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Abstract

In robotic-assisted minimally invasive surgery (RMIS), the robotic system al-

lows surgeons to remotely control articulated instruments to perform surgical inter-

ventions and introduces a potential to implement computer-assisted interventions

(CAI). However, the information in the camera must be correctly transformed into

the robot coordinate as its movement is controlled by the robot kinematic. There-

fore, determining the rigid transformation connecting the coordinates is necessary.

Such process is called hand-eye calibration. One of the challenges in solving the

hand-eye problem in the RMIS setup is data asynchronicity, which occurs when

tracking equipments are integrated into a robotic system and create temporal mis-

alignment. For the calibration itself, noise in the robot and camera motions can be

propagated to the calibrated result and as a result of a limited motion range, the er-

ror cannot be fully suppressed. Finally, the calibration procedure must be adaptive

and simple so a disruption in a surgical workflow is minimal since any change in the

setup may require another calibration procedure. We propose solutions to deal with

the asynchronicity, noise sensitivity, and a limited motion range. We also propose

a potential to use a surgical instrument as the calibration target to reduce the com-

plexity in the calibration procedure. The proposed algorithms are validated through

extensive experiments with synthetic and real data from the da Vinci Research Kit

and the KUKA robot arms. The calibration performance is compared with existing

hand-eye algorithms and it shows promising results. Although the calibration using

a surgical instrument as the calibration target still requires a further development,

results indicate that the proposed methods increase the calibration performance, and

contribute to finding an optimal solution to the hand-eye problem in robotic surgery.



Impact Statement

In the RMIS setup, solving the hand-eye problem completes the loop of rigid

transformations in the environment which allows the information exchange between

the camera and robot coordinates. The information includes positions of critical

anatomical structure and poses of surgical tools which will provide additional data

to the surgical console and in turn assist and facilitate a surgical workflow. Further-

more, given that the two coordinates are already connected, a force feedback with

respected to the poses of surgical tools in the environment can be implemented to

protect neighbouring tissues and avoid tool clashing.

The proposed algorithms in this thesis update the calibration pipeline to deal

with the challenges in solving the hand-eye problem and provide more accurate cal-

ibration results in the RMIS environment than existing hand-eye algorithms. The

formulated methods can then be used as a model in future researches and the de-

veloped constraints provide a path towards accurate hand-eye calibration in RMIS

through correctly modelling motion constraints for the calibration. This finding can

be implemented into surgical robot systems to design the robot and camera motions

for calibrating the hand-eye matrix.
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Notation

The following notations will be used throughout the thesis.

x a scalar variable.

~x A vector.

~0,0N A zero vector and a zero square matrix of size N.

[~x]× Skew symmetric matrix of a vector~x.

SO(3) Special orthogonal group.

SE(3) Special Euclidean group.

se(3) Lie algebra of SE(3).

F1,F2,Fcam, ... Frames assigned at the coordinate frame 1, 2, cam, respectively

A,B,C, ... An arbitrary matrix with the exception of the letters R.

R An arbitrary rotation matrix in SO(3).

K(·) A matrix as a function of the bracketed parameters.
1T2 A rigid transformation mapping from frame 2 to frame 1.

IN An identity matrix of size N.

a,b 4×4 Lie algebra for rigid transformations A and B, respectively.

a,b Real terms of dual quaternion representations of the transformations

A and B, respectively.

a′,b′ Dual terms of dual quaternion representations of the transformations

A and B, respectively.

a.b Quaternion multiplication between two quaternions a and b.



Acronyms

The following acronyms will be used throughout the thesis.

RMIS Robotic-assisted minimally invasive surgery

CAI Computer-assisted interventions

RCM Remote centre of motion
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DH Denavit-Hartenberg
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SfM Structure from motions
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Chapter 1

Introduction

Surgical practice has been transformed by the use of miniaturised tools to pro-

vide access to an operative site with a small incision and less trauma. The technique

benefits patients in terms of post-operative recovery time as the procedure has be-

come less invasive. Combining with robotic technology, which has emerged as a

solution to challenging problems in many fields over the past decade [1], a tech-

nique called robotic-assisted minimally invasive surgery (RMIS) is created. A clear

example of such systems can be seen in one of the commercialised surgical robots,

da Vinci®(Intuitive Surgical, CA). Deploying the robot allows an operation to be

remotely carried out by a surgeon, who controls articulated surgical instruments

and visualises the operative site with a stereo camera [2–5], as shown in Figure

1.1(a)-1.1(b). RMIS has already been used in several procedures such as prosta-

tectomy [6], thoracic surgery [7], colorectal surgery [8], hysterectomy [9], cardiac

surgery [10], nephrectomy [11].

The RMIS setup introduces the potential to implement a platform for

computer-assisted interventions (CAI) such as augmented reality [12, 13]; directly

overlaying an intra- and pre-operative image onto the feedback from the camera to

provide additional visualisation of information about anatomical structure and the

location of sub-surface tumours and blood vessels (see Figure 1.2). In [14], the au-

thors suggest that the technique can be used to assist novice surgeons in localising

the operative site as they may have difficulty in performing RMIS; the removal of

tactile feedback reduces a surgeon’s awareness of anatomical structures that cannot



2

(a) (b)

Figure 1.1: (a) An example of what surgeons see from the console when controlling
the movement of surgical instruments and a scope. (b) Tips of 0 degree and 30
degrees laparoscopes. A laparoscope works as an imaging sensor providing a view
of an operative site. In RMIS, a laparoscope is attached to one of the manipulators
to provide surgeons a full control of laparoscope’s movement whilst performing an
operation.

be visualised by a laparoscopic or endoscopic camera. This technique, coupled

with external tracking systems and/or a manual registration, has already been tested

in clinical interventions such as liver segmentectomy (in three patients) [15] and

prostatectomy [14]. This combination of robotic surgery and an image-guided

technique has been shown to be useful in the localisation of lesions and important

neighbouring anatomical structures [16–18] and is likely to increase a patient’s

safety as the accuracy of the operation is increased [12, 13].

One of the other key CAIs is virtual fixtures, also known as active constraints

or motion constraints [21]. Given that a surgeon is physically disconnected from

an operative site in an RMIS environment (and therefore given limited haptic sen-

sation) [22], the risk of intra-operative injury is increased. Indeed, this has been re-

ported to be one of the major challenges in RMIS [23,24]. Therefore, virtual fixtures

can be applied during surgical training to increase the subject’s proficiency [25] in

a real surgery. Examples of this technique are shown in Figure 1.3. Virtual fix-

tures assist in manipulation tasks by anisotropically regulating a surgeon’s motions.

The assistance can constrain the movement of the end-effector in a restricted re-

gion [19, 20, 26–28] with or without guiding of the movement along pre-defined

trajectories [22, 29, 30]. The force generated using virtual fixtures can also protect
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Figure 1.2: An example of an augmented reality application during laparoscopic
partial nephrectomy. The colour-coded model is overlaid onto the small tumour. In
the operation, surgeons need to make a cut within a green zone, whilst simultane-
ously preserving the blue zone. This is achieved by registering ultrasound imaging
to the pre-operative CT volume data and using an electromagnetic tracking system
to localise the probe [14].

neighbouring tissue or prevent tool clashing [31] by generating a repulsive force,

and it can provide a more dexterous end-effector movement at an operative site,

which in turn increases safety and potentially accelerates an operation by guiding

tool movement along a pre-defined trajectory [20]. The technique has already been

tested during surgical training, and the evaluation suggests that the end-effector

movement is more precise [32].

Visual servoing is another potential CAI in RMIS. This the technique relies on

using imaging information from a camera to control the robot’s motion [35]. Since

robots offer a precise and automatic positioning system, visual servoing creates

the potential for robot assisted surgery with automated tasks; for instance, auto-

matic camera and tool positioning (see Figure 1.4 [33]), tremor compensation [36]

and motion compensation [37, 38]. The technique can therefore reduce a surgeon’s

workload and fatigue during an operation because the procedures are typically time-

consuming [33]. Although implementations of this technique have not been trans-

lated to a real surgical robot due to other problems such as registration, tracking and

real-time capability [39], visual servoing presents the potential to partially automate

surgical tasks, which can facilitate workflow in the operating room.

However, all the information necessary for the interventions is captured in the
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(a)

(b)

Figure 1.3: (a) An illustration of virtual fixtures. When a surgical tool is moving
into renal artery neighbourhood (dashed blue line), the active repulsive force will
be generated to protect delicate anatomical structure (dashed black line) [19]. (b)
An illustration of a robotic-assisted trajectory using virtual fixtures. The red line
represents a pre-defined trajectory that the end-effector has to follow [20].

camera coordinate frame, which is not yet linked to the robot coordinate frame.

This presents a problem because useful information in the camera frame cannot be

directly accessed and updated by the robot kinematic, which surgeons use to con-

trol the instruments and camera. Therefore, the mapping between the coordinates

of the laparoscopic camera and the robot must be estimated. Such mapping is called

the hand-eye transformation. When the transformation is known, information ex-

change, which links the information happening in the camera reference using the

surgical vision frame [40] to the robot kinematics becomes possible.
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(a) (b)

Figure 1.4: (a) Automatic camera re-positioning using visual servoing technique.
The red cross represents the centre of the field of view and the algorithm positions
the end-effector of the tool at the centre of the frame. (b) A laparoscopic view
of a surgical tool holding a needle. Visual servoing is used to position the needle
at the target. Both examples require an imaging feedback from a camera whilst
accordingly controlling the robot through the kinematic to achieve the task. This
can be developed further to an automated suturing in laparoscopy [33, 34].

1.1 Problems in hand-eye calibration
Hand-eye calibration is a classic problem in the robotics field that aims to iden-

tify the transformation that maps two rigidly attached frames, usually a robot end-

effector (hand) and a camera (eye). Many hand-eye calibration algorithms have

been proposed since the 90s and they offer accurate calibration result, but hand-eye

calibration is still a challenging problem when working with RMIS due to several

factors.

1.1.1 Noise sensitivity

The hand-eye problem is conventionally constructed from a chain of rigid

transformations. Without noise in the system, the problem can be solved alge-

braically in the least squares sense to recover the hand-eye transformation [41].

This is not the case in the real system when the position of the robot slightly devi-

ates and the images are noisy. Moreover, the motions of the robot and the camera in

an operative site are usually small and heavily perturbed by different noise charac-

teristics. For example, the noise in the KUKA motors is different from that of the da

Vinci robot and the latter is more difficult to model. Despite this uncertainty in the
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input, the algorithm should be able to yield sub-millimetre calibration accuracy as

the accuracy requirement for CAI applications are very high, which ensures that the

information is accurately mapped between the two coordinate frames. Therefore, in

the context of RMIS, hand-eye calibration is sensitive to noise and more challeng-

ing in practice. This presents a problem that currently available hand-eye algorithms

cannot solve, instead ending up with an inaccurate hand-eye matrix. There are two

main sources of noise in the calibration: camera motion and robot motion.

The noise in camera motions occurs mostly because of the error in the cam-

era calibration which can be caused by several factors; an erroneous grid detection

algorithm, an inaccurate intrinsic and extrinsic parameters estimation, poor qual-

ity imaging devices. Although the error in the camera motion is often considered

negligible in the field of computer vision as the camera parameters can be refined

to yield sub-pixel accuracy [42], the error creates a larger impact on the hand-eye

matrix estimation, as shown in the experimental sections. However, the finding of

the intrinsic parameters are not the focus of this thesis as we are mainly looking for

the constraints derived from the kinematic chain of robotic systems.

On the other hand, due to geometric (imprecision in manufacturing) and non-

geometric errors (backlash, elasticity, and joint compliance) caused by stresses and

strains from surgical instruments, the measurement of joint positions is not perfectly

accurate. This creates a discrepancy between the transformation computed by the

forward kinematics of the robot model and the real robot pose [43]. Although cur-

rently available robot arms have sub-millimetre repeatability in their positioning

systems, this does not guarantee their accuracy. Furthermore, according to exper-

iments in the literature [41, 44, 45], it has been shown that even a sub-millimetre

error in the translation component has a noticeable impact on the calibration re-

sults. In practice, although this effect can be minimised with a more accurate robot

calibration [46], the calibration of the robot has to be repeated when there is a slight

change in the system as such a change invalidates the previous calibration. There-

fore, including a robot calibration in a robotic system that requires setup changes

may not be practical.
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1.1.2 Limited motion range

Apart from noise sensitivity in the system, motion range is also a challenging

problem in the hand-eye problem. A wide input motion range suppresses the effect

of noise and in turn increases calibration accuracy [44], but such a range is not

feasible in all surgical robot setups. The motions of surgical tools are usually very

small as they are confined around the remote centre of motion (RCM) to ensure that

instruments are confined to a motion in the vicinity of the trocar entry ports [47].

This mechanical constraint is designed to minimise a chance of robot arm dam-

aging the surrounding tissues at the entry port [48, 49]. For example, da Vinci

systems fix the RCM at the intersection of the rotation axes of the last setup joint

and the first joint [50, 51]. The system also provides a specific calibration instru-

ment dedicated for placing the RCM at the right position in a real surgery [52]. On

the other hand, for robot arms that do not have this mechanical constraint such as

KUKA arms, software approaches [52,53] can be used to ensure that the instrument

pivots around the designated RCM.

Apparently, the systems without the constraint can move more freely and has a

wider motion range than the ones with the constraint. For instance, the camera mo-

tion captured from the robot arm KUKA LBR IIWA R800 has a significantly wider

motion range than the one from the da Vinci surgical robot as shown in Chapter 3.

Therefore, while the conventional formulation for the hand-eye problem works well

in an industrial context, it poses a problem for the RMIS setup for which the scale

of the workspace is significantly smaller.

Furthermore, a small motion range can also transform the well-posed hand-eye

problem into an ill-posed problem, which is more difficult to solve as it is under-

constrained. Although the classic formulation of the problem has been used since

the 1980s and many solutions have been proposed using different mathematical

domains, the degree of degeneracy and ill-posed configurations remain the same

across all algorithms as the original formulation is never changed.

Alternatively, path planning algorithms can ensure that the appropriate cali-

bration motions are captured [54], and automated pose selection methods can guar-
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antee well-conditioned hand-eye constraints [55, 56]. However, when the robot is

confined to a limited range, the problem remains [57].

1.1.3 Asynchronous data streams

The camera attached to the robot and the robot itself are usually operated at dif-

ferent frequencies. This creates a temporal signal misalignment in the data stream

which makes the well-posed hand-eye formulation invalid, since the hand-eye prob-

lem requires a corresponding robot motion for any given camera motion [58]. Nev-

ertheless, it is arguable that the synchronisation step is not necessary for the hand-

eye problem because of the following reasons.

First, the calibration step is typically an offline procedure; users can prepare

the setup and perform the calibration beforehand by discretely capturing several sets

of images of the calibration grid and the corresponding kinematic data, such that a

temporal misalignment does not affect the data. However, this option does not work

if there is a need for a re-calibration which arises when there is a change in the

setup. For example, a laparoscopic lens can be fogged because of the difference in

temperature between the operating room and a patient’s peritoneum or insufflation

gas [59, 60], which creates a need to clear the visual field. A change in the setup

invalidates the previous calibration result. Moreover, although users can still dis-

cretely capture the data for the calibration after the setup change, the new temporal

misalignment is not known and the resulting calibration process (which is already

complicated) will further disrupt the operation.

Second, an embedded system producing a common timestamp can alterna-

tively be implemented into an RMIS system such that every operation and commu-

nicated message is synchronised, which allows users to either manually synchronise

the data or programmatically only obtain data based on the registered timestamp.

One of the closest configuration to the description and most commonly known soft-

ware architectures is Robot Operating System (ROS), although it is not a real-time

system and not yet viable for a real surgery. However, this requires compatibility

between every sensor and camera in the system and the embedded system which

cannot always be achieved. Moreover, the hand-eye problem does not only apply
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to a camera-robot setup but also to every setup that has more than one working co-

ordinate system [61–63]. Therefore, as robotic systems become more complex and

distributed and while support packages for their sensors have not yet been devel-

oped, the common timestamp for the whole system may not be available [64].

1.1.4 Usability

In computer vision and robotics related applications, regardless of the equip-

ment used, performing calibration is generally a necessary step before deployment

to ensure the equipment’s accuracy, the connection in the systems, and the system’s

functionality [42, 44, 56, 65]. The problem is usually expressed into equations and

therefore requires users to gather the data for the calibration. There is a series of

criteria that the data must satisfy.

All of the existing hand-eye calibration methods require several images of a

physically known object, which usually consist of a series of images of a calibration

grid taken with a camera along with the corresponding robot poses. The point of

view of the camera must be varied as much as possible to maximise calibration

accuracy.

Therefore, in addition to introducing a calibration grid as a part of RMIS, the

requirement for the calibration also poses a problem in an operation as the medical

staff in an operation room are not properly trained to resolve a computer vision

and robotics problem. The calibration procedure must therefore be simplified and

minimal such that medical staff can perform the calibration routine without the need

to consult a technician.

1.1.5 Adaptability

During an operation, surgeons may need to change surgical tools and scopes

when it is appropriate as mentioned earlier in Section 1.1.3, but any change in a

robotic system invalidates the previous calibration result, i.e. a relative pose be-

tween robot and camera coordinate systems are changed. This requires another

calibration procedure to find the correct transformation. Some may argue that the

change may be insignificant and the need for adaptive-to-change hand-eye algo-
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rithm is not necessary, but even sub-millimetre error can be translated into an ob-

servable discrepancy in poses and in turn the calibration result [41, 44, 45, 66]. In

order to guarantee that the mapping between the two coordinate frames are as accu-

rate as possible, every change in the robotic system must be accounted for.

However, it is not feasible to repeat the whole calibration process for every

change in the setup. Surgeons have to reuse a calibration grid which has to be re-

sterilised and recreate the scene for the calibration. This could cause a disruption in

the surgical workflow and delays in an operation which in turn potentially impact

on patient safety. Therefore, the hand-eye algorithm should be adaptive to changes

of the setup and able to update the parameters accordingly [67] so that the workflow

during surgical procedures are not affected or are affected as least as possible by the

calibration.

1.2 Contributions
This thesis aims to develop a modification to the hand-eye calibration pipeline

specifically for the surgical environment. The experiments will be conducted with

synthetic and real data from the KUKA LBR IIWA 7 R800, IIWA 14 R820 and the

da Vinci Surgical Robot in order to validate the findings by comparing performance

with existing hand-eye calibration algorithms.

Analysis of variance (ANOVA) is applied to the raw experimental results to

verify whether the comparison is statistically significant and the p-value is reported

accordingly when it is greater than 0.05. ANOVA is used here because the per-

formance of the proposed algorithm is compared with the existing methods using

the same input data and the normal distribution is assumed. The code for the work

and the comparison studies are packaged in a repository which is available online

at https://github.com/surgical-vision.

The contributions of the thesis are listed as follows.

• Re-formulate the hand-eye problem: A new formulation for solving the

hand-eye problem is developed based on the screw motion theory which

has been commonly used in robotic applications. Using the screw motion

https://github.com/surgical-vision
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to define transformations avoids ill-posed configurations in rigid transforma-

tions [68, 69].

• Investigate the effect of stereo information in the hand-eye problem:

Stereo information provides three additional constraints to camera motion. In

a real system where mappings of coordinate systems are not exact, the addi-

tional constraints can reduce uncertainty in the camera poses as they all define

the same rigid transformation. Both monocular and stereo laparoscopes are

used throughout this research to validate the difference in the performance.

[66] K. Pachtrachai, F. Vasconcelos, F. Chadebecq, M. Allan, S. Hailes, V.

Pawar and D. Stoyanov. Adjoint transformation algorithm for hand-eye cal-

ibration with applications in robotic assisted surgery. Annals of Biomedical

Engineering, 46(10): 1606-1620, Oct 2018.

• Develop a formula for hand-eye calibration using RCM: The RCM in a

robotic system is usually defined by the user to specify the location the cam-

era pivots around. Camera motion in RMIS is confined to the area surround-

ing this location, which does not provide a sufficient motion range for the

calibration. We use the user-defined RCM to develop a formulation that is

less sensitive to the input motion range to deal with the problem.

[70] K. Pachtrachai, F. Vasconcelos, G. Dwyer, S. Hailes, and D. Stoyanov.

Hand-eye calibration with a remote centre of motion. IEEE Robotics and

Automation Letters, 4(4):3121–3128, Oct 2019.

