209 research outputs found

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Pre-emptive resource-constrained multimode project scheduling using genetic algorithm: a dynamic forward approach

    Get PDF
    Purpose: The issue resource over-allocating is a big concern for project engineers in the process of scheduling project activities. Resource over-allocating drawback is frequently seen after scheduling of a project in practice which causes a schedule to be useless. Modifying an over-allocated schedule is very complicated and needs a lot of efforts and time. In this paper, a new and fast tracking method is proposed to schedule large scale projects which can help project engineers to schedule the project rapidly and with more confidence. Design/methodology/approach: In this article, a forward approach for maximizing net present value (NPV) in multi-mode resource constrained project scheduling problem while assuming discounted positive cash flows (MRCPSP-DCF) is proposed. The progress payment method is used and all resources are considered as pre-emptible. The proposed approach maximizes NPV using unscheduled resources through resource calendar in forward mode. For this purpose, a Genetic Algorithm is applied to solve. Findings: The findings show that the proposed method is an effective way to maximize NPV in MRCPSP-DCF problems while activity splitting is allowed. The proposed algorithm is very fast and can schedule experimental cases with 1000 variables and 100 resources in few seconds. The results are then compared with branch and bound method and simulated annealing algorithm and it is found the proposed genetic algorithm can provide results with better quality. Then algorithm is then applied for scheduling a hospital in practice. Originality/value: The method can be used alone or as a macro in Microsoft Office Project® Software to schedule MRCPSP-DCF problems or to modify resource over-allocated activities after scheduling a project. This can help project engineers to schedule project activities rapidly with more accuracy in practice.Peer Reviewe

    Project scheduling under uncertainty using fuzzy modelling and solving techniques

    Get PDF
    In the real world, projects are subject to numerous uncertainties at different levels of planning. Fuzzy project scheduling is one of the approaches that deal with uncertainties in project scheduling problem. In this paper, we provide a new technique that keeps uncertainty at all steps of the modelling and solving procedure by considering a fuzzy modelling of the workload inspired from the fuzzy/possibilistic approach. Based on this modelling, two project scheduling techniques, Resource Constrained Scheduling and Resource Leveling, are considered and generalized to handle fuzzy parameters. We refer to these problems as the Fuzzy Resource Constrained Project Scheduling Problem (FRCPSP) and the Fuzzy Resource Leveling Problem (FRLP). A Greedy Algorithm and a Genetic Algorithm are provided to solve FRCPSP and FRLP respectively, and are applied to civil helicopter maintenance within the framework of a French industrial project called Helimaintenance

    Railway scheduling reduces the expected project makespan.

    Get PDF
    The Critical Chain Scheduling and Buffer Management (CC/BM) methodology, proposed by Goldratt (1997), introduced the concepts of feeding buffers, project buffers and resource buffers as well as the roadrunner mentality. This last concept, in which activities are started as soon as possible, was introduced in order to speed up projects by taking advantage of predecessors finishing early. Later on, the railway scheduling concept of never starting activities earlier than planned was introduced as a way to increase the stability of the project, typically at the cost of an increase in the expected project makespan. In this paper, we will indicate a realistic situation in which railway scheduling improves both the stability and the expected project makespan over roadrunner scheduling.Railway scheduling; Roadrunner scheduling; Feeding buffer; Priority list; Resource availability;

    A novel class of scheduling policies for the stochastic resource-constrained project scheduling problem.

    Get PDF
    We study the resource-constrained project scheduling problem with stochastic activity durations. We introduce a new class of scheduling policies for this problem, which make a number of a-priori sequencing decisions in a pre-processing phase, while the remaining decisions are made dynamically during project execution. The pre-processing decisions entail the addition of precedence constraints to the scheduling instance, hereby resolving some potential resource conflicts. We compare the performance of this new class with existing scheduling policies for the stochastic resource-constrained project scheduling problem, and we observe that the new class is significantly better when the variability in the activity durations is medium to high.Project scheduling; Uncertainty; Stochastic activity durations; Scheduling policies;

    Project scheduling under multiple resources constraints using a genetic algorithm

    Get PDF
    The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm

    Sounds of Silence: a sampling-based bi-criteria harmony search metaheuristic for the resource constrained project scheduling problem with uncertain activity durations and cash flows

    Get PDF
    In this paper, a new sampling-based bi-criteria hybrid harmony search metaheuristic for the resource-constrained project-scheduling problem (RCPSP) with uncertain activity durations (UAD) and uncertain cash flows (UCF) is proposed, with the total project duration () and the net present value () as objectives. The problem-specific Sounds of Silence (SoS) metaheuristic is an appropriate hybridization of the robust SoS with uncertain activity durations, and the crisp SoS developed for several a primary-secondary (PS) and bi-criteria (BC) project scheduling problems. In order to illustrate the efficiency and stability of the proposed problem-specific SoS, we present detailed computational results for a larger and challenging project instance. Results reveal the fact that the modified and extended SoS is fast, efficient and robust algorithm, which is able to cope successfully with the project-scheduling problems when we replace the traditional crisp parameters with uncertain-but-bounded parameters.

    ROBUST RESOURCE INVESTMENT PROBLEM WITH TIME-DEPENDENT RESOURCE COST AND TARDINESS PENALTY

    Get PDF
    The Resource Investment Problem (RIP) is a variant of the well-known Resource Constraint Project Scheduling Problem (RCPSP) that requires finding the optimal resource allocation, given a preset completion date, with the objective of minimizing the total cost. The practical relevance of RIP is very obvious; since the decision maker (the project manager for example) wants to know what resources are required to achieve the targeted project completion date. RIP helps to decide the amount of investment in resources that yield the optimal solution, in addition to the optimal tradeoff between completion time and resource investment. In practice, most of the projects are associated with due dates beyond which a tardiness penalty may be applied. To avoid the tardiness penalty, project managers sometimes decide to add more resources, thereby increasing resource investment cost, to the project to finish earlier. In this thesis the (RIP) has been extended to consider time-depended resource cost instead of time-independent resource cost in the classical RIP. The problem was named Resource Investment Problem with Time-Dependent Resource Cost and Tardiness Penalty, abbreviated as (RIP-TDRC). A mathematical model was introduced to simultaneously find the optimal resource assignment and activity staring times. The objective is to minimize the sum of the resources and tardiness cost. Two versions of this problem are addressed in this thesis: the deterministic version of RIP-TDRC and the stochastic version. For the latter, it is assumed that the activity durations are subject to many uncertainties such as (bad weather conditions, material shortage, employee’s absences …etc.). To solve this problem, a simulation-optimization based algorithm is proposed. This algorithm solves the deterministic problem version iteratively through all possible project completion times and simulates the project considering the uncertainties to find the optimal solution. The performance of the proposed algorithm and the effect of some problem parameters on the solution are assessed through computational experiments. The experiments revealed the usefulness of the algorithm in finding relatively robust solution for small problem sizes
    corecore