our approach is hundreds or thousands

times faster.

7.2 Future work

In the future, we plan to continue to explore our research work on time-dependent road network

towards the following directions:

• The reachability problem is still not well solved. In our study, we analyze the cause of false

positive and the importance of topological ordering of the existing approaches. However, the-

oretical breakthrough still lies ahead for us to find out. Without a definite problem complexity

analysis related to the graph structure, any approach is just heuristic and only works best on

some specific scenarios (like ours in road network). A deep investigation into graph structures

is essential to solve it.

7.2 FUTURE WORK 135

• The time-dependent path problem is still not well solved, because no algorithm can reach the

lower bound of the problem complexity.

• The path planning query is on the level of millions per hour nowadays. Although the static

index is able to answer them quickly, we lose the new information brought by these queries.

How to take advantages of this large amount of queries to keep the index up-to-date, and use

them to help answering future queries, is a research topic and also an actual need of industry

field. A cache like structure would be helpful to answer similar queries.

• All of our time-dependent path methods can be used to extend the static path-related problems,

like group trip planning, constraint shortest path, taxi driver-customer assignment and many

more. It is not just simply making the problem more complex, but actually improve the real-life

services with higher accuracy.

136 CONCLUSION AND FUTURE WORK

References

[1] R. Agrawal, A. Borgida, and H. V. Jagadish, Efficient management of transitive relationships

in large data and knowledge bases, vol. 18.

[2] S. J. van Schaik and O. de Moor, “A memory efficient reachability data structure through bit

vector compression,” in Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data, pp. 913–924, ACM, 2011.

[3] Y. Chen and Y. Chen, “An efficient algorithm for answering graph reachability queries,” in

Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on, pp. 893–902,

IEEE, 2008.

[4] R. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently answering reachability queries on very

large directed graphs,” in Proceedings of the 2008 ACM SIGMOD international conference on

Management of data, pp. 595–608, ACM, 2008.

[5] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu, “Tf-label: a topological-folding labeling scheme

for reachability querying in a large graph,” in Proceedings of the 2013 ACM SIGMOD Inter-

national Conference on Management of Data, pp. 193–204, ACM, 2013.

[6] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and distance queries via 2-hop

labels,” SIAM Journal on Computing, vol. 32, no. 5, pp. 1338–1355, 2003.

[7] H. He, H. Wang, J. Yang, and P. S. Yu, “Compact reachability labeling for graph-structured

data,” in Proceedings of the 14th ACM international conference on Information and knowledge

management, pp. 594–601, ACM, 2005.

137

138 REFERENCES

[8] R. Schenkel, A. Theobald, and G. Weikum, “Efficient creation and incremental maintenance

of the hopi index for complex xml document collections,” in Data Engineering, 2005. ICDE

2005. Proceedings. 21st International Conference on, pp. 360–371, IEEE, 2005.

[9] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu, “Fast computing reachability labelings for

large graphs with high compression rate,” in Proceedings of the 11th international conference

on Extending database technology: Advances in database technology, pp. 193–204, ACM,

2008.

[10] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: a high-compression indexing scheme for

reachability query,” in Proceedings of the 2009 ACM SIGMOD International Conference on

Management of data, pp. 813–826, ACM, 2009.

[11] R. Jin and G. Wang, “Simple, fast, and scalable reachability oracle,” Proc. VLDB Endow.,

vol. 6, pp. 1978–1989, Sept. 2013.

[12] H. Yildirim, V. Chaoji, and M. J. Zaki, “Grail: Scalable reachability index for large graphs,”

Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 276–284, 2010.

[13] S. Seufert, A. Anand, S. Bedathur, and G. Weikum, “Ferrari: Flexible and efficient reacha-

bility range assignment for graph indexing,” in Data Engineering (ICDE), 2013 IEEE 29th

International Conference on, pp. 1009–1020, IEEE, 2013.

[14] R. R. Veloso, L. Cerf, W. Meira Jr, and M. J. Zaki, “Reachability queries in very large graphs:

A fast refined online search approach.,” in EDBT, pp. 511–522, 2014.