• Develop a synchronisation algorithm to pre-process data streams for the

calibration: We explore the constraint embedded in the conventional hand-

eye formulation to check if there is any dependency between the camera and

robot motions. The synchronisation algorithm is developed from the relation-

ship between the two motions.

[58] K. Pachtrachai, F. Vasconcelos, G. Dwyer, V. Pawar, S. Hailes, and D.

Stoyanov. Chess—calibrating the hand-eye matrix with screw constraints and
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synchronization. IEEE Robotics and Automation Letters, 3(3):2000–2007,

July 2018.

• Investigate the feasibility of using other objects as a calibration target:

The calibration grid is commonly used in calibration problems since it is easy

to detect using the grid detection algorithm [71]. Also, its physical dimension

is known which allows us to determine the mapping between the dimension

in the real world and the camera frame using the pinhole camera model [42].

If we apply the same principle to an arbitrary object, we can use any object

as a calibration object. This will considerably reduce the complexity in the

calibration procedure which will potentially solve usability and adaptability

issues, provided we use a calibration object that is familiar to medical staff.

We apply the tracking method in [72] to determine the pose of the object and

evaluate the performance with the conventional calibration algorithm.

[67] K. Pachtrachai, M. Allan, V. Pawar, S. Hailes, and D. Stoyanov. Hand-

eye calibration for robotic assisted minimally invasive surgery without a cal-

ibration object. In 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2485–2491, Oct 2016.

Following this chapter, the mathematical background necessary for studying

the hand-eye problem and the literature on the problem are introduced in Chapter

2. Then, the new hand-eye formulation using the adjoint transformation, alternat-

ing optimisation and stereo information is presented in Chapter 3, which shows

the improvement in calibration performance compared to the methods described in

the literature. Chapter 4 and 5 describe the potential formulations and solutions

to mitigate the problem of limited motion range that exists in the current hand-eye

formulation and to reduce the complexity of the calibration procedure. Data syn-

chronisation and recovery methods are elucidated in Chapter 6 which act as a data

pre-processing step to optimise the input for the calibration. Finally, discussions

and future studies are detailed in Chapter 7.



Chapter 2

Mathematical background and the

hand-eye problem

2.1 Rigid transformation representations
The mathematical representations and the concept of rigid transformations are

major parts of the formulation and experimentation presented in this thesis. Hand-

eye algorithms use different representations to formulate the problem, which yield

different calibration accuracy. This chapter explains the core concept of rigid trans-

formations and the commonly used representations of the rotation component in 3D

space.

A rigid transformation is a linear mapping in Euclidean space, consisting of a

rotation matrix R (a 3× 3 matrix) and a translation component~t (a 3× 1 vector).

The set of rigid transformations are defined as a special Euclidean group, SE(3).

Transformations are used to express the relationship between the two coordinate

systems. For instance, from a robot base to each joint of a robot, or from a robot

coordinate system to a camera coordinate system. The general form of an arbitrary

rigid transformation 1T2 mapping between two arbitrary frames F2 and F1 is,

1T2 =

R ~t

~0T 1

 (2.1)

To apply a transformation to a point ~v = [vx,vy,vz]
T , the point must be ex-
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pressed in normalized homogeneous coordinates with the last entry equal to 1. A

transformed point is simply calculated by matrix multiplication,~vnew

1

=

R ~t

~0T 1

~v
1

 (2.2)

Alternatively, Eq. 2.2 can also be represented as a matrix equation,

~vnew = R~v+~t (2.3)

Unlike the translation component in a rigid transformation which is only a 3×1

vector, a rotation operator consists of an axis of rotation and a degree of rotation and

can be represented in different domains depending on the type of applications. In

this thesis, we are interested in the rotation matrix, quaternions, dual quaternion and

Lie Algebra and the last two representations involve the translation component in

the conversion.

2.1.1 Rotation matrix

In 3D space, a rotated component is represented by a matrix multiplication

between a rotation matrix and a vector, R~v. The matrix R is a 3× 3 matrix and is

a linear map defining a projection of one basis in Euclidean space to another basis.

The matrix is usually defined as,

R =


~x1 ·~x0 ~y1 ·~x0 ~z1 ·~x0

~x1 ·~y0 ~y1 ·~y0 ~z1 ·~y0

~x1 ·~z0 ~y1 ·~z0 ~z1 ·~z0

 ∈ SO(3) (2.4)

where ~xi,~yi and~zi are the orthonormal bases in Euclidean space. This matrix con-

tains several properties that are useful in hand-eye calibration:

• RT = R−1→ RT R = I3

• The column and row vectors in the rotation matrix R are mutually orthogonal.

• Each vector and row vector in the rotation matrix R is a unit vector.
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• The determinant of a rotation matrix is always 1.

A composition of two rotation matrices R1 and R2 can be computed by a matrix

multiplication R1R2. Note that the operation is not commutative, i.e. R1R2 6=

R2R1.

Although there are nine elements in this representation, the properties of the

rotation matrix create six constraints on the elements which only leave three de-

grees of freedom (DoF) for the rotation matrix. The other representations such as

angle-axis representation and Euler-angle representation use different formulations

of the elements in the rotation matrix, but they are not well-defined and present an

ill-posed problem in a certain configuration. For example, angle-axis is not well-

defined as there are more than one representations, (~r,θ) and (−~r,−θ) representing

the same rotation where~r is the axis of rotation and θ is the angle of rotation.

Euler-angle representation is also not suitable for the calibration problem as

the optimisation will lose one degree of freedom when one rotation component is

aligned with the other, i.e. the change in the remaining two rotation components

only results in 1 DoF rotation. This situation should be avoided in an optimisation

problem like hand-eye calibration as it is possible that a parameter in one DoF could

converge faster than the others and cause the problem to lose DoF. Therefore, these

representations will not be considered in this thesis.

2.1.2 Quaternions

Quaternions are four-dimensional number systems containing four real num-

bers. A quaternion is usually written as,

q = qw +qxi+qy j+qzk (2.5)

where i, j,k are the imaginary terms such that i2 = j2 = k2 = i jk =−1. A quaternion

can also be written as a composition of a vector and a real number,

q = [qw,qx,qy,qz]
T = [qw,~qT ]T (2.6)
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Multiplication between two quaternions p and q uses vector dot and cross prod-

ucts in the computation. This operation is not commutative.

p.q =

 pwqw−~pT~q

qw~p+ pw~q−~p×~q

=


pw −px −py −pz

px pw −pz py

py pz pw −px

pz −py px pw




qw

qx

qy

qz

 (2.7)

Unit quaternion, q represents rotation components. The form of this quaternion

can be written as,

q = cos
θ

2
+(rxi+ ry j+ rzk)sin

θ

2
(2.8)

where θ is the angle of rotation and [rx,ry,rz]
T is a unit vector representing an axis

of rotation. Similarly to the rotation matrix, a successive rotation in the quaternions

domain is represented as quaternion multiplication and the operation is not com-

mutative. To apply a rotation to a vector ~v = [vx,vy,vz]
T , one has to evaluate the

following product.

~vnew = q.[0,vx,vy,vz]
T .q? (2.9)

where q? is a quaternion conjugation of q,

q? = cos
θ

2
− (rxi+ ry j+ rzk)sin

θ

2
(2.10)

Quaternion representation is widely used in the fields of robotics and computer

vision. The representation does not have a gimbal lock problem, and it is computa-

tionally cheaper to interpolate the rotational motion in the quaternion domain than

in the rotation matrix.

2.1.3 Dual quaternions

So far we have only considered the expression of the rotation component of a

rigid transformation in the different domains. To represent a complete rigid trans-

formation, another quaternion, called the dual term q′, is introduced in addition to
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the rotation term. Dual quaternions have the following form,

q̂ = q+ εq′ (2.11)

where ε is a dual unit such that ε2 = 0. The real term q represents a rotation com-

ponent and its conversion remains the same in this representation (Eq. 2.8). The

dual term q′ is calculated by the quaternion multiplication [0, 1
2~t

T ]T .q and has the

form of,

q′ =

 −~tT~r sin θ

2

~t cos θ

2 +~t×~r sin θ

2

 (2.12)

Similarly to the quaternion representation of a rotation matrix, successive

transformations can be performed in the same manner. The resulting transforma-

tion is represented by a chain of dual quaternions multiplied in the same order as

a chain of rigid transformations. The multiplication, in this case, is the quaternion

multiplication.

The dual quaternion representing a rigid transformation has an orthogonal

property between the real and the dual terms. The dot product between the two

quaternions must equal zero, i.e. qT q′ = 0. This property is used in hand-eye cali-

bration algorithms incorporating a dual quaternion formulation [73].

2.1.4 Lie algebra

To express a transformation in its Lie group se(3), we have to use the matrix

logarithm (logm) and the matrix exponential (expm) to map from SE(3) to se(3).

Let t be a Lie algebra of a transformation T, we have,

t= logm

R ~t

~0T 1

=

[~ω]× ~v

~0T 0

 (2.13)

where ~ω is a 3×1 vector representing the axis of rotation with a norm equal to the

degree of rotation θ and the vector~v is calculated by the following formula,

~v = (I3 +
1− cosθ

θ 2 [~ω]×+
θ − sinθ

θ 3 [~ω]2×)
−1~t (2.14)
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The conversion back to the SE(3) domain uses the exponential map. The trans-

lation component of the transformation is calculated by pre-multiplying the matrix

in Eq. 2.14 to the left-hand side of the equation. On the other hand, the rotation

component has to be calculated using Rodrigues’ formula.

R = I3 +
sinθ

θ
[~ω]×+

1− cosθ

θ 2 [~ω]2× (2.15)

T = expm(

[~ω]× ~v

~0T 0

) (2.16)

2.2 Hand-eye problem formulation

The hand-eye calibration problem was first introduced in the paper by Tsai

and Lenz [44]. The calibration aims to determine the unknown rigid transformation

X that maps a robot coordinate system to a camera coordinate system or vice versa

depending on the formulation. The problem arises when a camera is rigidly attached

to a robot arm as shown in Figure 2.1. It is conventionally formulated as a linear

system of equations [41].

AX = XB (2.17)RA ~tA
~0T 1

RX ~tX
~0T 1

=

RX ~tX
~0T 1

RB ~tB
~0T 1

 (2.18)

where A represents the relative motion of a camera between Fcam and an observed

reference frame Fgrid at a calibration object, usually a calibration grid, and B is the

relative motion of a robot arm between Frobot and a fixed reference frame at the base

of the robot Fbase. These transformations can be written as the product of two rigid

transformations,

A = camTgrid(τ)(
camTgrid(τ

′))−1 (2.19)

B = robotTbase(τ)(
robotTbase(τ

′))−1 (2.20)
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Figure 2.1: Experimental setup for the classic hand-eye calibration procedure with
a da Vinci surgical robot system. The camera is attached to the end-effector and
camTrobot is the camera’s pose relative to the end-effector [50].

where τ and τ ′ are discrete time values indicating that the two transforms are cap-

tured at different time instances. Therefore, with N different measurements, Eq.

2.19 and 2.20 can be established for all different pairwise combinations and create(N
2

)
different hand-eye equations which can be used together to solve the problem.

However, in a noise-free case, only two motions whose rotation axes are not parallel

can be used to solve the problem [44].

Another formulation (AX = YB) was first proposed in [74] which aims to de-

termine both hand-eye and robot-world transformations simultaneously. In this for-

mulation, the matrices A and B are defined differently from Eq. 2.17; A is a camera

pose with respect to the grid coordinate and B is a robot pose with respect to the

robot base. Several solutions have been proposed to solve the equation [62,75–77].

However, the original paper proves that the formulation contains similar character-

istics as the original hand-eye equation in terms of the rotation estimation. Fur-

thermore, regarding the error propagation on the translation estimation, it is shown

in [78] that although the revised formulation slightly outperforms the original for-

mulation when the degree of rotation is less than 90 degrees, the superiority is not
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Figure 2.2: The schematic shows the pinhole camera model, commonly used in
the field of computer vision. The optical centre is located at the world coordinate
system (u,v,w). The distance between the image plane (virtual image) and the
optical centre is defined as the focal length [42].

significant and the equation is more sensitive to ill-posed configuration than the

original equation.

2.3 Data collection for hand-eye calibration
To solve the hand-eye problem, the rigid transformations camTgrid and robotTbase

must be determined beforehand in order to compute the relative transformations A

and B, respectively. This section explains the methods used to compute these trans-

formations together with the criteria for the selection of pairs of transformations for

the construction of a set of optimal hand-eye equations.

2.3.1 Extrinsic parameters estimation

Extrinsic parameters estimation is one of the data pre-processing steps in hand-

eye calibration. The aim is to determine camTgrid for Eq. 2.19 and 2.20. Given a

pre-calibrated camera, i.e. a case in which the intrinsic parameters of a camera

are known, the method determines the pose of the camera with respect to a fixed

reference frame, usually defined on a calibration object [42].

We adopt the pinhole camera model to map a point in the world coordinate

system to the camera coordinate system. The point in the world coordinate is trans-
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formed by an extrinsic matrix and then intrinsic matrix to obtain the image shown

in the image plane as illustrated in Eq. 2.21 and Figure 2.2.

λ


x

y

1

=


fx γ τx 0

0 fy τy 0

0 0 1 0




r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




u

v

w

1

= Λ

R ~t

0T 1




u

v

w

1

 (2.21)

Given a point in 3D coordinates that lies on the calibration grid (xW ,yW ,zW )

and zW = 0, its corresponding position in the image and the predetermined intrin-

sic parameters, Eq. 2.21 represents a homography between (xI,yI) and (xW ,yW )

which can be solved in the least squares method and refined by using non-linear

optimisation. This method is widely used in the field of computer vision and it can

achieve sub-millimetre accuracy; however, this also depends on the performance of

the grid/corner detection algorithms and the distortion of the camera. The outliers

in the corners detection and the error in the distortion parameters can cause a small

error in the extrinsic parameters, which in turn creates a significantly different cali-

bration result in a numerically sensitive problem such as the hand-eye problem. The

influence of simulated noise to the calibration result is demonstrated later in Section

3.4.

2.3.2 Forward kinematics

A robotic system is a combination of joints and links from the base of the robot

to the end-effector, in which joints can be revolute, prismatic or fixed. To localise

the end-effector of a robot, frames are assigned at joints and links to create a chain

of transformations from the base of the robot to the end-effector.

Forward kinematics is a method determining the robot’s pose in subsequent

frames relative to the frames defined on the robot. The most commonly used tech-

nique to solve the forward kinematics problem is called the Denavit-Hartenberg

convention. The convention assigns four parameters (called ”DH parameters”)

ai,di,αi and θi on the length and twist of each link and axes for each joint i as

shown in Figure 2.3. Suppose that a frame i and a subsequent frame j are assigned



2.3. Data collection for hand-eye calibration 22

Figure 2.3: The schematic shows the definition of the parameter ai,di,αi and θi in
links and joints and the convention on how to assign frames on to each joint [79].

in a robot. Using the described convention, the transformation between frame i and

frame j can be written as,

iT j = Rot(zi,θ j)Tran(zi,d j)Tran(x j,a j)Rot(x j,α j) (2.22)

where the pure rotations (Rot(z,θ j) and Rot(x,α j)) and translations (Tran(z,d j) and

Tran(x,a j)) are defined by,

Rot(z,θ j) =


cosθ j −sinθ j 0 0

sinθ j cosθ j 0 0

0 0 1 0

0 0 0 1

 (2.23)

Rot(x,α j) =


1 0 0 0

0 cosα j −sinα j 0

0 sinα j cosα j 0

0 0 0 1

 (2.24)
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Tran(z,d j) =


1 0 0 0

0 1 0 0

0 0 1 d j

0 0 0 1

 (2.25)

Tran(x,a j) =


1 0 0 a j

0 1 0 0

0 0 1 0

0 0 0 1

 (2.26)

Therefore, for a manipulator of n joints, the pose of the end-effector with re-

spect to the base can be calculated as follows,

0Tn =
0 T1

1T2 . . .
n−1 Tn (2.27)

According to the literature, two further conventions are used in robotics re-

search: modified DH convention [79] and the product of exponential formula

(POE) [80]. We are only interested in the modified DH convention in this research

as the POE formula is not as commonly used in hand-eye calibration as either of the

DH conventions. The modified convention formulates the transformation between

frame i and frame j as follows,

iT j = Rot(xi,αi)Tran(xi,ai)Rot(z j,θ j)Tran(z j,d j) (2.28)

Similarly to the estimation of extrinsic parameters, forward kinematics has

its own imperfection in defining the transformation. As the method relies heav-

ily on the physical dimension of the robot provided by the robot manual, it does

not account for geometric (imprecision in manufacturing) and non-geometric er-

rors (backlash, elasticity, joint compliance). While such errors can be minimised

using robot calibration methods [43, 55, 56, 65], they can still be propagated to the

end-effector pose which creates a noticeable impact on the hand-eye calibration

problem.
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Methods Solver
Linear least squares [41, 44, 81, 82]

Solve rotation and translation Quaternion methods [75, 83, 84]
separately Dual-quaternion methods [45, 85]

Solve rotation and translation Dual-quaternion methods [73, 86]
simultaneously Non-linear methods [87–91]

Solve the problem using Structure from motion (SfM) [92–94]
only one data stream Gröbner basis [95]
Probabilistic method Dirac-delta function [61, 62, 64, 96, 97]

Table 2.1: A summary of previous studies related to hand-eye calibration algorithms

2.3.3 Data selection

The lemmas and proofs in Tsai and Lenz’s study indicate that high number of

motions and a wide range of motion can suppress the effect of noise in the system

[41, 44]. Therefore, it is always preferable to include all the captured motion in

the calibration given that the motion has a wide range. However, no criteria exist

regarding the convergence of optimisation in the calibration, i.e. there does not exist

any proof where the convergence occurs in relation to the number of motions and

range of motion.

Opposite to the effect of the range of motion, any pair of the transformations

that creates a small relative transformation in rotation and translation can increase

the effect of noise in the system as shown in the proofs in [44]. Therefore, data

selection plays a vital role in the hand-eye problem. In order to achieve optimal

calibration performance, the rotational movement in the relative transformations

should be maximised, whilst minimising the distance between the optical centre of

the camera and the calibration object [57].

However, planning paths such that the robot motion satisfies the criteria, whilst

feasible in a general robotic application, is not so in a surgical context, as movement

of the robot and camera movement is confined to a particular area.

2.3.4 Hand-eye calibration

There is an extensive literature on hand-eye calibration algorithms as the prob-

lem dates back to the 1980s. All of the algorithms developed in the literature derive

their solutions from the classic hand-eye equation (Eq. 2.17). The existing hand-
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eye calibration techniques in the literature review are categorised and summarised

in Table 2.1 based on how they work. The most common approach is to formulate

and solve the problem using the quaternion or dual quaternion domains and the most

common calibration object is the chessboard calibration grid. Except for the SfM

and Gröbner basis methods, the calibration procedure consists of acquiring several

images of a planar checkerboard with different camera orientations, capturing the

joint data and using the forward kinematics to compute the motion of the robot end-

effector, and applying these data streams to the hand-eye calibration algorithm. In

the next several sections, the related work will be explained in detail together with

its drawbacks.

2.3.5 Decoupling the hand-eye solution

Eq. 2.17 can be decoupled into two equations as follows,

RARX = RX RB (2.29)

RA~tX +~tA = RX~tB +~tX (2.30)

As shown in the equations, decoupling rotation components from Eq. 2.17

makes rotation estimation independent of the noise in the translation component

which agrees with the screw representation of a rigid transformation [45]. The

solvers in this section use the geometric relationship between the rotational axes of

the camera and robot motion to determine the rotation component of the hand-eye

matrix and then solves Eq. 2.30 for~tX using the least-squares method.

The most classic and commonly used method in the field of computer vision

and robotics is the algorithm developed in [41, 44]. The extensive proofs in the

paper state that the sum of rotation axes of A and B, the difference between the

rotation axes of A and B and the rotation axis of the hand-eye transformation are or-

thogonal to each other. The relationship can be used to compute the axis of rotation
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as follows, 
[~ra1]×+[~rb1]×

[~ra2]×+[~rb2]×
...

[~raN ]×+[~rbN ]×

~nX =


~ra1−~rb1

~ra2−~rb2
...

~ra2−~rb2

 (2.31)

where~rai and~rbi are the unit rotation axes of A and B, respectively and []× indicates

a skew symmetric representation of a vector. The vector ~nX is the rotation axis of

RX with a norm of 1
2cos θX

2

, i.e.

