234 research outputs found

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation

    Closed-Loop Drive Detection and Diagnosis of Multiple Combined Faults in Induction Motor Through Model-Based and Neuro-Fuzzy Network Techniques

    Get PDF
    In this paper, a fault detection and diagnosis approach adopted for an input-output feedback linearization (IOFL) control of induction motor (IM) drive is proposed. This approach has been employed to detect and identify the simple and mixed broken rotor bars and static air-gap eccentricity faults right from the start its operation by utilizing advanced techniques. Therefore, two techniques are applied: the model-based strategy, which is an online method used to generate residual stator current signal in order to indicate the presence of possible failures by means of the sliding mode observer (SMO) in the closed-loop drive. However, this strategy is not able to recognise the fault types and it can be affected by the other disturbances. Therefore, the offline method using the multi-adaptive neuro-fuzzy inference system (MANAFIS) technique is proposed to identify the faults and distinguish them. However, the MANAFIS required a relevant database to achieve satisfactory results. Hence, the stator current analysis based on the HFFT combination of the Hilbert transform (HT) and Fast Fourier transform (FFT) is applied to extract the amplitude of harmonics due to defects occur and used them as an input data set for the MANFIS under different loads and fault severities. The simulation results show the efficiency of the proposed techniques and its ability to detect and diagnose any minor faults in a closed-loop drive of IM

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Comparative Study between Sliding Mode Control and the Vectorial Control of a Brushless doubly fed induction generator

    Get PDF
    Brushless doubly fed induction generators (BDFIG) show commercial promise forwind-power generation due to their lower capital and operational costs and higher reliability ascompared with doubly fed induction generators. This paper proposes a robust sliding mode control of grid-connected brushless doubly fed induction generator (BDFIG). The developed algorithm is based on the decoupling control by using oriented grid flux vector control strategy. The decoupling of the active and the reactive stator powers insures an optimal performance of the BDFIG at the sub-synchronous region. The stator of this machine incorporates two sets of three phase windings with different number of poles, power winding (PW) and control winding (CW). The proposed method is tested with the Matlab/Simulink software. Simulation results illustrate the performances and the feasibility of the designed control

    Using Feedback Control to Control Rotor Flux and Torque of the DFIG-Based Wind Power System

    Get PDF
    Direct torque control (DТС) is a method of controlling electrical machines that are widely used, and this is due to its simplicity and ease of use. However, this method has several issues, such as torque, rotor flux, and current fluctuations. To overcome these shortcomings and improve the characteristics and robustness of the DTC strategy of the doubly-fed induction generator (DFIG), a new DTC scheme based on the feedback control method (FCM) and space vector modulation (SVM) is proposed. In the proposed DTC technique, a proportional-integral controller based on feedback control theory is used to control and regulate the torque and rotor flux of the DFIG. On the other hand, the SVM technique is used to control the rotor side converter (RSC) to obtain a high-quality current. The simulation result shows that the proposed DTC technique has the advantages of faster dynamics and reduced harmonic distortion of current compared to the ‎conventional technique.

    Permanent-Magnet Synchronous Machine Drives

    Get PDF
    The permanent-magnet synchronous machine (PMSM) drive is one of best choices for a full range of motion control applications. For example, the PMSM is widely used in robotics, machine tools, actuators, and it is being considered in high-power applications such as industrial drives and vehicular propulsion. It is also used for residential/commercial applications. The PMSM is known for having low torque ripple, superior dynamic performance, high efficiency and high power density. Section 1 deals with the introduction of PMSM and how it is evolved from synchronous motors. Section 2 briefly discusses about the types of PMSM. Section 3 tells about the assumptions in PMSM for modeling of PMSM and it derives the equivalent circuit of PMSM. In Section 4, permanent magnet synchronous motor drive system is briefly discussed with explanation of each blocks in the systems. Section 5 reveals about the control techniques of PMSM like scalar control, vector control and simulation of PMSM driven by field-oriented control using fuzzy logic control with space vector modulation for minimizing torque ripples. PMSM control with and without rotor position sensors along with different control techniques for controlling various parameters of PMSM for different applications is presented in Section 6

    Torque estimator using MPPT method for wind turbines

    Get PDF
    In this work, we presents a control scheme of the interface of a grid connected Variable Speed Wind Energy Generation System based on Doubly Fed Induction Generator (DFIG). The vectorial strategy for oriented stator flux GADA has been developed To extract the maximum power MPPT from the wind turbine. It uses a second order sliding mode controller and Kalman observer, using the super twisting algorithm. The simulation describes the effectiveness of the control strategy adopted.For A step and random profiles of the wind speed, reveals better tracking and perfect convergence of electromagnetic torque and concellation of reactive power to the stator. This control limits the mechanical stress on the tansmission shaft, improves the quality of the currents generated on the grid and optimizes the efficiency of the conversion chain

    Adaptive proportional-integral fuzzy logic controller of electric motor drive

    Get PDF
    This paper presents the indirect field vector control of induction motor (IM) which is controlled by an adaptive Proportional-Integral (PI) speed controller. The proposed solution can overcome the rotor resistance variation, which degrades the performance of speed control. To solve this drawback, an adaptive PI controller is designed with gains adaptation based on fuzzy logic in order to improve the performances of IM with respect to parameters variations, particularly the rotor resistance (Rr). The proposed control algorithm is validated by simulation tests. The obtained results show the robustness towards the load torque disturbances and rotor resistance variation of the adaptive Proportional-Integral fuzzy logic control with respect to classical PI control, and adaptive control based on rotor resistance observer
    corecore