[15] T. Kameda, “On the vector representation of the reachability in planar directed graphs,” Infor-

mation Processing Letters, vol. 3, no. 3, pp. 75–77, 1975.

[16] P. Eades, H. ElGindy, M. Houle, B. Lenhart, M. Miller, D. Rappaport, and S. Whitesides,

“Dominance drawings of bipartite graphs,” 1994.

[17] E. M. Kornaropoulos and I. G. Tollis, “Overloaded orthogonal drawings,” in Graph Drawing,

pp. 242–253, Springer, 2012.

[18] H. Wei, J. X. Yu, C. Lu, and R. Jin, “Reachability querying: An independent permutation

labeling approach,” Proceedings of the VLDB Endowment, vol. 7, no. 12, 2014.

REFERENCES 139

[19] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method: An approach to store-and-

forward communication network design,” Networks, vol. 3, no. 2, pp. 97–133, 1973.

[20] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische mathematik,

vol. 1, no. 1, pp. 269–271, 1959.

[21] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths over large graphs,” in

Proceedings of the 11th international conference on Extending database technology: Advances

in database technology, pp. 205–216, ACM, 2008.

[22] L. Li, W. Hua, and X. Zhou, “Hd-gdd: high dimensional graph dominance drawing approach

for reachability query,” World Wide Web, vol. 20, no. 4, pp. 677–696, 2017.

[23] L. Li, K. Zheng, S. Wang, W. Hua, and X. Zhou, “Go slow to go fast: minimal on-road time

route scheduling with parking facilities using historical trajectory,” The VLDB JournalThe In-

ternational Journal on Very Large Data Bases, vol. 27, no. 3, pp. 321–345, 2018.

[24] L. Li, W. Hua, X. Du, and X. Zhou, “Minimal on-road time route scheduling on time-dependent

graphs,” Proceedings of the VLDB Endowment, vol. 10, no. 11, pp. 1274–1285, 2017.

[25] L. Li, X. Zhou, and K. Zheng, “Finding least on-road travel time on road network,” in Aus-

tralasian Database Conference, pp. 137–149, Springer, 2016.

[26] H. Jagadish, “A compression technique to materialize transitive closure,” ACM Transactions

on Database Systems (TODS), vol. 15, no. 4, pp. 558–598, 1990.

[27] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu, “Dual labeling: Answering graph reachabil-

ity queries in constant time,” in Data Engineering, 2006. ICDE’06. Proceedings of the 22nd

International Conference on, pp. 75–75, IEEE, 2006.

[28] R. Jin, N. Ruan, S. Dey, and J. Y. Xu, “Scarab: scaling reachability computation on large

graphs,” in Proceedings of the 2012 ACM SIGMOD International Conference on Management

of Data, pp. 169–180, ACM, 2012.

[29] E. M. Kornaropoulos and I. G. Tollis, “Weak dominance drawings and linear extension diame-

ter,” arXiv preprint arXiv:1108.1439, 2011.

140 REFERENCES

[30] U. Demiryurek, B. Pan, F. Banaei-Kashani, and C. Shahabi, “Towards modeling the traffic data

on road networks,” in Proceedings of the Second International Workshop on Computational

Transportation Science, pp. 13–18, ACM, 2009.

[31] F. C. Pereira, H. Costa, and N. M. Pereira, “An off-line map-matching algorithm for incomplete

map databases,” European Transport Research Review, vol. 1, no. 3, pp. 107–124, 2009.

[32] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-matching for low-

sampling-rate gps trajectories,” in Proceedings of the 17th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pp. 352–361, ACM, 2009.

[33] B. Yang, C. Guo, and C. S. Jensen, “Travel cost inference from sparse, spatio temporally

correlated time series using markov models,” Proceedings of the VLDB Endowment, vol. 6,

no. 9, pp. 769–780, 2013.

[34] P. Widhalm, M. Piff, N. Brändle, H. Koller, and M. Reinthaler, “Robust road link speed esti-

mates for sparse or missing probe vehicle data,” in Intelligent Transportation Systems (ITSC),

2012 15th International IEEE Conference on, pp. 1693–1697, IEEE, 2012.