~rX = 2cos
θX

2
~nX (2.32)

where θX is the angle of rotation of X. Eq. 2.31 and 2.32 can be used to find

the rotation component of the hand-eye matrix. Then, we can use a simple linear

method to solve Eq. 2.30 for the translation component as follows,

~tX =


RA1− I3

RA2− I3
...

RAN− I3



†
RX~tB1− ~tA1

RX~tB2− ~tA2
...

RX~tBN− ~tAN

 (2.33)

where the superscript † represents the pseudoinverse operator. This method was

published in 1989 and is still commonly used in many research fields because it

provides good calibration accuracy. However, the method is highly dependent on

the range of motion, which is one of its problems in a surgical environment. The

solution in [81] works similarly to this method, but it incorporates an arctangent

function instead of using the vector product, which yields the same result.

Park et al. also published a work on hand-eye calibration using Lie algebra

[82] to determine the rotation component. The study makes use of Eq. 2.29 and

incorporates Lie algebra to further derive the following relationship.

~ωA = RX ~ωB (2.34)
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where ~ωA and ~ωB are the rotation axes with the norm of angles of rotation in the

transformations A and B, respectively. Eq. 2.34 implies that the angles of rotation

of the transformations A and B are the same size regardless of the rotation axes.

With the application of Lie algebra [98] and the Cayley-Hamilton theorem (the

polynomial expression of any algebraic function applied to a matrix), the optimal

value of RX can be expressed as,

RX = (sqrtm(MT M))−1MT (2.35)

where M = Σ~ωB~ω
T
A and the function sqrtm represents the square root of a matrix

which again can be calculated using the Cayley-Hamilton theorem. The solved

rotation matrix is later used to find the translation component in the same manner

as in the aforementioned works (Eq. 2.33). However, this solution needs more than

50 samples of pairwise combination of A and B to achieve convergence.

It is well known that quaternion is sometimes a better representation of a 3×3

rotation matrix [99]. Therefore, apart from calibrating the matrix in the SE(3) and

Lie algebra se(3) domains, Jack et al. also proposes using the algorithm to solve the

hand-eye problem in the quaternion domain [83,84]. The paper uses the quaternion

representation to re-arrange Eq.2.29 into the least-squares problem.a0−b0 −(~a−~b)T

~a−~b [~a+~b]×+(a0−b0)I3

q = 0 (2.36)

Eq. 2.36 can be solved by using singular value decomposition (SVD), while

the method for solving the translation component remains unchanged in the paper.

This paper also provides an extensive theoretical study of the method, but does not

compare the performance with the existing algorithm. A comparative study was

later performed [45] in which the authors solved the problem using dual quater-
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nions. The proposed method outperformed the quaternion-domain methods.a′0−b′0 −(~a′−~b′)T

~a′−~b′ [~a′+~b′]×+(a′0−b′0)I3

q =

−a0−b0 −(~a−~b)T

~a−~b [~a+~b]×+(a0−b0)I3

q′

(2.37)

The algorithm using dual quaternions proposed in [45] determines the rotation

component the using Eq. 2.36, and uses a similar representation to solve Eq. 2.30

for the translation component. This method was later improved upon by non-linear

optimisation with the epipolar constraint [85].

The advantage of solving the problem separately is that the rotation estimation

does not suffer from the perturbation in the translation as a result of decoupling

the rotation components from the translation. However, the optimisation also loses

the constraints from the translation equation (Eq. 2.30) and may therefore yield an

imperfect rotation estimation which is often the case in any calibration problem,

which will, in turn, cause an error in translation estimation due to the formulation

in Eq. 2.30.

2.3.6 Coupling the hand-eye solution

Apart from having a well-defined rotation component, transforming Eq. 2.17

to the dual quaternion domain also allows the problem to be solved simultaneously

for the rotation and translation components [73,86]. Such formulation also assumes

that the angles of rotation in RA and RB are very close due to the screw constraints

and therefore the scalar components of the dual quaternion equation can be ne-

glected. Denote ~̃a and ~̃a′ as the real and dual components of the transformation A

without the scalar components. The dual quaternion formulation can be re-written

as, ~̃a−~̃b [~̃a+~̃b]× 03×1 03×3

~̃a′−~̃b′ [~̃a′+~̃b′]× ~̃a−~̃b [~̃a+~̃b]×

q

q′

= S(ã, b̃)

q

q′

= 0 (2.38)

The matrix S can be stacked up to a 6n× 8 matrix, where n is the number

of non-parallel rotation axis motions. By using singular value decomposition, the
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solution of Eq 2.38 can be written by linear combination of two dual quaternions

u,v ∈ R8 spanning the null space of the matrix S.q

q′

= α1u+α2v, α1,α2 ∈ R (2.39)

To solve Eq. 2.39, we can use the property of dual quaternions, the unit ro-

tation quaternion and the orthogonality conditions, to formulate the problem into a

quadratic equation to solve for the real numbers α1 and α2. The solution gives a

more accurate estimation of the translation component of the hand-eye matrix than

the classic solution. However, it does not always give the correct solution. The

roots of any quadratic equations are always either “two real roots”, “one real root”

or “two complex roots”. Therefore, in the presence of noise, it cannot be guaranteed

that a formulated quadratic equation will give correct roots or even the real ones. In

addition, the scalar components of the dual quaternion â and b̂ (defined in Eq. 2.8

and 2.12) are not always equal, since the angles of rotation in the two coordinate

systems are not the same due to the noise in the system. Therefore, using this al-

gorithm with noisy localisation of tools or sensors may not be suitable in a surgical

application.

In any calibration problem, a non-linear optimisation is often applied at the

end of the algorithms to refine the solution. Horaud and Dornaika developed an

objective function to optimise the rotation and translation components at the same

time.

f (q,~t) = φ(q,~t)+λ (1−qT q)2 (2.40)

where φ(q,~t) is simply Eq. 2.17 in the quaternion representation and λ is a large

scalar value to enforce the normality of the unit quaternion. One downside of this

formulation is that the function adds rotation and translation errors together with-

out any scaling factor. The two units the metrics are representing are different.

Therefore without an appropriate scaling factor, the equation is invalid. This issue

is pointed out in [87], where the factors are estimated from the probability density

function for both rotation and translation errors.
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Bundle adjustment can also be applied in the hand-eye calibration problem.

The method is presented in [88] and [85]. The hand-eye matrix is optimised by

finding the matrix that minimises the re-projection error of the calibration grid cor-

ners in a stereo camera. The problem of using this function is that it needs either the

estimation of the transformation between a robot and a calibration grid or a predic-

tion of the camera pose using the estimated hand-eye matrix. To estimate the former

parameter, the matrix can be obtained by completing the chain of transformations

which can be problematic since different pairs of robot and camera poses typically

produce different matrices due to noise, in which case there is no prior knowledge

as to which pair is more accurate. On the other hand, camera pose prediction is

more commonly used in research on the hand-eye problem, but this involves using

a pair of robot poses which are usually less accurate than those of a camera. The un-

certainty in the robot poses will propagate to the predicted camera pose and create

a bias in the optimisation and validation processes.

A technique using an invariant point was proposed in 2016 [89] in which the

hand-eye matrix is refined using a single invariant point. In the paper, the point is

defined at the centre of a crosshair and the algorithm estimates the location of the

point and the hand-eye matrix at the same time. The final objective function works

similarly to the bundle adjustment.

A similar method to a single invariant point method is proposed in [100]. The

authors use bundle adjustment to refine the initialised hand-eye solution from the

Kronecker product [101]. RANSAC is used in the paper to reject outlier measure-

ments. Then, the modified version of the bundle adjustment is optimised based on

3m+ 6 variables (6 from the hand-eye matrix and 3m from the used 3D points in

the function). Such objective function is

min
X,gridTcam

m

∑
i=1

n

∑
j=1

vi j||xi j−Pj(XB−1
j

gridTcam, i)||2 (2.41)

where vi j is 1 if the ith point can be observed from the jth view, otherwise it is 0. xi j

is the ith point from the total of m points from the view jth from the total of n views.
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(a) (b)

Figure 2.4: The examples of camera poses and the reconstructed scene using
Structure-from-motion to calibrate the hand-eye matrix [93, 94].

Pj is the projection function of the camera from the view j and X is the hand-eye

matrix. While the refinement of the hand-eye matrix increases calibration accuracy,

using the Kronecker product solution as the initialised solution may not give a good

estimation of the solution as it needs to be projected back to SO(3).

2.3.7 Hand-eye calibration without hand or eye orientation

There are special cases in the hand-eye solution that work on the same formula-

tion (Eq. 2.17), but use only one data stream; e.g., either only hand poses or camera

poses. The work in [95] solves the hand-eye problem when the positioning system

of the robot arm is not properly calibrated. The method uses Gröbner basis [102]

to solve Eq. 2.30 for the initialisation and non-linear optimisation to subsequently

refine the solution. Although the algorithm yields good accuracy, with a precision

of 10 millimetres, the existing algorithms using both robot and camera poses can

yield a better calibration accuracy.

On the other hand, there are previous works that do not require extrinsic pa-

rameters in the calibration pipeline. SfM is an imaging technique that estimates 3D

structures or scenes from several camera poses. Unlike the previous system, work
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in [92–94] proposes solving the hand-eye problem without using “eye” information,

but instead sets of correspondences are used in the estimation. Using the same prin-

ciple, simultaneous localisation and mapping (SLAM) can also be applied [103] to

solve the hand-eye problem. However, both SLAM and SfM methods do not work

well with laparoscopic video as a dynamic scene of an operative site, including

non-rigid tissues, occlusions and fast camera motions can make localisation very

challenging [104].

The literature shows that the hand-eye calibration algorithms with one data

stream can give good calibration accuracy, despite the expensive computational

cost. Furthermore, it may work better to have a priori knowledge of the unused

data streams since the currently available camera calibration and robot positioning

systems can be refined to sub-millimetre accuracy.

2.3.8 Probabilistic methods

Some of the most recent studies in hand-eye calibration describe the probabilis-

tic methods [61, 62, 64, 96, 97]. The proposed methods are designed for an online

hand-eye calibration in which two data streams are not fully synchronised, i.e. the

starting times of the two data streams are not the same due to the hardware setup

which invalidates Eq. 2.19 and 2.20 as the time values τ and τ ′ in A and B are not

synchronised.

The algorithm uses the Dirac delta function on SE(3) to define the distribution

of the transformations and convert Eq. 2.17 into the linear convolution of Dirac

delta functions. This formulation yields two key equations.

MAX = XMB (2.42)

Ad(X−1)ΣAAdT (X−1) = ΣB (2.43)

where MA and MB are the means of every possible combination of A and B, Σ is
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the covariance of the transformation matrix and the Ad() operator is defined as

Ad(X) =

 R 03×3

[~t]×R R

 (2.44)

The algorithm requires a mean and a covariance of two sets of transformations
camTgrid and robotTbase as input and it then solves Eq. 2.42 and 2.43 using the least-

squares method for the hand-eye matrix X. [96] also proposes several methods to

compute the average of the transformations. The solutions have been tested with

scrambled data and time-delayed data streams and the results show that the algo-

rithm can overcome the synchronicity issue in the hand-eye problem. However, this

method does not solve the problem of different sampling rates. For example, when

two large pools of {A} and {B} are presented in random orders, this algorithm re-

quires at least one corresponding in {Ai} for a B j such that it satisfies Eq. 2.17.

This is not always the case when there are different sampling rates from different

sensors.

In [61], the authors also propose a solution to synchronise the hand-eye data

streams using the cross-correlation technique in the frequency domain. This ap-

proach only uses the rotation component of the hand-eye problem to find the delay;

the translation component remains unused.

The probabilistic approaches in the literature may be suitable when we have

two data streams with different starting times, but the formulation can be invalidated

as some of the poses in one data stream do not have corresponding poses in the other.

We will show in the chapter 6 that the probabilistic approach fails when there are

different sampling rate in the data streams.

2.4 Discussion
The hand-eye problem arises when two coordinate systems are working to-

gether in one system, typically a robot arm with a camera rigidly mounted on the

end-effector. It aims at determining the rigid transformation that links the two sys-

tems. Although this is a classic problem and many solutions have already been
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proposed, they nevertheless have flaws and are not applicable to an RMIS setup,

which requires a high calibration accuracy.

Starting from the data fed into the calibration, every transformation A and B

has to be fully synchronised and yields a valid set of hand-eye equations: i.e. a

solution exists. Since sets of transformations {A} and {B} are typically collected

from different systems, which have different activation times and sampling rates,

the temporal misalignment causes asynchronicity in the data streams and invalidates

Eq. 2.17. Without synchronised data streams, the screw constraints on both rotation

and translation components are not satisfied and the system of equations cannot

yield the correct solution. Therefore, it is necessary to pre-process the data so that

all the transformations in the data streams conform to the screw constraints.

The data used in the calibration is evaluated from two main steps: camera cal-

ibration is used to determine the camera pose (extrinsic parameters) and the robot

pose is calculated using forward kinematics. The estimation of the extrinsic pa-

rameters is usually more accurate than the robot pose as bundle adjustment can be

refined to sub-pixel accuracy. This shows that in most systems, calibration error

is caused by the error in the robot pose, which is propagated from the kinematic

chain to the estimated hand-eye matrix. In the context of RMIS, calibration accu-

racy is important as any discrepancy in the localisation could cause a misalignment

in the applications. Hence, the developed hand-eye algorithm must be able to deal

with the inaccuracy in the relative transformations from both the camera and robot

kinematic chain.

From the surgeons’ perspective, the calibration procedure is complicated as

they are not trained to either acquire the data or prepare the setup for the calibra-

tion. Therefore, using the conventional hand-eye calibration methods may not be

suitable. The conventional method requires the use of a calibration target that needs

to be sterilised, and the calibration needs to be updated every time the setup of the

robot is changed. Consequently, the operation workflow can be severely disrupted

by the calibration process, which is not desirable. The calibration workflow must

be simple and adapt to changes in the surgical environment in order to appropriately
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update the hand-eye matrix without disrupting the overall operation.

Another problem relates to the formulation of the hand-eye problem itself. The

original hand-eye equation as shown in the literature, relies on a high number of

motions, and a wide motion range to suppress the calibration error. While many

motions can easily be acquired over the course of a procedure, collecting motion

with a sufficiently wide range for the calibration can be challenging. Due to the

setup in keyhole surgery, camera motion is confined to the area around the RCM

which only allows very small rotational and translational movement. This presents a

problem in calibrating the hand-eye matrix as RA and RB are close to identity which

makes the rotation component of the hand-eye equation unsolvable. This leaves

only Eq. 2.30 to be solved which is an under-constrained problem. Therefore, the

ideal algorithm should be able to make use of a small motion to calibrate the hand-

eye matrix.

The problems in solving the hand-eye problem involve the synchronicity of the

data, noise in the camera and the robot kinematic chain, the calibration workflow,

and finally the motion range problem. The hand-eye algorithm, in the context of

RMIS, should be able to overcome these challenges, which are not yet overcome by

the currently available hand-eye calibration algorithms.



Chapter 3

Adjoint transformation formulation

for hand-eye calibration

As described in Chapter 2, the hand-eye problem is formulated as an equa-

tion of homogeneous matrices (Eq. 2.17). Throughout the years, many closed-form

hand-eye solutions have been proposed using different parameterisations e.g. the

special Euclidean group SE(3) [41, 44, 87], its Lie algebra group se(3) [67, 82],

quaternions [75, 83, 84], and dual quaternions [45, 73, 85]. According to the litera-

ture, among all parameterisations, Lie algebra and dual quaternions outperform the

others. These two representations both describe a rigid motion as a screw motion.

Screw motion theory is based on the fact that an arbitrary rigid body transfor-

mation can be represented by a rotation about a certain axis and a translation along

the same axis. The theory is frequently used in the visual servoing domain (vision-

based control) where the robot pose is changed according to the quantities measured

in the imaged frame [105] e.g. a coordinate point in an image, or an orientation of

a line in an image. Using screw motion to represent rotation components prevents

ill-posed cases when the composite transformation has parallel rotation axes, which

renders the classic solution unsolvable (see Eq. 2.31) and is usually the case in

RMIS applications; the axes of the robot and camera coordinate frames are parallel

to each other and have similar rotation axes (see Figure 3.1(b)).

Apart from parameterisation, the use of a stereo camera can also greatly im-

prove calibration accuracy, since each measurement creates additional geometric
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constraints. Most hand-eye calibration algorithms are derived for an application

with a monocular camera, but the formulation can be directly applied to a stereo

camera as well by considering the motion of the two cameras as two independent

monocular camera motions [87]. Using a stereo camera also creates an additional

constraint that can be added to the formulation. For example, the cost function

derived in [85, 106] uses the stereo information to posteriorly refines the hand-eye

solution by minimising the epipolar error.

This chapter introduces a novel method for formulating the hand-eye problem

that incorporates motions from a stereo camera and the adjoint transformation which

uses the new constraints derived from screw motion theory. The presented algorithm

uses stereo transformation and the property of the screw motion to calibrate the

matrix. The method is experimentally validated using datasets from both simulation

and robots, the da Vinci Surgical Robot and a KUKA LBR IIWA R800.

3.1 Hand-eye calibration with the adjoint transfor-

mation

The proposed algorithm uses Lie algebra and dual quaternions to formulate

the problem. This formulation allows the decoupling of the rotation and transla-

tion parts such that the parallel axes do not create ill-posed cases and that it can be

solved using alternating optimisation. The algorithm then jointly solves the equa-

tion for the rotation component [45] and uses the adjoint transformation to estimate

the hand-eye matrix. Similarly to most state-of-the-art approaches, non-linear opti-

misation using Levenberg-Marquadt is applied at the end of the algorithm to refine

the hand-eye matrix [88]. This calibration pipeline is similar to the camera cali-

bration algorithm which iteratively solves for the extrinsic and intrinsic parameters

in alternating steps, followed by a local optimisation refinement step [42]. The al-

ternating optimisation algorithm is chosen here because it is usually faster than the

numerical solution and can avoid local minima [107].
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(a)

(b) (c)

Figure 3.1: (a) Experimental setup for the classic hand-eye problem. The cam-
era is attached to the end-effector of the robot, in this case, the flange of a KUKA
arm. Hand-eye calibration is the method used to determine the missing transfor-
mation camTrobot which defines a pose of robot’s frame with respect to the cam-
era’s pose. (b) The schematic showing the example of relative transformations for
the robot frame and camera frame as mathematically represented by Eq. 2.19 and
2.20. (c) The schematic for the stereoscopic formulation of the hand-eye problem as
mathematically represented by Eq. 3.13 - 3.18. ALR is the transformation between
Fcam, L(τ) and Fcam, R(τ

′), while ARL is the transformation between Fcam, R(τ) and
Fcam, L(τ

′)
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(a) (b)

Figure 3.2: (a) Example images of the KUKA’s pose and its corresponding image
side by side. KUKA is moved to several positions to collect images of the calibra-
tion grid from several points of view, while the pose of the KUKA is acquired using
its API. (b) Example images of da Vinci’s pose and its corresponding image side by
side.

To solve the problem, Eq. 2.17 is decoupled into two parts as follows,

RARX = RX RB (3.1)

RA~tX +~tA = RX~tB +~tX (3.2)

where RX and~tX are the rotation component and the translation component of the

hand-eye transformation, respectively. Then, the quaternion representation is used

to rewrite Eq. 3.1. Let a, q and b be quaternions that represent the rotation compo-

nents of the transformations A,X and B. Thus, we have the following equation,

a.q = q.b (3.3)

The quaternion multiplication can be written in a linear equation form and

therefore, Eq. 3.3 can be rearranged into a matrix form as shown in Eq. 2.36.

The classical solution to this equation for determining the rotation component uses

singular value decomposition [45].
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In order to find the translation component, an additional constraint that uses an

adjoint transformation is used to formulate the equation. Post-multiplying Eq. 2.17

by the hand-eye matrix X−1 yields A = XBX−1. Let a and b be the Lie algebra

representations for the rigid transformations A and B, respectively. Then by using

the relationship between these two matrices provided in Chapter 2, we can convert

the hand-eye equation into the following,

expm(a) = Xexpm(b)X−1 (3.4)

Using the property of the matrix exponential function, Xexpm(b)X−1 can be

converted to expm(XbX−1) since a rigid transformation is always invertible [108].

