2,185 research outputs found

    Hand-eye calibration, constraints and source synchronisation for robotic-assisted minimally invasive surgery

    Get PDF
    In robotic-assisted minimally invasive surgery (RMIS), the robotic system allows surgeons to remotely control articulated instruments to perform surgical interventions and introduces a potential to implement computer-assisted interventions (CAI). However, the information in the camera must be correctly transformed into the robot coordinate as its movement is controlled by the robot kinematic. Therefore, determining the rigid transformation connecting the coordinates is necessary. Such process is called hand-eye calibration. One of the challenges in solving the hand-eye problem in the RMIS setup is data asynchronicity, which occurs when tracking equipments are integrated into a robotic system and create temporal misalignment. For the calibration itself, noise in the robot and camera motions can be propagated to the calibrated result and as a result of a limited motion range, the error cannot be fully suppressed. Finally, the calibration procedure must be adaptive and simple so a disruption in a surgical workflow is minimal since any change in the setup may require another calibration procedure. We propose solutions to deal with the asynchronicity, noise sensitivity, and a limited motion range. We also propose a potential to use a surgical instrument as the calibration target to reduce the complexity in the calibration procedure. The proposed algorithms are validated through extensive experiments with synthetic and real data from the da Vinci Research Kit and the KUKA robot arms. The calibration performance is compared with existing hand-eye algorithms and it shows promising results. Although the calibration using a surgical instrument as the calibration target still requires a further development, results indicate that the proposed methods increase the calibration performance, and contribute to finding an optimal solution to the hand-eye problem in robotic surgery

    Robot eye-hand coordination learning by watching human demonstrations: a task function approximation approach

    Full text link
    We present a robot eye-hand coordination learning method that can directly learn visual task specification by watching human demonstrations. Task specification is represented as a task function, which is learned using inverse reinforcement learning(IRL) by inferring differential rewards between state changes. The learned task function is then used as continuous feedbacks in an uncalibrated visual servoing(UVS) controller designed for the execution phase. Our proposed method can directly learn from raw videos, which removes the need for hand-engineered task specification. It can also provide task interpretability by directly approximating the task function. Besides, benefiting from the use of a traditional UVS controller, our training process is efficient and the learned policy is independent from a particular robot platform. Various experiments were designed to show that, for a certain DOF task, our method can adapt to task/environment variances in target positions, backgrounds, illuminations, and occlusions without prior retraining.Comment: Accepted in ICRA 201

    Hexapod Design For All-Sky Sidereal Tracking

    Get PDF
    In this paper we describe a hexapod-based telescope mount system intended to provide sidereal tracking for the Fly's Eye Camera project -- an upcoming moderate, 21"/pixel resolution all-sky survey. By exploiting such a kind of meter-sized telescope mount, we get a device which is both capable of compensating for the apparent rotation of the celestial sphere and the same design can be used independently from the actual geographical location. Our construction is the sole currently operating hexapod telescope mount performing dedicated optical imaging survey with a sub-arcsecond tracking precision.Comment: Accepted for publication in PASP, 10 page

    A Comparative Review of Hand-Eye Calibration Techniques for Vision Guided Robots

    Get PDF
    Hand-eye calibration enables proper perception of the environment in which a vision guided robot operates. Additionally, it enables the mapping of the scene in the robots frame. Proper hand-eye calibration is crucial when sub-millimetre perceptual accuracy is needed. For example, in robot assisted surgery, a poorly calibrated robot would cause damage to surrounding vital tissues and organs, endangering the life of a patient. A lot of research has gone into ways of accurately calibrating the hand-eye system of a robot with different levels of success, challenges, resource requirements and complexities. As such, academics and industrial practitioners are faced with the challenge of choosing which algorithm meets the implementation requirements based on the identified constraints. This review aims to give a general overview of the strengths and weaknesses of different hand-eye calibration algorithms available to academics and industrial practitioners to make an informed design decision, as well as incite possible areas of research based on the identified challenges. We also discuss different calibration targets which is an important part of the calibration process that is often overlooked in the design process

    Mechatronic design of the Twente humanoid head

    Get PDF
    This paper describes the mechatronic design of the Twente humanoid head, which has been realized in the purpose of having a research platform for human-machine interaction. The design features a fast, four degree of freedom neck, with long range of motion, and a vision system with three degrees of freedom, mimicking the eyes. To achieve fast target tracking, two degrees of freedom in the neck are combined in a differential drive, resulting in a low moving mass and the possibility to use powerful actuators. The performance of the neck has been optimized by minimizing backlash in the mechanisms, and using gravity compensation. The vision system is based on a saliency algorithm that uses the camera images to determine where the humanoid head should look at, i.e. the focus of attention computed according to biological studies. The motion control algorithm receives, as input, the output of the vision algorithm and controls the humanoid head to focus on and follow the target point. The control architecture exploits the redundancy of the system to show human-like motions while looking at a target. The head has a translucent plastic cover, onto which an internal LED system projects the mouth and the eyebrows, realizing human-like facial expressions

    Cameras and Inertial/Magnetic Sensor Units Alignment Calibration

    Get PDF
    Due to the external acceleration interference/ magnetic disturbance, the inertial/magnetic measurements are usually fused with visual data for drift-free orientation estimation, which plays an important role in a wide variety of applications, ranging from virtual reality, robot, and computer vision to biomotion analysis and navigation. However, in order to perform data fusion, alignment calibration must be performed in advance to determine the difference between the sensor coordinate system and the camera coordinate system. Since orientation estimation performance of the inertial/magnetic sensor unit is immune to the selection of the inertial/magnetic sensor frame original point, we therefore ignore the translational difference by assuming the sensor and camera coordinate systems sharing the same original point and focus on the rotational alignment difference only in this paper. By exploiting the intrinsic restrictions among the coordinate transformations, the rotational alignment calibration problem is formulated by a simplified hand–eye equation AX = XB (A, X, and B are all rotation matrices). A two-step iterative algorithm is then proposed to solve such simplified handeye calibration task. Detailed laboratory validation has been performed and the good experimental results have illustrated the effectiveness of the proposed alignment calibration method

    Visual Position Tracking using Dual Quaternions with Hand-Eye Motion Constraints

    Get PDF
    In this paper a method for contour-based rigid body tracking with simultaneouscamera calibration is developed. The method works for a singleeye-in-hand camera with unknown hand-eye transformation,viewing a stationary object with unknown position. The method usesdual quaternions to express the relationship between the camera- andend-effector screws. It is shown how using the measured motion of therobot end-effector can improve the accuracy of theestimation, even if the relative position and orientation between sensorand actuator is completely unknown.The method is evaluated in simulations on images from a real-time 3D renderingsystem. The system is shown to be able to track the pose of rigid objects and changes in intrinsic camera parameters, using only rough initial values for the parameters. The method is finally validated in anexperiment using real images from a camera mounted on an industrial robot
    • …
    corecore