[35] X. Xin, C. Lu, Y. Wang, and H. Huang, “Forecasting collector road speeds under high percent-

age of missing data.,” in AAAI, pp. 1917–1923, 2015.

[36] Z. Shan, D. Zhao, and Y. Xia, “Urban road traffic speed estimation for missing probe vehicle

data based on multiple linear regression model,” in Intelligent Transportation Systems-(ITSC),

2013 16th International IEEE Conference on, pp. 118–123, IEEE, 2013.

[37] M. T. Asif, N. Mitrovic, L. Garg, J. Dauwels, and P. Jaillet, “Low-dimensional models for miss-

ing data imputation in road networks,” in Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on, pp. 3527–3531, IEEE, 2013.

[38] T. Erdelić, S. Vrbančić, and L. Rošić, “A model of speed profiles for urban road networks

using g-means clustering,” in Information and Communication Technology, Electronics and

Microelectronics (MIPRO), 2015 38th International Convention on, pp. 1081–1086, IEEE,

2015.

REFERENCES 141

[39] K. Fitzpatrick and J. Collins, “Speed-profile model for two-lane rural highways,” Transporta-

tion Research Record: Journal of the Transportation Research Board, no. 1737, pp. 42–49,

2000.

[40] S. R. Eddy, “Hidden markov models,” Current opinion in structural biology, vol. 6, no. 3,

pp. 361–365, 1996.

[41] J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, “Inferring gas consumption and pollution

emission of vehicles throughout a city,” in Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 1027–1036, ACM, 2014.

[42] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering recommen-

dation algorithms,” in Proceedings of the 10th international conference on World Wide Web,

pp. 285–295, ACM, 2001.

[43] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender sys-

tems,” Computer, no. 8, pp. 30–37, 2009.

[44] P. Esling and C. Agon, “Time-series data mining,” ACM Computing Surveys (CSUR), vol. 45,

no. 1, p. 12, 2012.

[45] H. Shatkay and S. B. Zdonik, “Approximate queries and representations for large data se-

quences,” in Data Engineering, 1996. Proceedings of the Twelfth International Conference on,

pp. 536–545, IEEE, 1996.

[46] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A survey and novel

approach,” Data mining in time series databases, vol. 57, pp. 1–22, 2004.

[47] C.-S. Li, P. S. Yu, and V. Castelli, “Malm: A framework for mining sequence database at mul-

tiple abstraction levels,” in Proceedings of the seventh international conference on Information

and knowledge management, pp. 267–272, ACM, 1998.

[48] S. Park, D. Lee, and W. W. Chu, “Fast retrieval of similar subsequences in long sequence

databases,” in Knowledge and Data Engineering Exchange, 1999.(KDEX’99) Proceedings.

1999 Workshop on, pp. 60–67, IEEE, 1999.

142 REFERENCES

[49] E. J. Keogh and M. J. Pazzani, “An enhanced representation of time series which allows fast

and accurate classification, clustering and relevance feedback.,” in KDD, vol. 98, pp. 239–243,

1998.

[50] K. L. Cooke and E. Halsey, “The shortest route through a network with time-dependent intern-

odal transit times,” Journal of mathematical analysis and applications, vol. 14, no. 3, pp. 493–

498, 1966.

[51] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network opti-

mization algorithms,” Journal of the ACM (JACM), vol. 34, no. 3, pp. 596–615, 1987.

[52] E. V. Denardo and B. L. Fox, “Shortest-route methods: 1. reaching, pruning, and buckets,”

Operations Research, vol. 27, no. 1, pp. 161–186, 1979.

[53] I. Pohl, Bi-directional and heuristic search in path problems. PhD thesis, Dept. of Computer

Science, Stanford University., 1969.

[54] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of

minimum cost paths,” Systems Science and Cybernetics, IEEE Transactions on, vol. 4, no. 2,

pp. 100–107, 1968.

[55] R. Bellman, “On a routing problem,” tech. rep., DTIC Document, 1956.