From here, to solve the equation in the se(3) domain, we equate the exponent

terms on both sides of Eq. 3.4. However, this step does not directly follow from

Eq. 3.4 as the matrix exponential function is a surjective function: i.e. any rigid

transformation T can have more than one correspondence in the Lie algebra domain.

Therefore, we need to further prove that the exponential mapping in the context of

the hand-eye problem is uniquely defined for every possible transformation such

that we can safely assume the equality of the exponent terms, a= XbX−1.

Rigid transformations contain three DoF in rotation and another three in trans-

lation. According to Eq. 2.13-2.16, the mapping between the rotation components

is not dependent on the mapping of the translation components [108]. Therefore, the

uniqueness of the rotation mapping can be proven separately from the translation

case.

According to [82], the exponent term of the rotation component is uniquely

defined when the trace of a rotation matrix is not equal to −1, i.e. when the an-

gle of rotation is not ±π . Therefore, if we avoid 180 degrees of rotations during

the calibration procedure, the uniqueness of this rotation mapping can be safely

assumed. Note that it is already difficult for these particular motions to appear in

practice, since the calibration target must be retained in the field of view throughout

the procedure, and this constrains the camera and the robot motions. For the trans-

lation mapping, according to Eq. 2.14, the translation mapping is dependent on the
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Figure 3.3: (a) Re-projection error when adding a small Gaussian noise of the stan-
dard deviation 0.025 mms into the system. (b) Examples of how the grids are pro-
jected back to the images after adding noise; Red dots represent ground truth and
blue dots represent the re-projected grid after adding noise.

rotation and since we prove the injectivity of this mapping, we can also infer the

injectivity of the translation mapping. Hence,

a= XbX−1 (3.5)[~ωA]× ~vA

~0T 0

=

RX ~tX
~0T 1

[~ωB]× ~vB

~0T 0

RT
X −RT

X~tX
~0T 1

 (3.6)

~ωA

~vA

=

 RX 03×3

[~tX ]×RX RX

~ωB

~vB

 (3.7)

where ~ωA, ~ωB,~vA and ~vB are the Lie Algebra components of the transformations.

The rotation component in Eq. 3.7 is essentially the orthogonal Procrustes problem

[109] and the condition has already been satisfied by the solution of Eq. 2.36. The

translation component of Eq. 3.7 indicates the relation between~vA and~vB and this

is used in the estimation of the translation component for the calibration.

~vA = [~tX ]×RX~ωB +RX~vB (3.8)
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According to the specification in the respective documentations of the robots,

the KUKA has a repeatability of 0.1 mms and the da Vinci positioning system is

accurate within only a cube of 125 cm3 in volume, while the laparoscopic camera

calibration can be refined to sub-pixel accuracy [50, 110]. Although repeatability

does not directly imply accuracy, it indicates an offset in the positioning system,

if there is an error. However, this error in the positioning system creates more

than sub-pixel errors when the grid is projected onto images as shown in Figure

3.3(a). Therefore, in our applications, the relative camera motion A is more accurate

than the robot motion B. Hence, from Eq. 3.8, we can avoid using the rotation

component of B by substituting RX~ωB with ~ωA.

~vA = [~tX ]×~ωA +RX~vB (3.9)

Then Eq. 3.9 is transformed into the quaternion form so that we can jointly

solve the equation with Eq. 2.36. 0 −(~vA− [~tX ]~ωA−~vB)
T

~vA− [~tX ]~ωA−~vB [~vA− [~tX ]~ωA +~vB]×

x =~0 (3.10)

The solution to Eq. 2.36 and 3.10 is a refined solution of the rotation compo-

nent. For the translation component, we use the last three rows of Eq. 3.7. Since

[~t]×~ωA is equivalent to −[~ωA]×~t, we can arrive at the following equation:

[~ωA]×~tX = RX~vB−~vA (3.11)

Eq. 3.11 consists of three equations. By collecting N motions, there will be

3×N different equations and the translation component of the hand-eye matrix must

satisfy all of the equations as well as Eq. 3.10. Therefore, unlike most decoupled

hand-eye solutions which only use Eq. 2.29 to solve for the rotation component, the

constraint from the translation equation (Eq. 3.11) can increase the accuracy of the

estimation of the rotation component.

The main algorithm operates on this formulation. It first determines the rota-
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Algorithm 1 Hand-eye calibration for a monocular camera

1: procedure HANDEYE(camTgrid,
robot Tbase)

2: A,B← relative transformations from Eq. 2.19 and 2.20
3: R0,~t0← initialise the identity matrix
4: repeat
5: x← solve Eq. 2.36, 3.10 using~t0
6: Rrefine← convert quaternion x to rotation matrix
7: R0← Rrefine
8: ~trefine← solve Eq. 3.11 using R0
9: ~t0←~trefine

10: until the solution converges
11: X← R0,~t0
12: X← refine X0 by minimising residuals in Eq. 3.12
13: return X . Hand to eye transformation
14: end procedure

tion component using the solution from Eq. 2.36 and uses the solution to solve Eq.

3.11 for the translation component. Then, the algorithm will go back to refine the

rotation component using the solution of Eq. 3.11 and continues this alternating

optimisation until the hand-eye solution converges. The convergence criteria of the

algorithm is a less than 10−4 change in both rotation and translation components for

more than 20 iterations, although as with all iterative methods this criterion can be

adjusted. According to the results displayed in Figure 3.7, the solution of ATA con-

verges to the same result regardless of hand-eye initialisation, which is an important

and practically valuable property of our method.

At the end of the algorithm, the hand-eye transformation is refined further by

using the Levenberg-Marquadt algorithm to minimise the residue in the hand-eye

equation. The algorithm finds the optimal solution q̂X in the dual quaternion domain

that has the corresponding rigid transformation X for the hand-eye equation. For all

possible motions N, our objective function Φ(q̂X) can be written in Eq. 3.12 [111].

Φ(q̂X) =
N

∑
i=1
||âi⊗ q̂X − q̂X ⊗ b̂i||2 (3.12)

To summarise, the hand-eye solution initialisation incorporating the adjoint

transformation algorithm using a monocular vision is described in Algorithm 1.
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3.2 Stereoscopic formulation of hand-eye calibration

The conventional hand-eye constraint from Eq. 2.17 is not limited to monoc-

ular vision but can also be extended to stereo vision, which increases calibration

accuracy by introducing additional relative motion constraints. The new formula-

tion using a stereo vision can be created using these additional constraints.

In the stereo setup (Figure 3.1(c)), the two cameras are rigidly attached and

they are rigidly maintained at the robot’s end-effector. Therefore, each relative

robot motion B creates two sets of camera motions in two different frames such that

Eq. 2.17 can be formed for the two cameras and represented as follows,

ALXL = XLB (3.13)

ARXR = XRB (3.14)

In order to use the following formulation, the stereo camera has to be pre-

calibrated, i.e. the rigid transformation linking the coordinate systems of the two

camera is readily determined from stereo camera calibration. Let Z be the trans-

formation linking the left and the right cameras together. Hence, the relationship

between the solutions in Eq. 3.13 and 3.14 can be written as following,

ZXL = XR (3.15)

Substituting Eq. 3.15 into Eq. 3.13 and 3.14 creates three additional equations

which are related by the same hand-eye solution as shown in Eq. 3.16-3.18.

Z−1ARZXL = XLB (3.16)

ALRZXL = XLB (3.17)

Z−1ARLXL = XLB (3.18)

where ALR =
cam,L Tgrid(τ)(

cam,RTgrid(τ
′))−1 and ARL =

cam,R Tgrid(τ)(
cam,LTgrid(τ

′))−1.

The schematic of these relationships is shown in Figure 3.1(c). By simultaneously
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Algorithm 2 Hand-eye calibration for a stereo camera

1: procedure HANDEYE(cam,LTgrid,
cam,R Tgrid,

robot Tbase,Z)
2: A,B← relative transformation Eq. 3.13, 3.14, 3.16-3.18
3: RL,0,~tL,0← initialise identity matrix
4: repeat
5: x← solve Eq. 2.36, 3.10 using~t0
6: RL,refine← convert quaternion x to rotation matrix
7: RL,0← RL,refine
8: ~tL,refine← solve Eq. 3.11 using RL,0
9: ~tL,0←~tL,refine

10: until the solution converges
11: XL,0← RL,0,~tL,0
12: XL← refine XL,0 by minimising residuals in Eq. 3.12
13: XR← solve Eq. 3.15 using XL,Z
14: return XL and XR . Hand to eye transformation
15: end procedure

solving Eq. 3.13 and Eq. 3.16-3.18, it is shown later in Section 3.4 that we can

obtain a more accurate hand-eye solution on the left-side of the camera regardless

of the selection of the algorithms.

Similarly to the case of a monocular camera, the solution solved here can also

be further refined by the Levenberg-Marquardt algorithm to find the minima for

the hand-eye equation as shown in 3.12. The only difference is that we have the

additional motions from the stereo information which remains fixed. To summarise,

the initialisation using the stereoscopic formulation is described in Algorithm 2.

3.3 Experimental procedure

The algorithm was tested with both synthetic and real data. To generate syn-

thetic data, we created a closed-loop sequence of rigid transformations, two of

which were constant transformations: the transformation linking the base and the

grid coordinate system baseTgrid and the ground truth for the hand-eye transforma-

tion camTrobot.

The data generated in the experiment was in the form of a 6×N matrix where

N was the number of camera poses used in the calibration. Each row represented a

Lie algebra representation of a transformation where the first three elements stood
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for the translation component and the last three elements were the rotation com-

ponent (Rodrigues’ representation). Using this representation, random robot poses
baseTrobot,i were simulated, where i indicated the index of the pose. The criteria for

data generation depended on the simulated parameters of interest in each experi-

ment. The transformation from the camera coordinate system to the grid coordinate

system cam,iTgrid could then be simulated by completing the loop of rigid transfor-

mations as shown in Eq. 3.19.

cam,iTgrid =
cam Trobot(

baseTrobot,i)
−1 baseTgrid (3.19)

The data generated this way are noise-free and always satisfies Eq. 2.17 with-

out any errors. From here, we applied Gaussian noise to the transformations camTgrid

and baseTrobot to simulate real-world noise characteristics before they were fed into

the hand-eye calibration functions. Eq. 3.20 shows how the noise is added to an

arbitrary transformation T,

Tcorrupted = T

rodrigues(σr~vr) σt~vt

~01×3 1

 (3.20)

where σr,σt are the noise intensity in the rotation and the translation components,

respectively and ~vr,~vt are 3× 1 a rotation vector and a translation vector that are

generated randomly by the built-in Gaussian noise function in MATLAB. Thus,

the value σr and σt act as the standard deviations of the generated noise intensity.

Although Gaussian noise may not be an ideal noise characteristic for the simulation

of robotic systems in general, it resembles the error from the camera parameters

(Figure 3.4).

The tested algorithm then estimated camTrobot using the noisy data and we com-

pared the estimated transformation with the ground truth. This process was run 1000

times for each simulation parameter.

To evaluate the accuracy, we simply computed the residue in the rotation and

translation estimations separately. The translation error was computed from the
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Figure 3.4: Re-projection error from using the estimated intrinsic and extrinsic pa-
rameters from the calibration toolbox. The error resembles the shape of a 2-D Gaus-
sian noise.

norm of the difference between the ground truth and the estimated value. The error

in the rotation component was calculated from the magnitude of the residual rota-

tion between the ground truth and the estimation using Rodrigues’ formula. The

equations for computing errors in translation and rotation are shown in Eq. 3.21

and Eq. 3.22-3.23, respectively.

Etranslation = ||~test−~tgt|| (3.21)

~δω = rodrigues(RestR−1
gt ) (3.22)

Erotation = || ~δω|| (3.23)

where test, tgt are 3×1 vectors representing an estimated translation vector and the

ground truth of the translation component, respectively; Rest,Rgt are the rotation

matrices of each transformation; and Rodrigues is a function that returns a 3× 1

vector describing the rotation error.

The experiments were run on a 2.6GHz Intel Core i7-4510U laptop and the

processor took less than 0.5 seconds to complete one calibration routine to obtain
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Figure 3.5: Experimental setup for capturing data. The specially designed scope
with the NanEye stereo camera is mounted on the flange of the KUKA arm. The
scope is 420 mms in length [112].

the initialisation for the refinement, while the others took less than 0.1 seconds. In-

creasing the number of motions did not significantly increase the computational cost

in the calibration routine, whereas increasing the intensity of the noise increased the

difficulty for the algorithm to converge, for both the ATA algorithm and the refine-

ment using the Levenberg-Marquardt algorithm.

ATA was also tested with real robots to study its robustness and accuracy in

the presence of noise sources that might be pose-dependent and non-Gaussian. The

robots used in the experiments were the KUKA LBR IIWA 7 R800, KUKA LBR

IIWA 14 R820 and the da Vinci Surgical Robot Standard as shown in Figure 3.2(a),

3.5 and 3.2(b), respectively. A stereo camera was used in the experiment along with

a zero degree endoscope which is attached to the end-effector of both robots.

The frames on the KUKA arms were assigned following the standard DH con-

vention [35] and Eq. 2.22 was used to construct a robot pose based on the joint

configurations, while the convention used in the da Vinci Standard was the modi-

fied version (Eq. 2.28) based on its manual [50]. The DH parameters of the LBR

IIWA 7, LBR IIWA 14 and the da Vinci Standard (ECM arm) are listed in table

7.1, 7.2, 7.3 in the Appendix. Note that the frame assignment may differ from one

source to the others as some orientation can be specified arbitrarily.
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Figure 3.6: Images of calibration grid captured by (a) a da Vinci camera and (b)
a NanEye stereo camera. The re-projected grid align very well on both calibration
grid, but the image quality from a NanEye stereo is poorer. The units in the image
axes are pixels.

In addition to the da Vinci scope, we also tested the algorithm with a NanEye

stereo camera. This camera is a combination of two 1 mm CMOS imaging sensors.

Each of the cameras provides a 249×250 resolution, which is much less than the

da Vinci camera [113]. The scope was customised and attached to the KUKA as

shown in Figure 3.5. Testing the algorithms with this setup would show that al-

though the camera calibration algorithm accurately yields the camera’s parameters,

the calibration performance still depends on the quality of the captured images and

it does not necessarily result in accurate hand-eye calibration. As shown in Figure

3.6, the image captured by a NanEye camera had a significantly poorer quality than

that captured by the da Vinci camera.

In the calibration-performance evaluation, measuring an error metric in the ex-

periment with real data is more challenging than experimenting with synthetic data

as the accurate ground truth for the hand-eye transformation is not known. In [77],

re-projection error is used in both optimising the matrix and assessing calibration

performance. Another approach is to use Eq. 3.24 to predict the camera pose from

the robot pose. This method is commonly used to assess the performance of hand-

eye calibration algorithms. However, the method is similar to using the re-projection

error to assess calibration performance because the predicted camera pose can be
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used in Eq. 2.21 and obtain a single metric (the error in pixel instead of the error in

the rotation and the translation components) to compare performance.

camTgrid(τpredicted) = (XBX−1)camTgrid(τ
′) (3.24)

The alternative is to use the experimental setup as the evaluation criteria. In

the setup of both experiments with KUKA and da Vinci and the camera calibration

toolbox, the z axes of the frame assigned at the robot base and the grid were always

pointing upwards and parallel to each other [50, 110, 114]. Therefore, we could

use the calibrated hand-eye matrix to compute the transformation from the base

coordinate to the grid coordinate for every camera and robot pose and averaged

them using the formula in [64] to obtain gridTbase as shown in Eq. 3.25 and 3.26.

The second equation can be solved using the Levenberg-Marquardt algorithm.

Yi = (cam,iTgrid)
−1 X(baseTrobot,i)

−1 (3.25)

gridTbase = argmin
gridTbase

N

∑
i=1

(logm(gridT−1
baseYi))

T logm(gridT−1
baseYi) (3.26)

The angle between the third column of the transformation gridTbase and the

vector [0,0,1]T can then be used to evaluate how well the algorithm can recover the

orientation of baseTgrid as shown in Eq. 3.27.

rotation error = ||arccos([0,0,1] · grid~zbase)|| (3.27)

where grid~zbase is the third column of the transformation gridTbase.

For the translation component, we can use the RCM position in the da Vinci

setup. The position is constant regardless of how the manipulator or scope is ori-
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ented; it depends on which coordinate systems the point is observed from. Hence,

~pgrid =
gridRbase~pbase +

grid~tbase

~pgrid− grid~tbase =
gridRbase~pbase

||~pgrid− grid~tbase||= ||~pbase||

translation error = (||~pgrid− grid~tbase||− ||~pbase||)2

(3.28)

where ~p denotes the RCM position. The RCM ~pgrid is calculated by finding the

position at which the z-axes of every camera pose intersect. The method is shown

in detail in Section 4.2. Since the transformation baseTgrid is calculated from the

hand-eye matrix, the recovered grid~tbase must also satisfy Eq. 3.28. Therefore, we

can use the equation to validate the hand-eye calibration performance in terms of the

translation component. Although the relationship between ~pcam and ~probot can also

be used to directly evaluate calibration performance without the need to calculate
gridTbase, the transformations cam,iTgrid and baseTrobot,i are noisy and the calculated

RCM ~pcam and ~probot may not be constant.

However, Eq. 3.28 does not apply to the motion of the KUKA robot as it

does not have the RCM. The remaining method involves using the residue of the

hand-eye equation to evaluate calibration performance in terms of the translation

component. Although the residue of the matrix product (AX)−1(XB) does not di-

rectly represent the error in the translation estimation, it should serve as a measure

of how close the estimated solution is to the optimal solution in this formulation.

For robots, more than 25 poses were collected. We randomly selected N poses

as an input to each calibration algorithm in a succession of calibration trials (N is

run from 3 to 13, i.e. 2 to 12 motions for successive motions). The selection of

measurements was randomly repeated 100 times to obtain statistically meaningful

results. For each calibration routine, Eq. 3.27 was used to evaluate calibration

accuracy in terms of the rotation, Eq. 3.28 in terms of the translation for da Vinci

data and computed the error from 2.17 for the KUKA data. Furthermore, we also

used the result of the predicted camera pose from Eq. 3.24 to assess calibration

performance in terms of re-projection errors. The evaluation of each sample was
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then averaged across the number of samples.

For each experiment, ANOVA was applied on the selected raw calibration re-

sults because the noise generated in the experiments was Gaussian, and the error

from the camera parameters resembles the normal distribution. The purpose is to

test whether the difference in the comparisons is statistically significant: i.e., the

analysis was applied to 100×4 raw calibration errors for both rotation and transla-

tion. Except for the result shown in Figure 3.8, the independent samples t-test was

used, since we only have two raw results.

3.4 Experiments with synthetic data
This section shows the comparison of the performance of ATA and the algo-

rithms in the literature in terms of their calibration accuracy. We first display the

convergence rate of ATA when the algorithm uses different initialisations. Then

we validate the stereoscopic formulation by comparing calibration accuracy with

the monocular formulation. The algorithms applied here are the proposed method

“ATA”, classic hand-eye solution “TSAI” [44], classic dual quaternion solution

“DQ” [73] and improved dual quaternion solution “IDQ” [45]. These abbreviations

are used consistently throughout this section.

However, since Figure 3.8 shows that the formulation using stereo information

increases calibration accuracy regardless of the selected algorithms, the plots shown

in subsequent Figures are the results using the stereoscopic formulation.

The table showing the p-value for the selected simulated parameters is also

displayed next to the respected figures. If the p-value of the test is less than 5 percent

(< 0.05), we conclude that the difference in calibration performance between each

algorithm does not occur by chance and it is statistically significant. The same

technique is also applied in the experiment with real data.

3.4.1 Effect of error in the robotic positioning system

In this section, we observe the effect of inaccuracy in the robot positioning

system on the re-projected grid. Poses of a robot were randomly generated and cor-

rupted with 0.025 mms Gaussian noise to simulate the robot with an absolute accu-
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(a)

(b)

Figure 3.7: Comparison of convergence rates of ATA with different initialisation
methods is displayed using the mean of the translation and rotation errors for im-
proved dual quaternions (IDQ), Tsai’s linear method (TSAI) and dual quaternions
(DQ). (a) The ground truth solution is close to the identity matrix. (b) The ground
truth solution is far from the identity matrix.

racy of 0.1 mm in the positioning system. After that, we compared the re-projected

checkerboard from using uncorrupted poses with one using corrupted poses. Note

that we use the ground truth of baseTgrid and camTrobot to complete the loop and cre-

ate the comparison. Figure 3.3(a) shows that the majority of the re-projection errors

are higher than 1 pixel. This indicates that the error in the robot positioning system

has a larger impact than the error in the camera calibration.

