2,938 research outputs found

    Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations

    Get PDF
    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme

    A multidimensional grid-adaptive relativistic magnetofluid code

    Full text link
    A robust second order, shock-capturing numerical scheme for multi-dimensional special relativistic magnetohydrodynamics on computational domains with adaptive mesh refinement is presented. The base solver is a total variation diminishing Lax-Friedrichs scheme in a finite volume setting and is combined with a diffusive approach for controlling magnetic monopole errors. The consistency between the primitive and conservative variables is ensured at all limited reconstructions and the spatial part of the four velocity is used as a primitive variable. Demonstrative relativistic examples are shown to validate the implementation. We recover known exact solutions to relativistic MHD Riemann problems, and simulate the shock-dominated long term evolution of Lorentz factor 7 vortical flows distorting magnetic island chains.Comment: accepted for publication in Computer Physics Communication

    High resolution schemes and the entropy condition

    Get PDF
    A systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five point band width, approximations to scalar conservation laws, is presented. These schemes are constructed to also satisfy a single discrete entropy inequality. Thus, in the convex flux case, convergence is proven to be the unique physically correct solution. For hyperbolic systems of conservation laws, this construction is used formally to extend the first author's first order accurate scheme, and show (under some minor technical hypotheses) that limit solutions satisfy an entropy inequality. Results concerning discrete shocks, a maximum principle, and maximal order of accuracy are obtained. Numerical applications are also presented

    Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    Get PDF
    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the soruce terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated

    Nonlinearly stable compact schemes for shock calculations

    Get PDF
    The applications of high-order, compact finite difference methods in shock calculations are discussed. The main concern is to define a local mean which will serve as a reference for introducing a local nonlinear limiting to control spurious numerical oscillations while maintaining the formal accuracy of the scheme. For scalar conservation laws, the resulting schemes can be proven total-variation stable in one space dimension and maximum-norm stable in multiple space dimensions. Numerical examples are shown to verify accuracy and stability of such schemes for problems containing shocks. These ideas can also be applied to other implicit schemes such as the continuous Galerkin finite element methods

    High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    Get PDF
    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.Comment: 32 pages, 14 figure, submitted to Journal of Computational Physics (Aug 7 2009
    • …
    corecore