[56] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5, no. 6, p. 345,

1962.

[57] M. L. Fredman, “New bounds on the complexity of the shortest path problem,” SIAM Journal

on Computing, vol. 5, no. 1, pp. 83–89, 1976.

[58] D. B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” Journal of the ACM

(JACM), vol. 24, no. 1, pp. 1–13, 1977.

[59] D. Peleg, “Proximity-preserving labeling schemes,” Journal of Graph Theory, vol. 33, no. 3,

pp. 167–176, 2000.

[60] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, “Distance labeling in graphs,” in Proceedings

of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pp. 210–219, Society for

Industrial and Applied Mathematics, 2001.

REFERENCES 143

[61] M. Thorup and U. Zwick, “Approximate distance oracles,” Journal of the ACM (JACM),

vol. 52, no. 1, pp. 1–24, 2005.

[62] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu, “Hop doubling label indexing for point-to-

point distance querying on scale-free networks,” Proceedings of the VLDB Endowment, vol. 7,

no. 12, pp. 1203–1214, 2014.

[63] H. Bast, S. Funke, and D. Matijević, “Transit: ultrafast shortest-path queries with linear-time

preprocessing,” in 9th DIMACS Implementation Challenge—Shortest Path, 2006.

[64] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata, “Fast shortest-path distance queries

on road networks by pruned highway labeling.,” in ALENEX, pp. 147–154, SIAM, 2014.

[65] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance queries on large net-

works by pruned landmark labeling,” in Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, pp. 349–360, ACM, 2013.

[66] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction hierarchies: Faster and

simpler hierarchical routing in road networks,” in International Workshop on Experimental and

Efficient Algorithms, pp. 319–333, Springer, 2008.

[67] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “A hub-based labeling algorithm

for shortest paths in road networks,” in International Symposium on Experimental Algorithms,

pp. 230–241, Springer, 2011.

[68] R. Jin, N. Ruan, Y. Xiang, and V. Lee, “A highway-centric labeling approach for answering dis-

tance queries on large sparse graphs,” in Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, pp. 445–456, ACM, 2012.

[69] N. Jing, Y.-W. Huang, and E. A. Rundensteiner, “Hierarchical encoded path views for path

query processing: An optimal model and its performance evaluation,” Knowledge and Data

Engineering, IEEE Transactions on, vol. 10, no. 3, pp. 409–432, 1998.

[70] S. Jung and S. Pramanik, “An efficient path computation model for hierarchically structured

topographical road maps,” Knowledge and Data Engineering, IEEE Transactions on, vol. 14,

no. 5, pp. 1029–1046, 2002.

144 REFERENCES

[71] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network distance browsing in spatial

databases,” in Proceedings of the 2008 ACM SIGMOD international conference on Manage-

ment of data, pp. 43–54, ACM, 2008.

[72] J. Sankaranarayanan, H. Alborzi, and H. Samet, “Efficient query processing on spatial net-

works,” in Proceedings of the 13th annual ACM international workshop on Geographic infor-

mation systems, pp. 200–209, ACM, 2005.

[73] L. Tang and M. Crovella, “Virtual landmarks for the internet,” in Proceedings of the 3rd ACM

SIGCOMM conference on Internet measurement, pp. 143–152, ACM, 2003.

[74] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. d. C. Reis, and B. Ribeiro-Neto,

“Efficient search ranking in social networks,” in Proceedings of the sixteenth ACM conference

on Conference on information and knowledge management, pp. 563–572, ACM, 2007.

[75] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path distance estimation in

large networks,” in Proceedings of the 18th ACM conference on Information and knowledge

management, pp. 867–876, ACM, 2009.

[76] W. Chen, C. Sommer, S.-H. Teng, and Y. Wang, “A compact routing scheme and approximate

distance oracle for power-law graphs,” ACM Transactions on Algorithms (TALG), vol. 9, no. 1,

p. 4, 2012.

[77] T. Akiba, C. Sommer, and K.-i. Kawarabayashi, “Shortest-path queries for complex networks:

exploiting low tree-width outside the core,” in Proceedings of the 15th International Confer-

ence on Extending Database Technology, pp. 144–155, ACM, 2012.