3.4.2 Convergence rate with different initialisation methods

Since ATA requires initialisation to start the alternation solver, we also con-

ducted an experiment to show how the error converges when different methods are
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applied to compute the initial solution. The initialisation in this experiment was

created from different hand-eye algorithms as well as the identity matrix. ATA was

tested in two situations: when the hand-eye matrix was close to the identity matrix

(Figure 3.7(a)) and when it was far from the identity matrix (Figure3.7(b)). The

results showed that ATA converged to the same solution regardless of the starting

point. This confirms the property of the alternating optimisation that every iteration

is globally optimising the problem and can avoid local minima [107].

Table 3.1: P-value of the raw results shown in Figure 3.8. The unit of the σt is mm.

σr = 0.2◦ σr = 0.3◦ σr = 0.4◦ σr = 0.6◦ σr = 0.7◦ σr = 0.8◦ σr = 0.9◦

σt = 0.4 σt = 0.6 σt = 0.8 σt = 1.2 σt = 1.4 σt = 1.6 σt = 1.8
ATA (R) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
ATA (~t) < 0.01 < 0.01 < 0.01 < 0.01 0.0139 0.0112 < 0.01
IDQ (R) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
IDQ (~t) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

TSAI (R) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
TSAI (~t) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
DQ (R) 0.0493 0.0375 0.0229 < 0.01 0.0100 0.0169 < 0.01
DQ (~t) 0.0378 0.0291 0.0400 0.0672 0.0520 0.0526 0.0539

3.4.3 Inclusion of stereo information

In this experiment, we used eight motions as input to each calibration algorithm

and noise was increased from 0 to 1 degree with an increment of 0.1 degrees in the

rotation component. Noise in the translation was increased from 0 to 2 mm with an

increment of 0.2 mm.

Figure 3.8 shows the comparison between different hand-eye formulations un-

der increasing additive noise: monocular and stereoscopic formulation. In the same

experimental setup, using the stereoscopic formulation yielded a more accurate cal-

ibration result. This verifies that the three additional constraints can suppress the

influence of noise and result in a better calibration performance. Moreover, the

figure also shows that ATA is more robust than the other methods when the noise

coefficient is increased. This result is more evident in Figure 3.10(a)-3.10(c).

Note that, in this section, we used the independent samples t-test to verify the

statistical significance of the comparison since there were only two independent

datasets and ANOVA requires three or more datasets. As shown in Table 3.1, most
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(a)

(b)

(c)

(d)

Figure 3.8: Comparison of monocular and stereoscopic formulations using dif-
ferent hand-eye algorithms. Distribution of the translation and rotation errors are
shown for the monocular (red) and the stereoscopic (green) cases. Independent
samples t-test is applied and shown in Table 3.1. (a) ATA, (b) IDQ, (c) Tsai and (d)
DQ.
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(a)

(b)

Figure 3.9: Stereoscopic hand-eye calibration using synthetic data: (a) Increasing
motions range. (b) Increasing number of motions.

of the comparisons are statistically significant, except for the DQ part, which has

a very high standard deviation, and hence unreliable results. This shows that the

method is not stable when noise is added into the system, as the method uses a

quadratic equation (which is not stable as previously mentioned) to calibrate the

matrix. Therefore, due to this instability, the DQ method will be omitted from

the plots so that the differences in more stable algorithms can be focused so as to

increase the statistical significance of the comparison.

3.4.4 Increasing motion range

It was shown in [41] that calibration accuracy can be improved with a wider

motion range. The proof is shown in [44] which formulate the case of three motions

and the authors further deduce that the RMS error of the rotation component is
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(a)

(b)

(c)

Figure 3.10: Stereoscopic hand-eye calibration using synthetic data: (a) Increasing
noise in robot motions. (b) Increasing noise in both robot and camera motions. (c)
Increasing noise in robot motions, camera motions and stereo calibration. ANOVA
is applied to the raw results from these experiments and the p-value for each simu-
lated parameter in every experiment is less than 0.01.

inversely proportional to the sine of the angle between the rotation axes. Therefore,

to appropriately select the data for the hand-eye problem, we should select pairs
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of rigid transformations containing wide rotation motions to increase calibration

accuracy [57]. Examples of wide and small motion ranges are shown in Figure

3.11(a) and 3.11(c), respectively.

In this experiment, we generated transformations that have a translation mag-

nitude of 3 mm to 30 mm with an increment of 3 mm, whereas the rotation had

a magnitude of 3 degrees to 30 degrees with an increment of 3 degrees. These

small motion ranges were in line with the restricted motions expected from robotic

surgical instruments. The results are displayed in Figure 3.9(a).

All cases were evaluated with eight input motions, 1 mm of Gaussian noise in

translation and 1 degree of Gaussian noise in rotation in both the end-effector and

camera motions. Figure 3.9(a) shows that motion range has an impact on calibration

performance. The calibration error is large when the motion range is small and

decreases as the motion range is wide. This becomes more evident in the results in

the experiments with real data where we compared the calibration performance of

the two different robots.

3.4.5 Increasing number of motions

The number of motions is also one of the main criteria for increasing the cali-

bration accuracy. This has been extensively proved in the literature [41, 44, 57]. As

stated in the literature, the noise in the rotation component can be suppressed by a

factor of
√

N where N is the number of motions. However, included motions also

have to conform to a wide motion range.

Figure 3.9(b) shows the comparison of the calibration performance with an

increasing number of motions. Similarly to the previous experiment, constant noise

of 1 mm in the translation component and 1 degree in the rotation component was

applied in both the robot and camera motions. Motion range in this setup was

kept fixed at 20 mm in the translation component and 5 degrees in the rotation

component. Fig 3.9(b) shows that the calibration error decreased as the number of

motions increases and that ATA outperformed the other methods for any number of

motions.
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3.4.6 Increasing Gaussian noise

This experiment compared the robustness of each algorithm against increasing

Gaussian noise. Figures 3.10(a)-3.10(c) display the results when increasing zero-

mean Gaussian noise is added to the camera, the robot, and stereo information.

Noise in the translation component was increased in 0.2 mm steps from 0 to 2 mm,

while a noise in the rotation component is increased in a step of 0.2 degrees from

0 to 2 degrees. In each simulation, eight motions and the same motion range as

previous experiments were used.

Given that a picture is taken with clear edges and features in the context of

robotics, cameras are often considered as noise-free sensors. There may exist a

sub-pixel error caused by inaccurate intrinsic calibration, but such error is typically

considered negligible in comparison to the errors propagated through a robot’s kine-

matic chain. The robot pose is obtained through the forward kinematics whose input

is from noisy position readings and inexact nominal kinematic parameters that usu-

ally do not consider stress in strings and cables in the presence of a gravitational

force. Figure 3.10(a) displays the error when noise is added to end-effector’s move-

ment. The error increases with the noise as expected, however, ATA’s performance

degrades at a slower rate than the other tested algorithms.

Figure 3.10(b) shows the result when noise is added to both camera and end-

effector motions. The noise intensity as shown in Eq. 3.20 is the same for both data.

The calibration error rises faster than Figure 3.10(a). However, the comparison

shows no difference from the previous experiment: the calibration error of the ATA

algorithm increases at a slower rate than the other approaches for both the rotation

and translation components.

Finally, the result presented in Figure 3.10(c) is the closest to the scenario with

real data. In the case of stereo vision, not only are the camera and robot kinematic

parameters noisy, but an error also exists from the stereo camera calibration. Since

the formulation uses this information to take into account the additional constraints,

the error has to be considered. However, as in the previous cases, although the

calibration error is higher than Figure 3.10(b), ATA is still the best performer for
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Figure 3.11: (a) Camera poses with respect to the calibration grid obtained with the
KUKA robot. Images can be acquired for a wide camera motion range, resulting
in hand-eye calibrations with a higher calibration accuracy. (b) Camera poses with
respect to the calibration grid obtained using the KUKA arm with a NanEye stereo
camera. The motion range and the calibration grid are much smaller than the case of
the da Vinci camera as the NanEye camera has a smaller field of view. Therefore,
not only the image quality is poor, the motion range included in the calibration
is also not as wide as the da Vinci camera. (c) Camera poses with respect to the
calibration grid obtained with the da Vinci robot. The camera motion is constrained
to a smaller range of rotations and translations around the RCM and thus solving
the hand-eye problem to get an accurate hand-eye matrix is even more challenging
than the previous cases.
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(a) (b) (c)

Figure 3.12: The re-projection error computed from the intrinsic and extrinsic pa-
rameters estimated by the MATLAB calibration toolbox. The extrinsic parameters
are used in the hand-eye calibration. The dashed line indicates the overall mean
error. (a) Re-projection error from the KUKA data with the da Vinci scope (Over-
all mean error = 0.57 pixels) (b) Re-projection error from the KUKA data with the
NanEye scope (Overall mean error = 0.11 pixels) (c) Re-projection error from the
da Vinci data (Overall mean error = 0.55 pixels).

increasing noise.

3.5 Experiments with real data

The camera poses used in the experiments with the KUKA data are shown

in Figure 3.11(a) and 3.11(b) in the grid coordinate. We collected these poses by

manually moving the robot arm around the calibration grid. The camera poses are

spread diversely above the grid, although the camera poses in Figure 3.11(b) are

also spread above the grid in a smaller range due to the camera specification. This

will affect calibration accuracy, according to the results shown in Figure 3.9(a).

As opposed to the camera poses in the KUKA data, Figure 3.11(c) shows that

the da Vinci Standard data has a rather small workspace and the camera pose is not

as wide as KUKA’s. This is because that the configuration of the da Vinci constrains

the camera to be close to the RCM. Therefore, the camera motion tends to be around

the insertion axis of the robot with limited translational and rotational movements

and cannot produce a wide motion ranges. This makes the hand-eye problem in the

robot significantly more challenging, as the noise has a greater impact on the cali-

bration as shown in Figure 3.9(a). Furthermore, according to the robot manual, the

accuracy of its positioning system is acceptable up to a couple of mm for translation
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and a couple of degrees for rotation and also does not account for mechanical com-

pliances. This indicates that the system is not as accurate as the KUKA in terms of

its overall motion. These factors show that solving the hand-eye problem in the da

Vinci Standard is more challenging than using the KUKA.

In terms of the noise in the camera data, Figure 3.12 shows the re-projection

error in pixels using the estimated extrinsic parameters which are used in the hand-

eye calibration routine. Since Figure 3.12(a) and 3.12(c) are obtained using the

same camera, the errors in the re-projection metric are close. This suggests that the

difference in hand-eye calibration performance between these two setups is solely

due to the difference in noise resilience in each robot. On the other hand, despite

having the lowest re-projection error among the datasets (Figure 3.12(b)), it may not

yield the best hand-eye calibration result as a NanEye stereo camera’s resolution is

three times as low as the da Vinci’s. This will be evident in the next section.

3.5.1 Experiments with the KUKA LBR IIWA 7 R800

Figure 3.13(a) shows that all algorithms yield a low calibration error. This is

because of the accurate positioning system in the KUKA LBR IIWA 7 R800, a wide

motion range in its calibration and a sub-pixel accuracy in the camera calibration

algorithm. However, a small error in the input data can produce a significantly

higher calibration error in the hand-eye solution, which is in accordance with the

simulation results described in Figure 3.9-3.10. In terms of calibration performance,

ATA still slightly outperforms existing algorithms and achieves the smallest error

in the camera poses estimation. The rotation error is around 1.5 degrees and the

translation error is around 3.2 mm.

In contrast, the plots in Figure 3.13(b) contain significantly larger errors in

all evaluation metrics than those in Figure 3.13(a). The only difference in the two

experiments is the camera which suggests that despite a small re-projection error,

the extrinsic parameters can still be inaccurately estimated (an estimation that also

depends on the quality of the captured images). The inaccuracy caused by the poor

quality of the camera can also be observed in the high standard deviation in the

plots, as suggested by Figure 3.10(c) a larger noise in the system induces instability
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(a)

(b)

Figure 3.13: Calibration performance of each algorithm when applied to the real
data from KUKA with (a) a da Vinci camera and (b) a NanEye stereo camera in
terms of the rotation component (left), the translation component (middle) and the
re-projection error (right).

in the calibration and hence a higher standard deviation.

From a comparison of the reported standard deviation in Figure 3.13(a) with

that of the synthetic data, we can deduce the noise in the KUKA robot. The plots

report a standard deviation of 0.5 mm in the translation component and 0.07 degrees

in the rotation component when we use eight motions in the calibration, which, by

linear interpolation, suggests that the noise inside the system is around 0.0979 mm

and 0.04 degrees for the two respective components. Knowledge of this information

is useful for the simulation of the robots as the generated noise characteristic can be

produced a high degree of fidelity.

The right-hand side plots in both Figures show the re-projection error in pix-

els when the grid in the world coordinates is projected back onto the image using

the predicted camera pose. The result shows that ATA produces the smallest re-

projection error among all methods.
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Figure 3.14: Experimental setup for capturing data from the da Vinci Standard.

Figure 3.15: Calibration performance of each algorithm when applied to the real
data from the da Vinci Standard in terms of the rotation component (left), the trans-
lation component (middle) and the re-projection error (right).

3.5.2 Experiment with the da Vinci Standard

Figure 3.15 shows the calibration performance in terms of camera pose predic-

tion and re-projection error, respectively. The comparison shows that even with a

small motion range, ATA can still outperform the other algorithms and its robust-

ness increases with the number of motions included in the calibration which agrees

with the experiments with synthetic data.

However, the converged calibration result still yields higher errors than the
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ones in the experiment with the KUKA. As shown in the results, the calibration

result already converges with 12 motions, so one factor that can improve calibra-

tion accuracy is motion range. Therefore, an insufficiently wide motion range is

the bottleneck parameter in achieving more robust hand-eye estimations with this

system.

The other interesting result is a relatively low standard deviation (0.05 mm

in the translation component and 0.07 degrees in the rotation component) in com-

parison to Figure 3.13(a). This suggests that the noise in da Vinci is lower than

the KUKA (0.001 mm in the translation component and 0.04 degrees in the rotation

component), but its positioning system is not as accurate. This agrees with the man-

ual in suggesting that mechanical compliance and external forces are not accounted

for by the dVRK, therefore creating an offset in the pose [50] and requiring robot

calibration to minimise the discrepancy.

3.6 Discussion

This chapter presents a hand-eye calibration algorithm that uses the adjoint

transformation and stereo information to derive a new formulation to increase cal-

ibration accuracy in surgical robots. Based on the results shown in the previous

section, implementing the stereo constraints into the original hand-eye equation in-

creases the robustness of the calibration algorithms and the adjoint transformation

creates an improvement in solving the hand-eye problem.

First, one of the key findings of the chapter is that the proposed algorithm can

deal with the noise in the robot parameters. Although it is not always the case,

the compositions of surgical robots cannot usually provide sufficiently accurate po-

sitioning for RMIS applications which require a precise positioning system. This

inaccuracy in the robot parameters creates a significant drift in the re-projected im-

age as demonstrated in Figure 3.3. On the other hand, the camera motion estimated

by the camera calibration [42] provides a more accurate pose which is a better input

for the hand-eye problem. Given that the CAI applications in surgery such as vi-

sual servoing or augmented reality require accurate calibration, the propagated error
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from the robot parameters should not be used. Therefore, one of the reasons why

ATA works better than the other approaches is its ability to use a camera pose in the

translation estimation instead of using the noisy pose from the robot.

The second key finding is the new formulation of the hand-eye problem using

the stereo information to increase calibration accuracy. RMIS usually involves us-

ing a stereo camera during the procedure for navigation and localisation purposes,

but stereo information has never been used in any calibration algorithm. The pro-

posed algorithm makes use of the pre-calibrated stereo camera to create more con-

straints on the problem and the results show a clear improvement over the original

formulation. Furthermore, this finding is validated with the surgical robots and this

confirms that the calibration algorithm can still perform well, even with noisy data

that contain inexact and inaccurate parameters, including the stereo information it-

self, that exist in a surgical environment.

The key advantage of ATA and stereoscopic formulation is a robust-to-noise

hand-eye calibration approach that offers better calibration accuracy than the state-

of-the-art approaches. With accurate hand-eye transformation, the loop of trans-

formation between the camera-end (surgical instruments, tissues and anatomical

structures at the operative site) and the robot-end (kinematics and control) can be

completed and introduces the potential for an accurate real-time localisation of the

whole surgical environment. Thus, applications such as visual servoing, dynamic

virtual fixtures or augmented reality can be integrated with small discrepancy which

can provide guidance in the operation and result in a safer and possibly faster oper-

ation.

One of the limitations of the proposed algorithm is that it cannot fully suppress

the error from an uncalibrated robot. ATA performs better than the other algorithms

because it does not use the orientation of the robot pose, but it still requires the

translation component. Therefore, the offset in the kinematic parameters and joint

compliance is still propagated to the hand-eye matrix. This is evident in Figure

3.15 that even though the noise in the system is small, the calibration error is still

high. While robot calibration using external sensors such as an optical tracker or an
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electromagnetic tracker can be applied to mitigate the discrepancy, the procedure

during an operation will be more complicated as it requires an external tracking

system and a slight change can invalidate the calibration result.

The other limitation of ATA is that it still cannot deal with a small motion range

of a camera. This problem has been noted in the literature regarding the hand-eye

problem [41, 44, 57]. Specifically, it is essential to obtain a wide motion range in

order to accurately estimate the hand-eye matrix. However, this criteria is not al-

ways feasible and sometimes can be difficult to achieve in the context of keyhole

surgical robots as the camera motion is usually confined in the area around a pre-

defined RCM. The limitation is shown in Figure 3.11(a)-3.11(c) that the da Vinci

Standard has a smaller motion range compared to the KUKA, which in turn signifi-

cantly deteriorates calibration accuracy as shown in Figure 3.15. Nevertheless, this

problem can be overcome by using the other object in the surgical environment as

a calibration object [67] or imposing further constraints by using RCM to simplify

the hand-eye problem. These concepts are introduced in the following chapters.



Chapter 4

Hand-eye calibration using the

remote centre of motion

As shown in the previous chapter, one of the main conditions for an accurate

hand-eye calibration is to acquire images of a calibration target with a wide range

of camera motions that fully explore all six DoF of possible movement, which is

also the same criterion for obtaining an accurate camera calibration result [42].

The cameras mounted on surgical robots, however, are mechanically constrained

to move around the RCM to ensure that instruments are confined to a motion in

the vicinity of the trocar entry ports [47] as shown in Figure 4.1(a). This limits the

camera motion to only four DoF (three in rotation and one in translation) and results

in ill-conditioned hand-eye constraints. Even though the three DoF in rotation can

be sufficient to provide an accurate calibration, the degree of rotation in each axis

is small. While a possible solution would be to allow a surgical robot to move

freely in six DoF during the calibration phase, this is neither practical when there

is a change in the robot setup nor possible for mechanisms with mechanical RCM

implementations [49].

In this chapter, we show that it is possible to develop a constraint on the RCM

configuration to improve the accuracy of hand-eye calibration. We introduce a new

formulation to determine the hand-eye transformation in the RCM constrained set-

ting, by first estimating the RCM location in the camera reference frame and then

using this information to simplify the classic hand-eye formulation. The advantages
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Figure 4.1: (a) The schematic shows a magnified version of the type of movement
of the camera when being used in RMIS. RCM is denoted at the trocar point to
minimise a chance of a robot arm damaging the surrounding tissues [48, 49]. The
camera motion is restricted around the RCM and this provides a very small motion
range which is not sufficient for a decent calibration. (b) Example setup for hand-
eye calibration shown in simulation using RViz to illustrate the type of the motion
around the pre-defined RCM. The coordinate frames in the simulated environment
are denoted as shown in the figure. The frame “grid” is usually assigned at the
calibration grid, and the frame “world” is assigned as the reference point for the
robot pose and sometimes is defined at the robot base using the notation “base”.

and contributions of this approach are the following:

• Incorporating the RCM position allows the characterisation of robot motions

in four DoF and this changes the hand-eye formulation such that constraints

are no longer ill-posed.

• A known RCM position enables the formulation of the hand-eye calibration

as an absolute pose problem with a stable solution.

