4,892 research outputs found

    Advanced miniature processing handware for ATR applications

    Get PDF
    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR)

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    Advanced Computing and Related Applications Leveraging Brain-inspired Spiking Neural Networks

    Full text link
    In the rapid evolution of next-generation brain-inspired artificial intelligence and increasingly sophisticated electromagnetic environment, the most bionic characteristics and anti-interference performance of spiking neural networks show great potential in terms of computational speed, real-time information processing, and spatio-temporal information processing. Data processing. Spiking neural network is one of the cores of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure and information transfer mode of biological neural networks. This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies; then reviews the spiking neural network algorithms and summarizes the unsupervised learning algorithms based on synaptic plasticity rules and four types of supervised learning algorithms from the perspectives of unsupervised learning and supervised learning; finally focuses on the review of brain-like neuromorphic chips under research at home and abroad. This paper is intended to provide learning concepts and research orientations for the peers who are new to the research field of spiking neural networks through systematic summaries

    High performance photonic reservoir computer based on a coherently driven passive cavity

    Full text link
    Reservoir computing is a recent bio-inspired approach for processing time-dependent signals. It has enabled a breakthrough in analog information processing, with several experiments, both electronic and optical, demonstrating state-of-the-art performances for hard tasks such as speech recognition, time series prediction and nonlinear channel equalization. A proof-of-principle experiment using a linear optical circuit on a photonic chip to process digital signals was recently reported. Here we present a photonic implementation of a reservoir computer based on a coherently driven passive fiber cavity processing analog signals. Our experiment has error rate as low or lower than previous experiments on a wide variety of tasks, and also has lower power consumption. Furthermore, the analytical model describing our experiment is also of interest, as it constitutes a very simple high performance reservoir computer algorithm. The present experiment, given its good performances, low energy consumption and conceptual simplicity, confirms the great potential of photonic reservoir computing for information processing applications ranging from artificial intelligence to telecommunicationsComment: non

    Hardware Considerations for Signal Processing Systems: A Step Toward the Unconventional.

    Full text link
    As we progress into the future, signal processing algorithms are becoming more computationally intensive and power hungry while the desire for mobile products and low power devices is also increasing. An integrated ASIC solution is one of the primary ways chip developers can improve performance and add functionality while keeping the power budget low. This work discusses ASIC hardware for both conventional and unconventional signal processing systems, and how integration, error resilience, emerging devices, and new algorithms can be leveraged by signal processing systems to further improve performance and enable new applications. Specifically this work presents three case studies: 1) a conventional and highly parallel mix signal cross-correlator ASIC for a weather satellite performing real-time synthetic aperture imaging, 2) an unconventional native stochastic computing architecture enabled by memristors, and 3) two unconventional sparse neural network ASICs for feature extraction and object classification. As improvements from technology scaling alone slow down, and the demand for energy efficient mobile electronics increases, such optimization techniques at the device, circuit, and system level will become more critical to advance signal processing capabilities in the future.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116685/1/knagphil_1.pd

    Real-time support for high performance aircraft operation

    Get PDF
    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    An Analog VLSI Deep Machine Learning Implementation

    Get PDF
    Machine learning systems provide automated data processing and see a wide range of applications. Direct processing of raw high-dimensional data such as images and video by machine learning systems is impractical both due to prohibitive power consumption and the “curse of dimensionality,” which makes learning tasks exponentially more difficult as dimension increases. Deep machine learning (DML) mimics the hierarchical presentation of information in the human brain to achieve robust automated feature extraction, reducing the dimension of such data. However, the computational complexity of DML systems limits large-scale implementations in standard digital computers. Custom analog signal processing (ASP) can yield much higher energy efficiency than digital signal processing (DSP), presenting means of overcoming these limitations. The purpose of this work is to develop an analog implementation of DML system. First, an analog memory is proposed as an essential component of the learning systems. It uses the charge trapped on the floating gate to store analog value in a non-volatile way. The memory is compatible with standard digital CMOS process and allows random-accessible bi-directional updates without the need for on-chip charge pump or high voltage switch. Second, architecture and circuits are developed to realize an online k-means clustering algorithm in analog signal processing. It achieves automatic recognition of underlying data pattern and online extraction of data statistical parameters. This unsupervised learning system constitutes the computation node in the deep machine learning hierarchy. Third, a 3-layer, 7-node analog deep machine learning engine is designed featuring online unsupervised trainability and non-volatile floating-gate analog storage. It utilizes massively parallel reconfigurable current-mode analog architecture to realize efficient computation. And algorithm-level feedback is leveraged to provide robustness to circuit imperfections in analog signal processing. At a processing speed of 8300 input vectors per second, it achieves 1×1012 operation per second per Watt of peak energy efficiency. In addition, an ultra-low-power tunable bump circuit is presented to provide similarity measures in analog signal processing. It incorporates a novel wide-input-range tunable pseudo-differential transconductor. The circuit demonstrates tunability of bump center, width and height with a power consumption significantly lower than previous works
    corecore