[78] K. Tretyakov, A. Armas-Cervantes, L. Garcı́a-Bañuelos, J. Vilo, and M. Dumas, “Fast fully dy-

namic landmark-based estimation of shortest path distances in very large graphs,” in Proceed-

ings of the 20th ACM international conference on Information and knowledge management,

pp. 1785–1794, ACM, 2011.

[79] M. Qiao, H. Cheng, L. Chang, and J. X. Yu, “Approximate shortest distance computing: A

query-dependent local landmark scheme,” Knowledge and Data Engineering, IEEE Transac-

tions on, vol. 26, no. 1, pp. 55–68, 2014.

REFERENCES 145

[80] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search meets graph the-

ory,” in Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms,

pp. 156–165, Society for Industrial and Applied Mathematics, 2005.

[81] F. Wei, “Tedi: efficient shortest path query answering on graphs,” in Proceedings of the 2010

ACM SIGMOD International Conference on Management of data, pp. 99–110, ACM, 2010.

[82] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in temporal graphs,”

Proceedings of the VLDB Endowment, vol. 7, no. 9, pp. 721–732, 2014.

[83] R. Bauer, D. Delling, and D. Wagner, “Experimental study of speed up techniques for timetable

information systems,” Networks, vol. 57, no. 1, pp. 38–52, 2011.

[84] B. B. Xuan, A. Ferreira, and A. Jarry, “Computing shortest, fastest, and foremost journeys in

dynamic networks,” International Journal of Foundations of Computer Science, vol. 14, no. 02,

pp. 267–285, 2003.

[85] D. Kempe, J. Kleinberg, and A. Kumar, “Connectivity and inference problems for temporal

networks,” in Proceedings of the thirty-second annual ACM symposium on Theory of comput-

ing, pp. 504–513, ACM, 2000.

[86] A. Orda and R. Rom, “Shortest-path and minimum-delay algorithms in networks with time-

dependent edge-length,” Journal of the ACM (JACM), vol. 37, no. 3, pp. 607–625, 1990.

[87] R. K. Pan and J. Saramäki, “Path lengths, correlations, and centrality in temporal networks,”

Physical Review E, vol. 84, no. 1, p. 016105, 2011.

[88] J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner, “Intriguingly simple and fast transit routing,”

in Experimental Algorithms, pp. 43–54, Springer, 2013.

[89] R. Geisberger, “Contraction of timetable networks with realistic transfers,” in Experimental

Algorithms, pp. 71–82, Springer, 2010.

[90] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, “Efficient route planning on public transporta-

tion networks: A labelling approach,” in Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pp. 967–982, ACM, 2015.

146 REFERENCES

[91] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson, V. Raychev, and

F. Viger, “Fast routing in very large public transportation networks using transfer patterns,”

in Algorithms–ESA 2010, pp. 290–301, Springer, 2010.

[92] S. E. Dreyfus, “An appraisal of some shortest-path algorithms,” Operations research, vol. 17,

no. 3, pp. 395–412, 1969.

[93] J. Halpern, “Shortest route with time dependent length of edges and limited delay possibilities

in nodes,” Zeitschrift fuer operations research, vol. 21, no. 3, pp. 117–124, 1977.

[94] A. Orda and R. Rom, “Minimum weight paths in time-dependent networks,” Networks, vol. 21,

no. 3, pp. 295–319, 1991.

[95] I. Chabini, “Discrete dynamic shortest path problems in transportation applications: Complex-

ity and algorithms with optimal run time,” Transportation Research Record: Journal of the

Transportation Research Board, no. 1645, pp. 170–175, 1998.

[96] E. Kanoulas, Y. Du, T. Xia, and D. Zhang, “Finding fastest paths on a road network with

speed patterns,” in Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International

Conference on, pp. 10–10, IEEE, 2006.

[97] E. H.-C. Lu, C.-C. Lin, and V. S. Tseng, “Mining the shortest path within a travel time con-

straint in road network environments,” in Intelligent Transportation Systems, 2008. ITSC 2008.