• An RCM constrained hand-eye calibration can be more accurate than a classic

calibration using free motion, due to the formulation’s simplifications. This

suggests that a more convenient path towards accurate hand-eye calibration

in robotic surgery is through correctly modelling its motion constraints rather

than allowing the robot to move freely in a calibration phase.
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4.1 Formulation of the RCM

Consider the relative motion equations (Eq. 2.19 and 2.20). Although the

motion around RCM has three DoF in rotation, the range of it is rather small which

makes the rotation components approach the identity, i.e. RA,RB→ I3. Therefore,

the rotation component (Eq. 3.1) of the hand-eye equation becomes RX = RX .

Hence, Eq. 3.1 always holds regardless of the relative motions and cannot be

used to solve for rotation. This is shown in the experimental section where the con-

ventional algorithms always fail at determining the rotation component. This RCM-

constrained motion however, does not affect on Eq. 3.2 as the equality between

RA~tX and~tX depends on the magnitude of~tX . This effect can be easily proved by

a rotation motion in the two-dimensional system; a point p(x,y) is rotating around

the origin by an angle θ , so the motion traversed by the point is calculated by

θ
√

x2 + y2, where
√

x2 + y2 is the magnitude of the translation. Hence, as long

as the magnitude of~t does not zero, the equality between RA~tX and~tX cannot be

assumed, even though RA→ I3.

Given that the scope can be freely moved along the insertion axis with a small

rotation, the translation component is apparently a non-zero vector. Therefore, the

only equation that can be used to solve the hand-eye problem is Eq. 3.2 which is

not affected by the identity rotation matrix. However, the hand-eye problem is a

six DoF problem and cannot be solved using only the translation component. To

mitigate this motion range problem, a constraint on the RCM position is introduced

into the hand-eye problem.

cam,iTgrid

~pgrid

1

= Xrobot,iTbase

~pbase

1

 (4.1)

where the frame cam, i and robot, i are defined at the camera tip and the robot end-

effector at the pose i, respectively and ~pbase and ~pgrid are the same RCM position,

but are represented in different coordinate systems. Note that the notation ~p in this

chapter denotes the RCM position in the coordinate system in the subscription. The

transformations cam,iTgrid and robot,iTbase can be calculated by calibrating the camera
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and using forward kinematics, respectively.

The position ~pbase is usually pre-defined along the scope as shown in Figure

4.1(a). In Eq. 4.1, there are currently two unknowns to be solved in the next section;

~pgrid and the hand-eye matrix X. Determining the RCM in the grid coordinate ~pgrid

will provide three more constraints to the ill-posed hand-eye problem and make the

problem in the RCM setup solvable.

4.2 Hand-eye calibration with the RCM

4.2.1 Calculating the RCM

To find ~pgrid, we have to make use of the results demonstrated in [115]; in the

RCM setup in which the scope is confined such that it has to go through and pivot

around the RCM, one of the axes defining the camera pose intersects the RCM.

Although this assumption is not verified in practice as it does not account for the

radial distortion and a stereo-scope creates ambiguity about where the RCM is, the

pose estimation result nevertheless outperforms the classic solution. Therefore, it

is safe to assume that the axes (usually the z-axis) along the scope defining each

camera pose intersects at RCM ~pgrid as shown in Figure 4.2. Hence, the first step to

find ~pgrid is to find the camera pose that corresponds to each robot pose by solving

the homography problem.

To determine the point ~pgrid of intersection in the grid coordinate, we have to

find the point that minimises the Euclidean distance between itself and its projection

on each line. The distance is defined by,

D(~p) = ||(~ogrid−~p)− ((~ogrid−~p)T ~dgrid)~dgrid|| (4.2)

where ~ogrid is an arbitrary point along the z-axis defined by the frame “cam, i” and

~dgrid is a unit vector describing the direction of the axis. Note that every component

in Eq. 4.2 is in the grid coordinate.

In a monocular case, the third and the fourth column of the camera pose in the

grid coordinate gridTcam,i can be directly used as ~dgrid and~ogrid, respectively because
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Figure 4.2: The schematic shows that the poses of the camera in each frame with
respect to the calibration grid coordinate. The blue arrow of each frame denotes the
z-axis. The z-axes of the camera poses intersect at the RCM and we can use this
information to determine ~pgrid.

of the aforementioned assumption. In a stereoscopic case, there are two sets of

camera poses; one for the left camera and one for the right camera, and neither of

the poses can be used directly as neither is located at the centre of the scope tip.

Therefore, the average transformation between the two has to be determined to find

the pose at the scope tip. The average of the two transformations is defined as the

transformation that satisfies,

logm(MgridTcamL,i)+ logm(MgridTcamR,i) = 04 (4.3)

where M is defined as the average transformation and logm is the matrix logarithm

function defined in Eq. 2.13. Eq. 4.3 can be solved using the Levenberg-Marquardt

algorithm. It should be noted that this equation only works with a 0 degree scope.
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If another type of scope such as a 30 degrees scope (Figure 1.1(b)) is used, i.e. the

angle between the shaft and the z-axis is 30 degrees, the component ~dgrid must be

transformed into the correct frame by rotating along the x-axis (or y-axis depend-

ing on the frame assignment) for 30 degrees before any calculation, because the

orientation of the axis is changed.

Therefore, the total distance from a point ~p to a set of lines (~ogrid,i, ~dgrid,i) can

be represented as,

D(~p) =
N

∑
i=1

wi||(~ogrid,i−~p)− ((~ogrid,i−~p)T ~dgrid,i)~dgrid,i||2

=
N

∑
i=1

wi(~ogrid,i−~p)T (I3− ~dgrid,i~dT
grid,i)(~ogrid,i−~p)

(4.4)

The parameter wi is introduced into the equation to penalise some distances more

than others, because the estimation of the camera poses always has a re-projection

error and the accuracy of the estimation for each pose is not the same. Since the

algorithm relies heavily on the RCM position, assigning a confidence score on a

more accurate pose is crucial to the process.

To minimise this cost function, we have to find the point ~p such that ∂D
∂~p =~0.

After taking the derivative and re-arranging the equation, we have,

[
N

∑
i=1

wi(I3− ~dgrid,i~dT
grid,i)]~p =

N

∑
i=1

wi(I3− ~dgrid,i~dT
grid,i)~ogrid,i (4.5)

By substituting the z-axes and the positions of the camera to ~dgrid,i and ~ogrid,i,

respectively, we can solve Eq. 4.5 for the RCM in the grid coordinate ~pgrid using

the least square method.

Furthermore, because of the assumption of the intersection, the frame at the

robot end-effector can be assigned such that the z-axis almost aligns with the scope

as well as with the z-axis of each camera pose to simplify the hand-eye problem;

Let us write RX in the general representation of an arbitrary rotation matrix with the
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angle of rotation θ and the axis of rotation [rx,ry,rz]
T , ||r2

x + r2
y + r2

z ||= 1 [35].

RX =


cosθ + r2

xvθ rxryvθ − rz sinθ rxrzvθ + ry sinθ

rxryvθ + rz sinθ cosθ + r2
yvθ ryrzvθ − rx sinθ

rxrzvθ − ry sinθ ryrzvθ + rx sinθ cosθ + r2
z vθ

 (4.6)

where vθ is 1−cosθ . The rough alignment of the two z-axes of the camera pose and

the robot pose creates an approximation of the last row (as well as the last column)

that approaches [0,0,1]T , i.e.


rxrzvθ − ry sinθ

ryrzvθ + rx sinθ

cosθ + r2
z vθ


T

=


r31

r32

r33


T

→


0

0

1


T

(4.7)

Solving the last element yields the condition θ → 0 or rz →±1. Substituting the

condition shown in Eq. 4.7 into Eq. 3.2 gives

RA~tX +~tA =


• • •

• • •

r31 r32 r33




tBx

tBy

tBz

+~tX

RA~tX +~tA =


•

•

r31tBx + r32tBy + r33tBz

+~tX
(4.8)

The • in Eq. 4.8 indicate that the values are not a part of this analysis. As

r31,r32 approach 0 and r33 approaches 1, the estimation of the translation component

in the z-axis is less affected by the error from the rotation estimation. In contrast,

the non-surgical robot setups may have a full six DoF problem, and the error from

the rotation component subsequently worsens the translation estimation [45]. This

behaviour is demonstrated in Section 4.2.3 that the translation estimation is not

consistent and is less accurate in comparison to motion with the RCM.
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4.2.2 Hand-eye calibration using the remote centre of motion

After computing the RCM position ~pgrid, we can substitute into Eq. 4.1 and

multiply the transformations cam,iTgrid and robot,iTbase to the points ~pgrid and ~pbase

as follows, ~pcam,i

1

= X

~probot,i

1

 (4.9)

In the noise-free setup, there is no difference between the points {~pcam,1,~pcam,2,

...,~pcam,N}, because the RCM and the camera frames are both located on

a scope which is a rigid body and the relative position of the two robot

poses is therefore constant regardless of the camera pose. This also applies

to {~probot,1,~probot,2, ...,~probot,N}. Although in the real situation, each pair of

(~pcam,i,~probot,i) is perturbed by the error in the camera calibration and forward

kinematics, respectively, which results in the two distributed point clouds contain-

ing the noise characteristic from the mentioned methods, the two sets cannot be

considered as two concentrated point clouds. Therefore, to model this constraint,

we have to formulate Eq. 4.9 in a linear equation and average them for every pose,

1
N

N

∑
i=1

~pcam,i =
1
N

N

∑
i=1

RX~probot,i +
1
N

N

∑
i=1

~tX

~pcam = RX~probot +~tX

~tX = ~pcam−RX~probot

(4.10)

Then, we can substitute the value of~tX into Eq. 3.2.

RA~pcam−RARX~probot +~tA = RX~tB +~pcam−RX~probot

RA~pcam +~tA−~pcam = RX~tB−RX~probot +RARX~probot

(4.11)

The only unknown left in the translation equation is RX which can be solved using

the Levenberg-Marquardt algorithm over so(3) as follows,

~r= argmin
~r

∥∥∥∥∥RA~pcam +~tA−~pcam−RX~tB +RX~probot−RARX~probot

∥∥∥∥∥ (4.12)
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where~r is the Rodrigues representation of the rotation matrix RX .

Moreover, according to the assumption in the previous section, the initial guess

of vector~r can be chosen such that the z-axis of baseTcam,i is parallel or anti-parallel

to that of baseTrobot,i, i.e. ~rinit = [0,0,δ ] where δ is a small degree of rotation (≈

1◦). The problem can then be optimised by a bounded non-linear optimisation that

allows some deviation from the alignment of the two axes. In our setup, we set the

threshold at 5◦. Note that it is not necessarily the z-axis that is pointing out of the

end-effector. This depends on the frame assignment at the end-effector which can

be arbitrary [35] and results in a different initial value~r and optimisation interval.

To solve for the translation component, we simply stack up the matrices from

Eq. 3.2 and 4.10 and solve the equation in the least squares method,



RA1− I3

RA2− I3
...

RAN− I3

I3


~tX =



RX~tB1− ~tA1

RX~tB2− ~tA2
...

RX~tBN− ~tAN

~pcam−RX~probot


(4.13)

It may be suggested that we can alternatively derive Eq. 4.11 further by using

Eq. 3.1 and represent the problem as the absolute orientation problem as shown in

Eq. 4.14.

RA~pcam +~tA−~pcam = RX~tB−RX~probot +RX RB~probot

RA~pcam +~tA−~pcam = RX(RB~probot +~tB−~probot)RA ~tA
~0T 1

~pcam

1

−
~pcam

1

= RX(

RB ~tB
~0T 1

~probot

1

−
~probot

1

)
(4.14)

Since we have N sets of Eq. 4.14, we can solve the equation independently for

the rotation component using the absolute orientation algorithm [116] at a smaller

computational cost.

However, the equation is not stable because this equation makes use of Eq. 3.1
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when changing RARX into RX RB which is invalidated by the small motion range.

Moreover, the terms A[~pT
cam,1]

T and B[~pT
robot,1]

T contradicts the assumption that

the RCM should be constant in the ”cam” and ”robot” frames regardless of the pose

of the camera and robot as they are all connected by a rigid body: the scope. In

other words, the terms A[~pT
cam,1]

T and B[~pT
robot,1]

T express the same RCM, but

changing pose i to pose j causes the differences between A[~pT
cam,1]

T − [~pT
cam,1]

T

and B[~pT
robot,1]

T− [~pT
robot,1]

T to approach the zero vectors and the problem becomes

ill-posed and lacks DoF as follows,~0
1

+
N3×1(0,σA)

1

= X

~0
1

+
N3×1(0,σB)

1

 (4.15)

where N (0,σ) stands for the noise with a mean of zero and a standard deviation

of σ . To solve Eq. 4.15, we have to find a 4×4 skew-symmetric matrix, consisting

of the centred points in each coordinate system. The final matrix used to calculate

the rotation element is similar to the form below,
0 −Nx −Ny −Nz

Nx 0 −Nz Ny

Ny Nz 0 −Nx

Nz −Ny Nx 0


which consists of only values from the noise and hence the formulation of absolute

orientation problem is considered to be unstable.

However, although the naive implementation of the absolute orientation does

not work, this can be mitigated by incorporating the non-linear optimisation method

that uses the initialisation from the classic hand-eye solution which suggests that

the RCM constraint formulated in Eq. 4.14 can only be used to refine the hand-eye

solution. This solution is considered as part of the validation in the next section.
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4.2.3 Experiments with synthetic data

The proposed method was validated in this section by comparing its calibration

performance with the existing algorithms in [44], [45] and the absolute orientation

algorithm [116], noted as TSAI, IDQ and ABSOR respectively. For TSAI and IDQ,

we also added the non-linear optimisation at the end of these methods to refine the

calibration using dual quaternion parametrisation (Eq. 3.12). For ABSOR, we first

initialised the solution using TSAI method, and solve Eq. 4.14 with the Levenberg-

Marquardt algorithm.

In the literature on hand-eye calibration, validation was performed by check-

ing how the algorithm performs under varying noise, motion range and number of

motions. Since the effect of increasing the number of input motions has already

been extensively described in the previous chapter (that is, it increases calibration

accuracy) and Eq. 4.12 is partially derived from the hand-eye matrix, the effect on

the RCM formulation is the same: i.e., a higher number of input motions improves

the calibration and thus the criterion is not included in the chapter. However, it

is still interesting to see the robustness of the RCM formulation and how well the

algorithm performs when the motion range is extremely limited.

Similar to the results shown in Sections 3.4 and 3.5, we used Eq. 3.21-3.23 to

compute the calibration error when experimenting with the synthetic data.

The simulated data was generated by creating a loop of transformations be-

tween the calibration grid, the camera frame, the robot arm, and the base frame.

Unlike the free-motion case, the robot motion was not completely random; the robot

was commanded to move around the pre-defined RCM in the simulation in a spiral

motion as shown in Figure 4.1(b). To generate the camera motion, we made use of

the spherical coordinate to create a camera pose such that the z-axis passes through

the RCM. Each z-axis can be expressed in the following form,

grid~zcam,i =


sinθz,i cosψz,i

sinθz,i sinψz,i

cosθz,i

 (4.16)
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where the parameters θz,i denotes the angle between the z-axis of the pose i and the

z-axis of the world frame and ψz denote how the axis is rotated in the XY plane.

In the experiment, we denoted the maximum value of θz and ψz and generated the

values randomly from 0 to the maximum value to simulate the type of motions in

the RCM-constrained configuration. The direction of the y-axis was then chosen

arbitrarily at random. The first two elements and the x-axis can be computed from

the cross product so that the generated coordinate conforms to the right-hand rule.

The calculation is shown in Eq. 4.17 and Eq. 4.18 where y1 and y2 were randomly

generated.

grid~ycam,i =


y1

y2
y1 sinθz,i cosψz,i+y2 sinθz,i sinψz,i

−cosθz,i

 (4.17)

grid~xcam,i = grid~ycam,i×grid~zcam,i (4.18)

We used this method to generate 200 robot motions around the RCM. The

hand-eye matrix was assumed to be a 180 degrees of rotation in the x-axis and

a translation along the z-axis and the grid was simulated so as to be right under

the scope. The loop was completed by chaining all the transformations together.

Gaussian noise was then added to the transformations before they were fed into the

hand-eye algorithm. Noise was not added to the RCM position directly, as the noise

already worsened the RCM position estimation from the noisy orientation.

The comparison was run between the RCM formulation, the classic hand-eye

solution [44], the dual quaternion solution [45] and the absolute orientation method

in different experimental setups by varying the intensity of Gaussian noise, and

the input motion range. The accuracy was determined by comparing the estimated

transformation with the ground truth of the hand-eye matrix. For each set of simu-

lation parameters, the experiment was run 1000 times. All the p-values calculated

from every experimental setups were less than 0.05 which suggests that the differ-

ence in the calibration performance was statistically significant.
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4.2.4 Gaussian noise

The noise in this experiment was increased from 0 mm to 0.2 mm in the trans-

lation component and from 0 degree to 1 degree in rotation, while the parameters θz

and ψz were both kept constant at 15 degrees. The noise added in the transforma-

tions did not only perturb the relative transformations A and B. According to Eq.

4.4 and 4.3, it also created an uncertainty in the RCM position ~pgrid as the point was

calculated from the z-axis of the camera pose.

Nevertheless, Figure 4.3(a) shows that the RCM method still outperforms the

other three methods even when noise is present in the motions and the RCM posi-

tion. This is because that Eq. 4.12 uses the average value of the RCM projected by
gridTcam,i and robot,iTbase which can potentially eliminate the noise. If the noise in

the poses is increased further, the proposed method will likely yield a higher cali-

bration error, although this will not significantly affect the calibration performance

of TSAI and IDQ because they do not depend on the RCM. However, we are not in-

terested in the larger ranges of noise intensity because the noise characteristic of the

currently available robotic system as suggested in Chapter 3, is significantly smaller

in magnitude.

The result suggests that using Eq. 4.12 and 4.13 to solve the calibration prob-

lem increases calibration accuracy and is better than solving the problem using the

conventional calibration method. Although ABSOR method slightly outperforms

the classic solutions in estimating the translation component, the plot still shows

that Eq. 4.12 is a better constraint for solving the rotation, which subsequently

creates a better estimation of the translation component.

4.2.5 Motion range

The noise intensity in the motions was kept at 1 mm for translation and 0.5

degrees for rotation, but the maximum values of the parameters θz and ψz were

increased from 4 degrees to 44 degrees in steps of 4 degrees, while the da Vinci

data had the motion range around 20 degrees and the KUKA with the configured

RCM had the motion range of 5 to 10 degrees.

As shown in Figure 4.3(b), the RCM method can estimate the hand-eye matrix
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(a)

(b)

Figure 4.3: The comparison of the calibration performance with different experi-
mental setups (a) Increasing noise in both robot and camera motions (b) Increasing
motion range.

well when the motion range is around θz = ψz = 12 degrees whereas the other

algorithms fail in an experimental setting. The RCM method still outperforms the

others even with an increasing motion range. This indicates that the RCM constraint

can overcome the problem of restricted motion and is also applicable to the hand-

eye calibration, regardless of the motion range.

The result also suggests that the proposed RCM method achieves accurate cal-

ibrations in the cases where the motion range is ill-posed for other classic hand-eye

methods. Although the calibration error still does not satisfy calibration accuracy

that medical robots can operate on [50], the results show the potential of solving the

hand-eye problem in such setups in which the original methods and formulations

cannot perform.
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4.3 Experiments with real data
For the real data from da Vinci and KUKA, we validated the proposed method

by comparing the re-projection error, the rotation error from Eq. 3.27 and the trans-

lation error from Eq. 3.28 as we now programmatically denoted the RCM for the

KUKA robot.

The experiments were set up similarly to the ones in the previous chapter: we

used a KUKA LBR iiwa 14 R820 mounted with a NanEye stereo camera (Figure

3.5) and a da Vinci robot with its own camera. The RCM position was then con-

figured by the controller and the robot was commanded to move around the RCM

above the calibration grid to collect several images of a checkerboard.

For both setups, we collected 39 different camera and robot poses and ran-

domly chose 12 poses as input to each calibration method. As shown in the pre-

vious chapter, the hand-eye algorithms converge after 12 motions are used. To

evaluate calibration performance, we cannot use the hand-eye equation itself (Eq.

