190 research outputs found

    3.3V DC Output At-16dBm Sensitivity And 77% PCE Rectifier For RF Energy Harvesting

    Get PDF
    This paper presents a high voltage conversion at high sensitivity RF energy harvesting system for IoT applications. The harvesting system comprises bulk-to-source (BTMOS) differential-drive based rectifier to produce a high efficiency RF energy harvesting system. Low-pass upward impedance matching network is applied at the rectifier input to increase the sensitivity and output voltage. Dual-oxide-thickness transistors are used in the rectifier circuit to maintain the power efficiency at each stage of the rectifier. The system is designed using 0.18ÎĽm Silterra RF in deep n-well process technology and achieves 4.07V output at -16dBm sensitivity without the need of complex auxiliary control circuit and DC-DC charge-pump circuit. The system is targeted for urban environment

    Integrated cmos rectifier for rf-powered wireless sensor network nodes

    Get PDF
    This article presents a review of the CMOS rectifier for radio frequency energy harvesting application. The on-chip rectifier converts the ambient low-power radio frequency signal coming to antenna to useable DC voltage that recharges energy to wireless sensor network (WSN) nodes and radiofrequency identification (RFID) tags, therefore the rectifier is the most important part of the radio frequency energy harvesting system. The impedance matching network maximizes power transfer from antenna to rectifier. The design and comparison between the simulation results of one- and multi-stage differential drive cross connected rectifier (DDCCR) at the operating frequencies of 2.44GHz, and 28GHz show the output voltage of the multi-stage rectifier doubles at each added stage and power conversion efficiency (PCE) of rectifier at 2.44GHz was higher than 28GHz. The (DDCCR) rectifier is the most efficient rectifier topology to date and is used widely for passive WSN nodes and RFID tags

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    Design of a low-voltage CMOS RF receiver for energy harvesting sensor node

    Get PDF
    In this thesis a CMOS low-power and low-voltage RF receiver front-end is presented. The main objective is to design this RF receiver so that it can be powered by a piezoelectric energy harvesting power source, included in a Wireless Sensor Node application. For this type of applications the major requirements are: the low-power and low-voltage operation, the reduced area and cost and the simplicity of the architecture. The system key blocks are the LNA and the mixer, which are studied and optimized with greater detail, achieving a good linearity, a wideband operation and a reduced introduction of noise. A wideband balun LNA with noise and distortion cancelling is designed to work at a 0.6 V supply voltage, in conjunction with a double-balanced passive mixer and subsequent TIA block. The passive mixer operates in current mode, allowing a minimal introduction of voltage noise and a good linearity. The receiver analog front-end has a total voltage conversion gain of 31.5 dB, a 0.1 - 4.3 GHz bandwidth, an IIP3 value of -1.35 dBm, and a noise figure lower than 9 dB. The total power consumption is 1.9 mW and the die area is 305x134.5 m2, using a standard 130 nm CMOS technology

    Resonant Circuit Topology for Radio Frequency Energy Harvesting

    Get PDF
    In this work the operation of a MOSFET based rectifier, composed of multiple stages of voltage doubler circuits used for radio frequency (RF) energy harvesting, is investigated. Analytical modeling of the input stage of the rectifier consisting of short-channel diode-connected transistors is carried out, and the equivalent input resistance obtained is used along with simulation results to improve impedance matching in the harvester. The criteria for voltage boosting and impedance matching, that are essential in the operation of energy harvester under low ambient RF levels, as well as the design considerations for a pi-match network to achieve matching to 50 Ohms, are elaborated on. In addition their application is demonstrated through simulations carried out using Advanced Design System (ADS) simulator. Furthermore, measurement results of an already fabricated dual-band RF harvester are presented, and the approach taken to improve the antenna design from the harvester chip measured input impedance is discussed. The integrated antenna-harvester system tested was capable of harvesting ambient RF power and generating DC output voltage levels above 1 V

    RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Get PDF
    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes

    High-Efficiency Low-Voltage Rectifiers for Power Scavenging Systems

    Get PDF
    Abstract Rectifiers are commonly used in electrical energy conversion chains to transform the energy obtained from an AC signal source to a DC level. Conventional bridge and gate cross-coupled rectifier topologies are not sufficiently power efficient, particularly when input amplitudes are low. Depending on their rectifying element, their power efficiency is constrained by either the forward-bias voltage drop of a diode or the threshold voltage of a diode-connected MOS transistor. Advanced passive rectifiers use threshold cancellation techniques to effectively reduce the threshold voltage of MOS diodes. Active rectifiers use active circuits to control the conduction angle of low-loss MOS switches. In this thesis, an active rectifier with a gate cross-coupled topology is proposed, which replaces the diode-connected MOS transistors of a conventional rectifier with low-loss MOS switches. Using the inherent characteristics of MOS transistors as comparators, dynamic biasing of the bulks of main switches and small pull-up transistors, the proposed self-supplied active rectifier exhibits smaller voltage drop across the main switches leading to a higher power efficiency compared to conventional rectifier structures for a wide range of operating frequencies in the MHz range. Delivery of high load currents is another feature of the proposed rectifier. Using the bootstrapping technique, single- and double-reservoir based rectifiers are proposed. They present higher power and voltage conversion efficiencies compared to conventional rectifier structures. With a source amplitude of 3.3 V, when compared to the gate cross-coupled topology, the proposed active rectifier offers power and voltage conversion efficiencies improved by up to 10% and 16% respectively. The proposed rectifier using the bootstrap technique, including double- and single-reservoir schemes, are well suited for very low input amplitudes. They present power and voltage conversion efficiencies of 75% and 76% at input amplitude of 1.0 V and maintain their high efficiencies over input amplitudes greater than 1.0V. Single-reservoir bootstrap rectifier also reduces die area by 70% compared to its double-reservoir counterpart.---------Résumé Les redresseurs sont couramment utilisés dans de nombreux systèmes afin de transformer l'énergie électrique obtenue à partir d'une source alternative en une alimentation continue. Les topologies traditionnelles telles que les ponts de diodes et les redresseurs se servant de transistors à grilles croisées-couplées ne sont pas suffisamment efficaces en terme d’énergie, en particulier pour des signaux à faibles amplitudes. Dépendamment de leur élément de redressement, leur efficacité en termes de consommation d’énergie est limitée soit par la chute de tension de polarisation directe d'une diode, soit par la tension de seuil du transistor MOS. Les redresseurs passifs avancés utilisent une technique de conception pour réduire la tension de seuil des diodes MOS. Les redresseurs actifs utilisent des circuits actifs pour contrôler l'angle de conduction des commutateurs MOS à faible perte. Dans cette thèse, nous avons proposé un redresseur actif avec une topologie en grille croisée-couplée. Elle utilise des commutateurs MOS à faible perte à la place des transistors MOS connectés en diode comme redresseurs. Le circuit proposé utilise: des caractéristiques intrinsèques des transistors MOS pour les montages comparateurs et une polarisation dynamique des substrats des commutateurs principaux supportés par de petits transistors de rappel. Le redresseur proposé présente des faibles chutes de tension à travers le commutateur principal menant à une efficacité de puissance plus élevée par rapport aux structures d’un redresseur conventionnel pour une large gamme de fréquences de fonctionnement de l’ordre des MHz. La conduction des courants de charge élevée est une autre caractéristique du redresseur proposé. En utilisant la méthode de bootstrap, des redresseurs à simple et à double réservoir sont proposés. Ils présentent une efficacité de puissance et un rapport de conversion de tension élevés en comparaison avec les structures des redresseurs conventionnels. Avec une amplitude de source de 3,3 V, le redresseur proposé offre des efficacités de puissance et de conversion de tension améliorées par rapport au circuit à transistors croisés couplés. Ces améliorations atteignent 10% et 16% respectivement. Les redresseurs proposés utilisent la technique de bootstrap. Ils sont bien adaptés pour des amplitudes d'entrée très basses. À une amplitude d'entrée de 1,0 V, ces derniers redresseurs présentent des rendements de conversion de puissance et de tension de 75% et 76%. Le redresseur à simple réservoir réduit également l’aire de silicium requise de 70% par rapport à la version à double-réservoir

    Integrated CMOS rectifier for RF-powered wireless sensor network nodes

    Get PDF
    This article presents a review of the CMOS rectifier for radio frequency energy harvesting application. The on-chip rectifier converts the ambient low-power radio frequency signal coming to antenna to useable DC voltage that recharges energy to wireless sensor network (WSN) nodes and radiofrequency identification (RFID) tags, therefore the rectifier is the most important part of the radio frequency energy harvesting system. The impedance matching network maximizes power transfer from antenna to rectifier. The design and comparison between the simulation results of oneand multi-stage differential drive cross connected rectifier (DDCCR) at the operating frequencies of 2.44GHz, and 28GHz show the output voltage of the multi-stage rectifier doubles at each added stage and power conversion efficiency (PCE) of rectifier at 2.44GHz was higher than 28GHz. The (DDCCR) rectifier is the most efficient rectifier topology to date and is used widely for passive WSN nodes and RFID tag
    • …
    corecore