11th International IEEE Conference on, pp. 593–598, IEEE, 2008.

[98] J. Borges and M. Levene, “Data mining of user navigation patterns,” in Web usage analysis and

user profiling, pp. 92–112, Springer, 2000.

[99] C. H. Cheong and M. H. Wong, “Mining popular paths in a transportation database system with

privacy protection,” in Data Engineering Workshops, 2006. Proceedings. 22nd International

Conference on, p. 122, IEEE, 2006.

[100] E. H.-C. Lu, W.-C. Lee, and V. S. Tseng, “Mining fastest path from trajectories with multiple

destinations in road networks,” Knowledge and information systems, vol. 29, no. 1, pp. 25–53,

2011.

REFERENCES 147

[101] U. Demiryurek, F. Banaei-Kashani, C. Shahabi, and A. Ranganathan, “Online computation of

fastest path in time-dependent spatial networks,” in International Symposium on Spatial and

Temporal Databases, pp. 92–111, Springer, 2011.

[102] G. Nannicini, D. Delling, L. Liberti, and D. Schultes, “Bidirectional a search for time-

dependent fast paths,” in International Workshop on Experimental and Efficient Algorithms,

pp. 334–346, Springer, 2008.

[103] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto, K. Tenmoku, and

K. Mitoh, “A fast algorithm for finding better routes by ai search techniques,” in Vehicle Nav-

igation and Information Systems Conference, 1994. Proceedings., 1994, pp. 291–296, IEEE,

1994.

[104] A. V. Goldberg and R. F. F. Werneck, “Computing point-to-point shortest paths from external

memory.,” in ALENEX/ANALCO, pp. 26–40, 2005.

[105] G. V. Batz, D. Delling, P. Sanders, and C. Vetter, “Time-dependent contraction hierarchies,” in

Proceedings of the Meeting on Algorithm Engineering & Expermiments, pp. 97–105, Society

for Industrial and Applied Mathematics, 2009.

[106] G. V. Batz, R. Geisberger, S. Neubauer, and P. Sanders, “Time-dependent contraction hierar-

chies and approximation,” in International Symposium on Experimental Algorithms, pp. 166–

177, Springer, 2010.

[107] D. Delling, “Time-dependent sharc-routing,” Algorithmica, vol. 60, no. 1, pp. 60–94, 2011.

[108] E. Köhler, R. H. Möhring, and H. Schilling, “Acceleration of shortest path and constrained

shortest path computation,” in International Workshop on Experimental and Efficient Algo-

rithms, pp. 126–138, Springer, 2005.

[109] U. Lauther, “An extremely fast, exact algorithm for finding shortest paths in static networks

with geographical background,” Geoinformation und Mobilität-von der Forschung zur praktis-

chen Anwendung, vol. 22, pp. 219–230, 2004.

[110] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner, “Combining

hierarchical and goal-directed speed-up techniques for dijkstra’s algorithm,” Journal of Exper-

imental Algorithmics (JEA), vol. 15, pp. 2–3, 2010.

148 REFERENCES

[111] D. Delling and G. Nannicini, “Bidirectional core-based routing in dynamic time-dependent

road networks,” in International Symposium on Algorithms and Computation, pp. 812–823,

Springer, 2008.

[112] H. Wang, J. Li, W. Wang, and X. Lin, “Coding-based join algorithms for structural queries on

graph-structured xml document,” World Wide Web, vol. 11, no. 4, pp. 485–510, 2008.

[113] J. Van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert, and S. J. Wodak,

“Representing and analysing molecular and cellular function in the computer,” Biological

chemistry, vol. 381, no. 9-10, pp. 921–935, 2000.

[114] K. Anyanwu and A. Sheth, “P-queries: enabling querying for semantic associations on the se-

mantic web,” in Proceedings of the 12th international conference on World Wide Web, pp. 690–

699, ACM, 2003.

[115] S. Kutty, R. Nayak, and L. Chen, “A people-to-people matching system using graph mining

techniques,” World Wide Web, vol. 17, no. 3, pp. 311–349, 2014.