2.17) since the rotation component of the modelled equation always holds for the

case of a restricted motion range and the calibrated hand-eye matrix must satisfy

the relationship between every coordinate frame in the setup, and not only for the

camera and the robot arm. Therefore, we calculated the error using the three met-

rics defined in the previous chapter: error in the rotation (Eq. 3.27), error in the

translation (Eq. 3.28), and the re-projection error. This process was repeated 200

times to obtain a distribution of the error.

4.3.1 Experiments with the KUKA LBR IIWA 14 R820

Figures 4.4(a)-4.4(c) show the calibration performance of each algorithm in

terms of the rotation component, the translation component (using the RCM po-

sition), and the re-projection error. When the motion was constrained around the

RCM position, the other three algorithms failed in calibrating the matrix and gave

a very high error in comparison to the proposed method. The very high error in ro-

tation shown in Figure 4.4(a) indicates that the rotation component of the estimated

hand-eye matrix is not correct and cannot be used to recover the correct transforma-

tion base~zgrid, even though the estimated rotation matrix satisfies Eq. 3.1. Although
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Figure 4.4: The comparison of the calibration performances from each algorithm
when tested with the real data from the KUKA arm and a NanEye stereo camera.
The red line represents the median of the distribution and the outliers are marked by
a red cross; (a) Error in the rotation estimation (b) Error in the translation component
(c) Re-projection error.

the conventional hand-eye algorithms may yield a similar rotation matrix to the

RCM method in some trials, the translation component is severely worsened by the

error in the rotation component which is not the case in RCM method in which the

z-component is less affected.

Despite having a comparable error in the translation component, the consis-

tency in re-projecting the RCM position using the conventional methods is not sat-

isfactory. Figure 4.4(b) shows that the RCM position are not constant based on

the calculated transformation gridTbase. This indicates that the RCM constrained

motions are indeed ill-posed, producing very different transformations with accord-

ingly lower equation residues. One of the main reasons why the conventional al-

gorithms fail in the experiment is because the restricted rotational motion are ex-

tremely small and cannot satisfy the uniqueness criteria for solving the hand-eye

problem. This confirms the deduction in Eq. 3.1 that the conventional formulation

cannot be used for calibrating the hand-eye matrix in this situation.

Figure 4.4(c) shows the distribution of the re-projection error from every trial

in the experiment. The re-projected grid is calculated from the intrinsic and the

predicted extrinsic parameters using Eq. 3.24. Since the conventional methods

cannot produce the correct rotation component of the matrix, the re-projected grid

is not completely aligned with the calibration grid. On the other hand, the RCM

method yields a lower re-projection error in comparison as the predicted pose is



4.3. Experiments with real data 84

RCM IDQ TSAI ABSOR

0

10

20

30

40

50

60

e
rr

o
r 

in
 r

o
ta

ti
o

n
 (

d
e

g
re

e
)

(a)
RCM IDQ TSAI ABSOR

0

2

4

6

8

10

e
rr

o
r 

in
 t

ra
n

s
la

ti
o

n
 (

m
m

)

(b)
RCM IDQ TSAI ABSOR

0

20

40

60

80

100

120

re
-p

ro
je

c
ti
o

n
 e

rr
o

r 
(p

ix
e

ls
)

(c)

Figure 4.5: The comparison of the calibration performances from each algorithm
when tested with the real data from the da Vinci Standard. The red line represents
the median of the distribution and the outliers are marked by a red cross. (a) Error
in the rotation estimation (b) Error in the translation component (c) Re-projection
error.

closer to the real camera pose.

Despite the difference in the setup of both experiments, in comparison to Fig-

ure 3.13(b) (the free-motion case), RCM still outperforms the RCM-free hand-eye

calibration. The result clearly demonstrates that introducing the RCM constraint

creates a simpler version of the hand-eye problem than the original one and can

yield a more accurate calibration result, although the restricted motion invalidates

the RCM-free formulation as demonstrated by IDQ, TSAI and ABSOR methods.

4.3.2 Experiments with the da Vinci Standard

Unlike the KUKA arm setup, the camera motion of the da Vinci Standard is

always constrained by the pre-defined RCM. Hence, the outcomes of the calibration

by IDQ and TSAI are similar to the ones shown in Figure 3.15. IDQ and TSAI

can still perform adequately in the RCM-constrained configuration is because the

motion range of the da Vinci is not sufficiently small for it to invalidate Eq. 3.1. This

is not the case in the motion range of the RCM-constrained movement of the KUKA

arm set in the experiment in which the uniqueness criteria could not be satisfied as

shown in Figure 4.4(a).

ABSOR method, in constrast, yields very high errors in all evaluation met-

rics. Such errors demonstrate that the absolute orientation algorithm alone cannot

solve the hand-eye problem as the RCM in Eq. 4.1 contains only one constant
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point, whereas the absolute orientation algorithm requires at least three non-colinear

points in each coordinate to solve the problem [116].

Similarly to Figure 3.15, despite the non-zero error, the calibration results have

a low standard deviation. The RCM method produces around 1.3 degrees in the

rotation component, 1.2 mm in the translation component and eight pixels in the

re-projection error. We observe that while the RCM motion creates an ill-posed

hand-eye problem, it can also be used as a constraint and produces a considerable

improvement over the conventional formulation.

4.4 Discussion

This chapter presents a new formulation of the hand-eye problem using RCM-

constrained motion. The developed formulation incorporates the pre-defined RCM

position as one of the constraints to increase calibration accuracy and practical im-

plementation in such configurations. The algorithm assumes that the z-axis of the

camera poses intersect each other at the RCM, thus defining it, and uses a geometri-

cal solution to find the RCM position which allows the construction of an absolute

orientation problem with an additional constraint on the conventional general hand-

eye equations.

In numerical experiments on synthetic data, the algorithm outperforms the

classic hand-eye approaches according to every evaluation criterion. When work-

ing with real data captured from both the KUKA robot equipped with a NanEye

stereo camera and the da Vinci Standard, the algorithm yields the lowest error with

the sensible (correct orientation) hand-eye matrix while the other methods fail to

calibrate the transformation. Furthermore, the plots shown in the previous section

also suggest that the new method even outperforms the RCM-free setup according

to every evaluation criterion.

Despite the more accurate calibration result, calibration error still exists be-

cause of the error inherent in robot and camera motions. According to the proof

in [44], the influence of noise on the calibrated hand-eye matrix can be reduced by

a factor of θi j in the rotation component and 2sin θi j
2 in the translation component,
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where θi j is the angle of rotation between two measurements. Given that the rota-

tional motion is small and that the part of the original formulation is still used in the

formulation, the effect of noise cannot be eliminated completely and is propagated

to the estimated hand-eye matrix as shown in the calibration result. However, the

result clearly indicates that the world-grid transformation base~zgrid can be recovered

using the calibrated hand-eye matrix which means that the RCM algorithm can yield

a sensible value for the hand-eye transformation with a restricted motion range and

the result agrees with experimental and with the simulated data. This agreement

demonstrates that the proposed algorithm has potential for applications where prac-

tical considerations limit the calibration process and do not permit the collection of

calibration data points with a wide motion range.

Although the calibration error is still high and may not yet be applicable to

real systems, the result shows that introducing the RCM position is a solution for

hand-eye calibration in the RMIS environment. Further, enforcing this constraint

avoids the requirement for surgical robots to have non-RCM compliant motion dur-

ing calibration, which is currently not available in any hospital setting. Free-motion

hand-eye techniques would require the re-design of surgical robot mechanisms and

result in a more complex workflow and more time-consuming calibration. There-

fore, the proposed method is well-suited to robotic systems that are mechanically

constrained around the RCM position, such as current keyhole surgery robotic tele-

manipulators. Since it has been shown that correctly modelling motion constraints

improves the overall calibration performance, future directions of research, in addi-

tion to the minimal solver contribution of the RCM constraint, include investigating

the feasibility of adding the constraints based on the kinematic structure of the robot,

in order to simplify the hand-eye problem even further.



Chapter 5

Hand-eye calibration without a

calibration grid

So far we have proposed modifications to the calibration pipeline aiming to

tackle the problem of noisy data and input motion range. One of the problems that

cannot be solved by the previously proposed algorithms is the complexity of the

calibration procedure and the disruption of the surgical workflow.

According to the literature on the hand-eye problem, there are several criteria

in the data collection [57] and the results from the previous chapters suggest that no

algorithm yields a perfect calibration result in the RMIS environment which may

present a complication in real systems. Therefore, the calibration procedure can be

challenging for medical staff that are not properly trained to solve a computer vision

or robotics problem. Moreover, the calibration procedure may require an additional

apparatus for the calibration which needs to be sterilised beforehand. This also

poses a problem in an operation as the workflow can be disrupted if there is a need

for re-calibration.

One of the solutions to reduce the complexity of the calibration procedure is to

use an alternative object as the calibration target that does not need re-sterilisation

and that the users are already familiar with. If the geometry of the calibration target

is known, the object can be used as a constraint for the calibration of the imaging

sensor, even if the geometry of the target is not simple such as in needle procedures

[117, 118].
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(a) (b)

(c)

Figure 5.1: (a) The CAD model used in the instrument tracking algorithm. (b) An
image of the instrument captured by the camera. (c) An image of the instrument
moving within the field of view of the camera while it is being tracked.

In the RMIS environment, the camera and instruments are controlled and asyn-

chronously moved around to avoid intractable mutual motion. Since the physical

geometry of the instruments is known from manufacturing and computer-aided de-

sign (CAD) models (Figure 5.1(a)), the same calibration principle can be applied

to the surgical instruments. This requires a surgical instrument tracking method

to determine the pose of the instrument such that the 3D model of the instrument

aligns with images. The tracking method typically make uses of edge features [119],

color features [72, 120, 121], local gradient descriptors [122] and a combination of
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shape-based features [72,123]. Alternatively, a computer vision marker can also be

printed on a surgical tool to help to localise the tool in the camera coordinate [124].

However, the pose of the tool estimated through this method may require a further

calibration to ascertain the transformation between the marker and the tool.

This chapter presents the formulation for the hand-eye problem using a surgical

tool as a calibration target. The method does not require an additional calibration

object, which is a step towards providing CAI that automatically updates the cal-

ibration [40, 125] and can potentially yield a more accurate calibration result as a

surgical instrument usually has a wider motion range than a camera’s. The algo-

rithm is validated through extensive experiments with both synthetic and real data

which shows that using a surgical instrument as a calibration target has the potential

to apply to a real-time application.

5.1 Hand-eye calibration using a surgical tool

5.1.1 Formulation

Recall the original equation (Eq. 2.17), the relative transformations are defined

as the camera motion and the end-effector motion as shown in Eq. 2.19 and 2.20.

In order to use a surgical tool as the calibration target, the calculation of the relative

motions have to be re-formulated as follows,

A = psmTtool(τ)
(psmTtool(τ

′)
)−1 (5.1)

B = toolTcam(τ)
(toolTcam(τ

′)
)−1 (5.2)

In the normal setup, hand-eye calibration determines the unknown fixed trans-

formation X that connects the robot arm coordinate frame Frobot and the camera

coordinate frame Fcam (Fig. 3.1(b)). This setup, on the other hand, determines the

transformation X = psmTtool that connects the camera coordinate and the instru-

ment coordinate. The frame “psm” and “tool” are close to each other but due to the

uncertainty in the tool tracking algorithm and the difference between the frame as-
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Figure 5.2: The frame assignment in the robot da Vinci standard. The ”psm” frame
is assigned at Ftip as at the tip of the instrument assuming that the needle drive
instrument is installed [50].

signments in the robot kinematics and the tool tracking, the frames are not identical.

Furthermore, the “psm” frame is determined by the DH parameters in [50] which

are not tool-dependent and the real frame may change with the instruments. The

translation component of the calculated transformation is therefore small in magni-

tude and the rotation component may require 90 or 180 degrees to match the frame

arrangement.

5.1.2 3D instrument tracking

Normally, in the conventional hand-eye calibration approach, the camera pose

with respect to the calibration grid coordinate is estimated by solving Eq. 2.21 for

a transformation camTgrid such that the re-projection error is minimised. While a

calibration grid contains image features that are easily detected, a complex model

such as a surgical instrument (Fig. 5.1(b)) is a composition of less perceptible

features which makes applying the same principle to the object a highly challenging

problem.

We use the instrument tracking method described in [72] to estimate the 3D
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Figure 5.3: The schematic for the proposed hand-eye calibration incorporating a
tool tracking algorithm [72] as mathematically represented by Eq. 5.1 and 5.2. No
calibration grid is required and the camera does not move. Instead the instruments
are moved by the robotic system.

pose of the surgical instrument. The algorithm solves the joint cost of aligning a

CAD model of the instrument (Fig. 5.1(a)) using colour-based segmentation and

local optical flow point tracking. The cost function is solved simultaneously using

gradient descent across both camera in the stereo system which effectively exploits

the stereo constraints and uses a linear Kalman filter for temporal consistency in

frame-to-frame tracking.

5.1.3 Calibration

The hand-eye calibration approach described in Chapter 3 is used to solve the

hand-eye problem once we obtain camTtool and psmTecm through instrument tracking

and the kinematic chain, respectively. However, the estimated transformation is not

the hand-eye matrix itself. Rather, it is the mapping between the tool frame and the

“psm” frame (as defined by the robot kinematic chain) which is one of the miss-

ing components in the whole chain of transformations. Note that the “psm” frame
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Algorithm 3 Hand-Eye Calibration without a calibration grid
1: procedure HANDEYE

2: baseTpsm,i← forward kinematics
3: A← construct tool’s relative motions
4: toolTcam← tool tracking
5: B← construct tracking target’s relative motions
6: psmTtool← solve the hand-eye problem using Algorithm 1.
7: {ecmTcam}N

i=1← solve Eq. 5.3 for N frames.
8: X← average transformations {ecmTcam}N

i=1
9: return ecmTcam . Hand to eye transformation

10: end procedure

is very close to the tool frame, but they are not necessarily the same because the

kinematic chain described in the manual [50] only applies to certain surgical tools.

Therefore, we have to estimate the true hand-eye transformation by completing the

chain of transformations.

As there are typically more than two poses in the calibration process, a set of

the hand-eye matrix can be calculated by,

ecmTcam = (baseTecm)
−1(baseTpsm,i)(

psmTtool)(
toolTcam) (5.3)

Therefore, more than one pose will complete the loop. The last step in estimating

the hand-eye matrix involves calculating a per-frame hand-eye matrix ecmTcam be-

fore averaging the transformations across each frame by finding the transformation

that satisfies Eq. 3.26.

The average of the transformations is calculated in the Lie algebra domain to

preserve the geometrical property of the rotation matrices. The rotation components

of {Xi}N
i=1 are converted to its Lie group so(3) using Eq. 2.15. All the skew sym-

metric matrices are then averaged across the number of data points and converted

back to SE(3), while the translation components are averaged directly in the SE(3)

domain. The algorithm is summarised in Algorithm 3.
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5.2 Experiments and results

This section shows the calibration performance of the hand-eye calibration al-

gorithm without using a calibration grid. The purpose of the validation is to check

the robustness and the effectiveness of the new formulation. Since no method in

the literature describes hand-eye calibration working with the new formulation, and

considering that we show in Chapter 3 that the algorithm can outperform the other

state-of-the-art calibration methods, the comparison of the calibration performance

is not shown in this chapter.

We tested the algorithm with the synthetic data to understand how robust the

modelled equation is when the data are not gathered from the extrinsic parameters.

Since Figure 3.4 shows that the error from the camera parameters resembles the

shape of 2-D Gaussian noise and considering too that the tracking of a calibration

grid and of a surgical tool rely on the camera parameters, we can infer that the

error from the tool-tracking method is similar to Gaussian error. Therefore, we

added noise to the synthetic image to simulate distortion. We also added noise to

the kinematic data to simulate the noise in the position reading in robotic systems.

For example, da Vinci uses tendon actuation for the joints, which is sensitive to

noise, and the noise can be propagated to the end-effector pose through the robot

kinematic chain [46]. As a result, a small discrepancy is created between a pose in

the camera coordinates and an instrument pose estimated by the forward kinematic,

which will, in turn, induce an error in the calibrated matrix.

The same experiment as Figure 3.10(b) with a relevant range of noise coeffi-

cient is also included in the validation process in addition to the synthetic tracking

result. According to the results in the tool tracking paper [72], the recorded error

fluctuates between less than 1 mm to 6 mm in the translation component, and from

3 to 20 degrees in the rotation component, due to drift in the tracking results. Since

the error in the input data is significantly larger than the errors in Chapter 3 and

considering that the proposed algorithm uses the tracking result as one of the main

inputs, the error in calibration with tool tracking should be somewhat similar to the

error with increasing noise.
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Figure 5.4: Performance of the algorithm when it is tested with synthetic data with
increasing intensity of Gaussian noise in the camera parameters. This replicates the
relevant range of noise in the camera data obtained from the tool tracking algorithm;
the error in the rotation estimation (left) and the error in the translation estimation
(right). The noise from the camera data is originated from unsuccessful tracking
results in terms of its orientation which in turn creates inaccuracy in the translation
component as shown in [72].

The calibration error for the experiments with synthetic data was calculated

from Eq. 3.21 - 3.23. For the experiment with real data, we calibrated the hand-eye

matrix using Algorithm 3 and we used data shown in Figure 3.11(c) to validate the

calibrated matrix because the same camera was used and the data were collected

using the same camera setup. Furthermore, we also used prior knowledge of the

frame assignment and RCM position to calculate the error in the rotation (Eq. 3.27)

and translation components (Eq. 3.28) which reflected the real setup.

5.2.1 Experiment with increasing Gaussian noise

The noise in this experiment was increased from 0 to 10 degrees in the rotation

component and 0 to 10 mm for the translation component, whilst keeping the noise

from the robot kinematic at 0.001 mm and 0.04 degrees for the translation and

rotation components, respectively, to simulate the noise in the positioning system

of the da Vinci Standard (see Figure 3.15).

Figure 5.4 shows that the calibration errors still increase linearly with a similar

rate to the errors shown in Figure 3.10(b). With the extended range of the noise

coefficient, the plots suggest that the calibration error should be in the range of

10 to 20 degrees for the rotation component and 20 to 30 mm for the translation
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(a) (b)

Figure 5.5: Synthetic data generated from projecting an instrument CAD tool at
poses generated from kinematic data and an artificial hand-eye transform. The im-
ages are corrupted with the Gaussian noise but the kinematic data is noise-free.

component.

5.2.2 Experiment with noise in the imaging data

Unlike the other experiments, the synthetic data in this experiment was gener-

ated by rendering a CAD model of a surgical instrument (Fig. 5.1(a)) onto a virtual

camera using the OpenGL library. The robot motion was collected from the joint

encoder data using the da Vinci Research Kit (dVRK) [126] in order to obtain a

realistic prediction of motion for a surgical robot system. The sensible ground truth

hand-eye matrix was combined with a forward kinematics to calculate the pose of

the camera with respect to the robot base. Therefore, for each set of joint values, the

new set of transformations could be computed and used it to render the instrument

in the appropriate pose. Example images from the synthetic data are shown in Fig.

5.5(a) and 5.5(b).

In this experiment, we increased the noise intensity in the kinematic compo-

nent from 0 to 2 degrees for the rotation component and from 0 to 2 mm for the

translation component. The noise simulated the inaccuracy in the positioning sys-

tem of the robot which can cause a greater error when using the pose estimation

algorithm.

Fig. 5.6 shows the error trend when the algorithm was tested with increasing

Gaussian noise. As shown in the literature, as well as in the results in Chapter 3,
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Figure 5.6: Performance of the algorithm when it is tested with synthetic data with
an increasing intensity of Gaussian noise in the kinematics. This replicates the real
noise that is seen when estimating poses from tendon-driven robots such as the da
Vinci Standard; error in the rotation estimation (left) the error in the translation
estimation (right).

the relationship between noise intensity and error in both rotation estimation and

translation estimation is linear. However, the results show that the linear behaviour

is not as evident as the observations in the literature, for which a calibration grid

was used as the calibration target.

One of the reasons for this difference is that the noise in the kinematic param-

eter is significantly smaller than the noise from the tool tracking result; this makes

the linear characteristic in the calibration error less evident as the noise in the kine-

matics is increased. However, the errors agree with the plots in Figure 5.4 such that

both the errors in the rotation and translation fall in the expected ranges.