[116] M. Fernandez, D. Florescu, A. Levy, and D. Suciu, “A query language and processor for a web-

site management system,” in Proc. of the Workshop on Semi-structured Data, Tucson, Arizona,

pp. 26–33, Citeseer, 1997.

[117] M.-F. Chiang, W.-C. Peng, and S. Y. Philip, “Exploring latent browsing graph for question

answering recommendation,” World Wide Web, vol. 15, no. 5-6, pp. 603–630, 2012.

[118] B. Berendt and M. Spiliopoulou, “Analysis of navigation behaviour in web sites integrating

multiple information systems,” The VLDB JournalThe International Journal on Very Large

Data Bases, vol. 9, no. 1, pp. 56–75, 2000.

[119] Y. Cui, J. Pei, G. Tang, W.-S. Luk, D. Jiang, and M. Hua, “Finding email correspondents in

online social networks,” World Wide Web, vol. 16, no. 2, pp. 195–218, 2013.

[120] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on computing, vol. 1,

no. 2, pp. 146–160, 1972.

[121] H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of graph embedding: problems,

techniques and applications,” IEEE Transactions on Knowledge and Data Engineering, 2018.

REFERENCES 149

[122] D. Harel and Y. Koren, “Graph drawing by high-dimensional embedding,” in International

symposium on graph drawing, pp. 207–219, Springer, 2002.

[123] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics,

and function using NetworkX,” in Proceedings of the 7th Python in Science Conference

(SciPy2008), (Pasadena, CA USA), pp. 11–15, Aug. 2008.

[124] P. ERDdS and A. R&WI, “On random graphs i.,” Publ. Math. Debrecen, vol. 6, pp. 290–297,

1959.

[125] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-worldnetworks,” nature, vol. 393,

no. 6684, pp. 440–442, 1998.

[126] J. Kunegis, “KONECT – The Koblenz Network Collection,” in Proc. Int. Conf. on World Wide

Web Companion, pp. 1343–1350, 2013.

[127] “Eu institution network dataset – KONECT,” Oct. 2014.

[128] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification and shrinking

diameters,” ACM Trans. Knowledge Discovery from Data, vol. 1, no. 1, pp. 1–40, 2007.

[129] “Citeseer network dataset – KONECT,” May 2015.

[130] K. Bollacker, S. Lawrence, and C. L. Giles, “CiteSeer: An autonomous Web agent for auto-

matic retrieval and identification of interesting publications,” in Proc. Int. Conf. on Autonomous

Agents, pp. 116–123, 1998.

[131] “Google network dataset – KONECT,” Oct. 2014.

[132] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical properties of commu-

nity structure in large social and information networks,” in Proc. Int. World Wide Web Conf.,

pp. 695–704, 2008.

[133] “Baidu internal links network dataset – KONECT,” Oct. 2014.

[134] X. Niu, X. Sun, H. Wang, S. Rong, G. Qi, and Y. Yu, “Zhishi.me – weaving Chinese linking

open data,” in Proc. Int. Semantic Web Conf., pp. 205–220, 2011.

150 REFERENCES

[135] “Us patents network dataset – KONECT,” Oct. 2014.

[136] B. H. Hall, A. B. Jaffe, and M. Trajtenberg, “The NBER patent citations data file: Lessons,

insights and methodological tools,” in NBER Working Papers 8498, National Bureau of Eco-

nomic Research, Inc, 2001.

[137] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An interactive-voting based map match-

ing algorithm,” in Proceedings of the 2010 Eleventh International Conference on Mobile Data

Management, pp. 43–52, IEEE Computer Society, 2010.

[138] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-matching algorithms for trans-

port applications: State-of-the art and future research directions,” Transportation Research Part

C: Emerging Technologies, vol. 15, no. 5, pp. 312–328, 2007.

[139] D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal Statistical

Society. Series B (Methodological), pp. 215–242, 1958.

[140] H. L. Seal, The historical development of the Gauss linear model. Yale University, 1968.

[141] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou, “Shortest path and distance queries

on road networks: An experimental evaluation,” Proceedings of the VLDB Endowment, vol. 5,

no. 5, pp. 406–417, 2012.

[142] X. Cai, T. Kloks, and C. Wong, “Time-varying shortest path problems with constraints,” Net-

works, vol. 29, no. 3, pp. 141–150, 1997.

[143] B. Zheng, H. Su, W. Hua, K. Zheng, X. Zhou, and G. Li, “Efficient clue-based route search

on road networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 9,

pp. 1846–1859, 2017.

[144] L. Foschini, J. Hershberger, and S. Suri, “On the complexity of time-dependent shortest paths,”

Algorithmica, vol. 68, no. 4, pp. 1075–1097, 2014.

[145] X. Cai, T. Kloks, and C. Wong, “Shortest path problems with time constraints,” in International

Symposium on Mathematical Foundations of Computer Science, pp. 255–266, Springer, 1996.

REFERENCES 151

[146] Y. Yang, H. Gao, J. X. Yu, and J. Li, “Finding the cost-optimal path with time constraint over

time-dependent graphs,” Proceedings of the VLDB Endowment, vol. 7, no. 9, pp. 673–684,

2014.

[147] J. D. Adler, P. B. Mirchandani, G. Xue, and M. Xia, “The electric vehicle shortest-walk prob-

lem with battery exchanges,” Networks and Spatial Economics, vol. 16, no. 1, pp. 155–173,

2016.

[148] T. Ichimori, H. Ishii, and T. Nishida, “Routing a vehicle with the limitation of fuel.,” J. OPER.

RES. SOC. JAPAN., vol. 24, no. 3, pp. 277–281, 1981.

[149] Y. Xiao, K. Thulasiraman, G. Xue, and A. Jüttner, “The constrained shortest path problem: al-

gorithmic approaches and an algebraic study with generalization,” AKCE International Journal

of Graphs and Combinatorics, vol. 2, no. 2, pp. 63–86, 2005.

[150] D. Blokh and G. Gutin, “An approximate algorithm for combinatorial optimization problems

with two parameters,” Australasian Journal of Combinatorics, vol. 14, pp. 157–164, 1996.

[151] A. Juttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation based method for the

qos routing problem,” in INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, vol. 2, pp. 859–868, IEEE,

2001.

[152] M. Karsai, N. Perra, and A. Vespignani, “Time varying networks and the weakness of strong

ties,” arXiv preprint arXiv:1303.5966, 2013.

[153] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L. Isella, C. Régis, J.-F. Pinton,

N. Khanafer, W. Van den Broeck, et al., “Simulation of an seir infectious disease model on

the dynamic contact network of conference attendees,” BMC medicine, vol. 9, no. 1, p. 87,

2011.

[154] S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schomburg, “Metabolic pathway

analysis web service (pathway hunter tool at cubic),” Bioinformatics, vol. 21, no. 7, pp. 1189–

1193, 2005.

[155] T. M. Przytycka, M. Singh, and D. K. Slonim, “Toward the dynamic interactome: it’s about

time,” Briefings in bioinformatics, p. bbp057, 2010.

152 REFERENCES

[156] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Hierarchical hub labelings for

shortest paths,” in European Symposium on Algorithms, pp. 24–35, Springer, 2012.

[157] R. Bauer and D. Delling, “Sharc: Fast and robust unidirectional routing,” Journal of Experi-

mental Algorithmics (JEA), vol. 14, p. 4, 2009.

[158] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner, “Computing many-to-many short-

est paths using highway hierarchies,” in 2007 Proceedings of the Ninth Workshop on Algorithm

Engineering and Experiments (ALENEX), pp. 36–45, SIAM, 2007.

[159] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong, “Is-label: an independent-set based labeling

scheme for point-to-point distance querying,” Proceedings of the VLDB Endowment, vol. 6,

no. 6, pp. 457–468, 2013.

[160] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, “Graph partitioning with natu-

ral cuts,” in Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International,

pp. 1135–1146, IEEE, 2011.