Furthermore, the tracking error in estimating toolTcam using the tool tracking

algorithm changes the noise behaviour in the formulation significantly. The main

source of error in the camera motion in the conventional method is the sub-pixel

error from the camera calibration algorithm [42] whereas in this case it is from the

tool tracking method. The performance of the tool tracking algorithm is sensitive to

drift which results in increasingly noisy estimation of the poses and creates a larger

noise in the relative transformation B in Eq. 5.2. The error is even clearer when

there is zero noise added to the kinematic data as the algorithm fails to yield the

ground truth of the hand-eye matrix with the noise-free data. This shows that the

error from the tool tracking algorithm has a significant impact on the estimation of

the hand-eye matrix.
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(a) (b)

Figure 5.7: (a)-(b) shows instrument tracking result from the algorithm of [72] when
it is re-projected onto images. We use the estimates from this algorithm to compute
the camera data for the input of the calibration routine.

5.2.3 Experiments with real data

We performed the experiment using data from the da Vinci Standard. The

camera attached to Endoscope control manipulator (ECM) was fixed while the sur-

gical instrument controlled by Patient side manipulator (PSM) was moved within

the camera frame to obtain a frame-by-frame pose of the surgical tool. The kine-

matic of the PSM arm is described in Table 7.4 in the Appendix section. In the same

ECM setup, we also moved the camera around the calibration grid to collect several

images for the purpose of validating the calibration result.

Tool tracking was then applied to determine the optimal pose of the PSM in

each frame such that the CAD model can be re-projected and overlay the tool image.

Note that the intrinsic parameters of the camera are pre-determined. This process

resulted in the transformations in Eq. 5.2. The examples of the re-projected CAD

model are shown in Figure 5.7(a) and 5.7(b). To obtain the relative transformations

in Eq. 5.1, we used forward kinematics to determine the pose of the PSM with

respect to the ECM by simply chaining the two transformations. After collecting

the data, we applied Algorithm 3 to find the hand-eye matrix.

The experiment was run on a 2.90GHz Intel Core i9-8950HK laptop. It took

the machine around 10 milliseconds to finish one calibration routine as the noise

in the data is considerably higher than in the conventional data. As explained in

Chapter 3, the solution is converged more slowly with the noisy data.



5.2. Experiments and results 98

80

70

60

3
13

9
10

-60

50

40

12

6

Z
 (

m
m

)

30

5
15

20

4

7

2

10

-40

0

1
14

11

8

40-20

X (mm)

camera

200

Y (mm)

020
-2040

-40

(a) (b)

Figure 5.8: (a) The surgical instrument poses with respect to camera. The surgical
tool has a wider motion range than the camera and can therefore be used to cre-
ate much more varied poses for the calibration. The tool’s position ranges from
[−20,−10,45]T to [10,15,80]T in mm in the camera coordinate system. (b) The
camera poses with respect to a calibration grid frame [42]. Due to the RCM con-
straint of surgical robotic systems, the range of poses is confined within a very re-
stricted space. The camera’s position ranges from [90,−15,130]T to [110,10,145]T

in mm in the calibration grid coordinate system.

Fig. 5.8(a) and 5.8(b) show that the motion range of the surgical tool is much

wider than the camera. With the conventional hand-eye algorithm, the camera mo-

tion is confined to the area surrounding the RCM, which cannot offer a sufficient

motion range for suppression the effect of noise. In contrast, the motion of a surgi-

cal tool is freer and can be used as an input for Eq. 2.17 in which the same property

of motion range holds similarly to the conventional setup.

The distributions of the calibration errors in rotation and translation when a

different number of motions were used are shown in Fig. 5.9. Although the errors

are rather high, the plots demonstrate the same trend as Fig. 3.15 since it converges

when more motions are included (albeit more slowly than when the conventional

camera data is used). This indicates that using a surgical tool as a calibration target

to approach the hand-eye problem in surgical robots shows the same characteristics

as the modelled hand-eye equation and is feasible.

We also note that the CAD model is slightly misaligned with the image of the

surgical tool, which severely affects the calibration error for the hand-eye matrix.



5.3. Discussion 99

Figure 5.9: The calibration performance of the proposed hand-eye algorithm. The
number on the horizontal axis represents the number of included motions in the
calibration. The error in both rotation (left) and translation estimation (right) are
considerably higher than the conventional method as shown in Fig. 3.15, since the
error from the tool tracking algorithm is propagated to the main calibration.

Although the CAD model overlays the shaft of the tool very well, which indicates

better accuracy in translation estimation, the tip of the targeted surgical tool is not

completely covered. Such misalignment at the tip of the tool suggests that the ori-

entation at the tip (the last three DoF of the PSM arm) is not properly estimated.

Indeed, it yields a very high error rotation error in [72]. This error then signifi-

cantly worsens the rotation estimation for the calibration result and subsequently

yields an inaccurate estimation of the translation component, whereas according to

the literature [44, 45], the rotation component typically has a small error.

Nevertheless, the results agree with the experiment with the synthetic data; the

calibration error is around 20 degrees in the rotation component and 25 mm in the

translation component, even though the noise intensity in the robot is quite small.

This suggests that the factors that play an important role in the proposed algorithm

are not only the image and kinematic data or the hand-eye calibration algorithm but

also the accuracy of the tool tracking algorithm.

5.3 Discussion
This chapter demonstrates the potential for using a surgical instrument as the

calibration target when calibrating the hand-eye matrix. Our approach tackles the

hand-eye problem with a practical method of performing the calibration during

robotic-assisted surgery that does not require any additional calibration objects. The
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potential advantages of the approach include improvements in the ergonomics of the

system, the workflow and potentially the accuracy of the calibration itself.

First, the calibration can be performed online and updated during the proce-

dure. Typically, the calibration of any systems is an offline procedure, and has to be

performed before starting the operation, and requires an update, if there is a change

in the camera or surgical tool setup. This poses a problem in an operation room

as surgical procedures may require time (a crucial factor in surgery) to set up the

calibration environment, sterilise the calibration object and perform the calibration.

Replacing the conventional calibration object with a surgical tool simplifies the pro-

cedure significantly as the calibration environment is easy to set up and a surgical

tool does not need to be sterilised since it should already have been sterilised be-

forehand. Moreover, this results in a simpler workflow for any surgical applications

that require multiple calibrations throughout a procedure.

The second advantage relates to the work surgeons have to perform. Using the

conventional calibration target require more work and training in addition to a com-

plex surgical procedure because certain steps must be followed and some criteria

satisfied in order to obtain an accurate calibration. This could pose a problem for

surgeons as they might not be aware of the calibration concept which could lead to

an inaccurate calibration result and the need for re-calibration. This difficulty can

be mitigated by utilising the object in a surgical environment and in the context of

processes that surgeons are already familiar with.

Finally, the use of a surgical tool could improve calibration accuracy. As

demonstrated in the literature that a wide motion range can suppress calibration

error, and with a surgical tool, and the calibration problem can be modelled sim-

ilarly to the classic hand-eye problem. The approach makes this criterion more

achievable since a surgical tool has a wider motion range than a camera. Therefore,

a sufficiently wide range of poses can be collected and used to obtain an accurate

calibration.

However, the limitation of the proposed algorithm is shown in the results that

the improvement over the conventional calibration algorithm is not evident. The
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calibration algorithm relies heavily on the performance of the tool tracking. As the

error from the tool tracking method is still considerably high and creates a set of

noisy transformations which invalidate the hand-eye equation, the algorithm yields

a very high calibration error whereas the conventional methods applied on the same

robot results in far more accurate calibration results (Figure 3.15).

One possible source of the error is the misalignment of the projection of the

CAD model, as the optimisation is applied on the cost function derived from the

model alignment which is also a result of colour-based segmentation and local op-

tical flow. Therefore, if the projection of the tool in the camera frame deviates from

the CAD model or is not clear due to it being out of focus or distortion, it is likely

that the resultant transformations will not be accurate. To mitigate this, we could

add a computer vision marker or a calibration grid to the shaft [124] as they are

easy to detect and it will give prior knowledge of the pose of the tool’s shaft. This

can simplify the optimisation problem as the pose of the shaft corresponds to most

of the da Vinci’s kinematic; only the last four joints correspond to the orientation,

opening and closing of the tool’s tip, while the others are related to the position and

orientation of the shaft (see Table 7.4).

To summarise, we present a potential solution for the hand-eye problem in

RMIS applications by using a surgical instrument as the calibration target. Al-

though the final results are still in need of improvement, there is potential for the

development of a calibration algorithm that uses a more robust model such that the

tracking results can be utilised in the calibration routine.



Chapter 6

Data synchronisation for hand-eye

calibration

Apart from the data selection criteria required to obtain an accurate hand-eye

matrix explained in [41,44,57], there is one more step that is not commonly consid-

ered when it comes to solving the hand-eye problem: the synchronisation problem.

The parameters τ and τ ′ in Eq. 2.17 indicate that the two transformations on the

two sides of the equation must be extracted from synchronised data streams. How-

ever, this condition is not always fulfilled as different sensors (camera, motors posi-

tion reading, or external trackers) may have different specifications (sampling rate,

data loss, or activation time) which can result in a temporal signal misalignment as

shown in Figure 6.1. The asynchronicity between the data streams invalidates the

well-posed hand-eye formulation, i.e. Eq. 2.17 becomes invalid if the data streams

are not fully synchronised. Therefore, most hand-eye approaches in the literature

cannot be applied here as they all require a full synchronisation between the two

data streams.

It can be argued that the issue can be simply solved by discretely capturing

sets of images and corresponding kinematic data, i.e. users could stop the motion,

capture the data and repeat until the sufficient amount of data is collected for the

calibration. In practice, this strategy should eliminate the necessity of any synchro-

nisation algorithms for the calibration since the temporal misalignment does not

affect the data. However, although the hand-eye problem is solved, the transfor-
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Figure 6.1: An example of data capture with different types of sensors. One is the
camera and the other is a set of markers detected by a motion tracking system rigidly
attached to the camera. Cameras used in robotic systems usually have capture rate
around 15−60 fps, while many tracking systems can publish data at the rate higher
than 100 fps. As we use the two equipments at the same time, the two data streams
will be severely asynchronous and some data will be unusable since the rate on the
other end is not fast enough, e.g. the red signal and the blue signal are similar but
they are asynchronous which creates differences in their shape.

mations in each coordinate frame are not yet synchronised which makes the setup

impossible to employ CAIs in surgeries. Therefore, synchronising the data streams

is still required as a data pre-processing step before the calibration.

To solve the asynchronicity problem, we propose a new approach to the syn-

chronisation of the data streams for calibrating the hand-eye matrix when the two

data streams have different sampling rates and activation times. The method is part

of the data preprocessing steps before the main calibration routine. The method uses

the cross-correlation technique to find the time delay between the two data streams

and the screw theory to recover the missing transformations for the lower-sampling
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rate data. The use of screw theory has several advantages:

• The higher number of motions recovered by the algorithm based on screw

motion can increase calibration accuracy [41];

• The recovery of respective hand-hand transformations for a given eye-eye

pair, and vice versa;

• Both rotation and translation components are taken into account in the time-

delay estimation;

• The compensation for the time-delay and sampling rate both conform to the

screw constraints.

The proposed method consists of data synchronisation using cross-correlation

with normalisation and resampling, followed by recovering the missing data us-

ing the screw constraints. Our experiments with both synthetic data and real data

demonstrate that our method outperforms the state-of-the-art probabilistic algorithm

described in [61] which shows that solving the hand-eye problem using the syn-

chronised data can achieve a more accurate calibration result than previous efforts.

First, let us recall Eq. 2.19 and 2.20 and extend the equations to the two-motions

case (Figure 6.2). The equations can be extended as follows,

A1 =
cam Tgrid(τ)(

camTgrid(τ
′))−1 (6.1)

B1 =
robot Tbase(τ)(

robotTbase(τ
′))−1 (6.2)

A2 =
cam Tgrid(τ)(

camTgrid(τ
′′))−1 (6.3)

B2 =
robot Tbase(τ)(

robotTbase(τ
′′))−1 (6.4)

where τ,τ ′ and τ ′′ are different time instances in cases in which the robot configura-

tions are not the same. Eq. 6.1 - 6.4 are all linked by the original hand-eye equation

(Eq. 2.17), A1X = XB1 and A2X = XB2; this is not the case when the two relative

motions are not fully synchronised, i.e. the time parameters τ and τ ′ in Eq. 6.1 do

not represent the same common time as in Eq. 6.2.
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Figure 6.2: The schematic shows the transformation loop for hand-eye calibration
as shown in Eq. 2.17. The camera is rigidly mounted onto the robot and moved
to different poses to capture images of the calibration object corresponding to each
robot pose.

6.1 Data synchronisation using cross-correlation
In the hand-eye problem (Eq. 2.17), since the two coordinate systems are

rigidly connected to each other, the relative motions A and B have constraints on

rotation and translation components that are independent of the calibration parame-

ters.

θA = θB (6.5)

dA = dB (6.6)

where θA,θB are the angles of rotation in both reference frames, and dA,dB denote

the amount of translation along the axes of rotation. These parameters are defined

by the following equations,

θ = arccos(
r11 + r22 + r33−1

2
) (6.7)

d =~t T~l (6.8)
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Figure 6.3: Degree of rotation that occurs in each motion. The three graphs show
the screw parameter in the rotation component θB (blue) in comparison with its
corresponding signal θA (red) after normalising with sampling frequency and up-
sampling. The top graph shows the signal before normalisation and upsampling.
The middle graph shows the signal after normalisation and the bottom graph shows
the signal after upsampling which is the real input for the cross-correlation function.

where ri j is an element in a rotation matrix R,~t represents a translation vector in

a transformation and~l is a unit vector denoting the principal axis of rotation [35].

This geometric relationship is called the screw motion and it is invariant to any rigid

transformation, and thus is the same in any reference frames. The complete proof

of this relationship is outlined in [69]. In the case of a small motion range (small θ ),

the constraints are also valid as the screw constraint on the translation component

d =~tT~l does not consider the angle of rotation.

In the eye-in-hand setup, a camera is rigidly attached to a manipulator, so every

camera motion and robot motion must conform to the screw constraints. Therefore,

the parameters in Eq. 6.5 and 6.6 should be somewhat similar with some uncertainty

due to the noise and difference in sampling rate as can be seen in the uppermost plot

in Figure 6.3.

In signal processing, the cross-correlation technique for any two signals is a

commonly known method to find the point at which the similarity score between

the two signals is the highest. However, to apply the cross-correlation, the data
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requires normalisation and resampling so that the two signals have similar shapes

and lengths.

6.1.1 Data normalisation and resampling

The relative transformations A and B as well as the screw parameters d and θ

are derived from the geometric difference between two rigid transformations. Given

that the two data streams are not sampled at the same rate, the calculated difference

between both data streams will not be the same: e.g., if an arbitrary signal f (t) is

sampled at different rates a1 and a2, the differentiation of the two sampled signals

will not be the same but rather proportional to each other. Therefore, the data has

to be normalised before applying resampling and cross-correlation so that the screw

parameters for both data streams carry the same weight. The normalisation can be

performed as follows,

θ̂B =
fB

fA
θB (6.9)

d̂B =
fB

fA
dB (6.10)

where fA and fB are the sampling rates of the data streams {Ai} and {Bi} respec-

tively. The normalised result is shown in the middle plot in Figure 6.3 that the blue

data now has the same magnitude as the red data.

The next step is to resample the data such that the blue data has the same length

as the red data before applying the cross-correlation technique. In signal processing,

resampling the data consists of three procedures which are: upsampling, applying a

low-pass filter and downsampling [127]. To upsample the data θB by a factor of q,

zeros are added into the signal such that,

θ̂B[n] =

θ̂B[
n
q ] , n

q ∈ I+

0 , otherwise
(6.11)

Then, an anti-aliasing finite impulse response (FIR) filter is applied to the up-

sampled data to smooth the original data over the added zero. Finally, the data
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is downsampled by the factor p which can be performed by discarding the data

when the index is not a multiple of p. The result after resampling is shown in the

lowermost plot in Figure 6.3. The plot shows that the only difference between the

red and blue data is the constant time-delay which is to be estimated by using the

cross-correlation method.

6.1.2 Generalised cross-correlation

The generalised cross-correlation method (GCC) is a common method to find

the point in time at which two signals have the highest similarity score. This works

well for estimating the time delay between two signals: both for complex-valued

and real signals. The method is fully detailed in [128]. Therefore, this method

has gives the advantage of exploiting both screw parameters in estimating the time

delay: the parameter θ is added to the real component and the translation parameter

d is added to in the imaginary component. FFT pruning and the Hilbert transform

are also applied here, in addition to the classic cross-correlation, to increase the

precision of the estimated time delay, whereas the estimated time delay is otherwise

only the multiplication of the data’s sampling rate. FFT pruning and the Hilbert

transform are described in detail in [129].

6.2 Data recovery using screw constraints
After compensating for the time-delay in the data streams, the misalignment

between them is at a minimum which creates adequate inputs for calibrating the

hand-eye matrix. However, the stream with the faster capture rate still has more

motion data than the other stream: i.e., some data produced in this stream has no

correspondence in the other and therefore cannot be readily used. Furthermore, ac-

cording to [41], calibration accuracy can be improved with relative motions (A,B in

Eq. 2.19 and Eq. 2.20) with a wide motion range. This condition is rather difficult

to meet in the RMIS setup because the readily synchronised data may not provide

a sufficiently wide motion range. Therefore, we should use as many motions as

possible to maximise the motion range from the captured poses which in turn max-

imises calibration accuracy, instead of using only the motion that has correspon-
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dence which depends closely on the hardware specifications of the two systems.

Therefore, the interpolation between two sampled points is required to fill in

the missing transformations. To recover the transformations, we use dual quater-

nions to represents the relative transformations as such representation allows the

use of the screw constraint unlike other representations. We then deduce that every

missing transformation must conform to the screw constraints due to the camera-

robot setup. Although the simple linear interpolation method could be used to re-

cover the missing data as currently available vision systems and sensors have a very

fast capture rate which makes the motions between two sampled points very close to

linear, linear interpolation does not guarantee that the recovered motions conform to

the screw constraints (Eq. 6.5-6.6) which may also invalidate the original hand-eye

equation.

To formulate the equations for recovering the data, we first have to convert the

transformations into a dual quaternion representation [130]. For any rigid transfor-

mation T ∈ SE(3), there is a dual quaternion q̂ = q+ εq′ such that,

q =

sin θ

2
~l

cos θ

2

 q′ =

1
2(cos θ

2~t + sin θ

2 (~t×~l))

−1
2d sin θ

2

 (6.12)

where the parameters are already defined in Eq. 6.7-6.8. Without loss of generality,

let us define the data stream {Bi} as the lower sampling rate data, τ1,τ2, ... as the

time instances that the data streams {Ai} and {Bi} are synchronised, and τb as the

time instance of the missing transformation. We will have

q̂A,i = q̂a(τi)q̂a(τb)
−1 (6.13)

q̂B,i = q̂b(τi)q̂b(τb)
−1 (6.14)

Eq. 6.13 and 6.14 show the relative transformations between arbitrary and

synchronised frames i and b that are missing in the data stream {Bi} due to a lower

sampling rate. According to the screw constraints, the definitions of dual quaternion

(Eq. 2.8, 2.12) and the definitions of the screw parameters (Eq. 6.7, 6.8), it is clear
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that the scalar components of the rotation and translation quaternions of q̂A,i and

q̂A,i must be the same.

Therefore, we can equate the two scalar components of both quaternions, and

simplify the problem by using matrix multiplication to multiply the quaternions

[131]. Note that the scalar component of the rotation quaternion has to be squared

because the sign of θ

2 can either be positive or negative and still have the equivalent

rotation as the rotation quaternion q and −q are equivalent(i.e. they represent the

same rotation matrix).

Let the elements in the rotation quaternions qb(τi) be [bxi,byi,bzi,bwi], and the

optimised rotation quaternion qb(τb) be [qx,qy,qz,qw]. The real component in Eq.

6.14 is calculated by,

qB,i =


bwi −bxi −byi −bzi

bxi bwi −bzi byi

byi bzi bwi −bxi

bzi −byi bxi bwi




qw

−qx

−qy

−qz

 (6.15)

The screw constraint on the rotation component creates equality between the

squared of the scalar component of Eq. 6.15 and that of the data stream {Ai}.

Therefore, the optimised equation for the rotation component is,

φr(q) =
N

∑
i=1
||(bxiqx +byiqy +bziqz +bwiqw)

2− (ari)
2||

subject to
√

q2
x +q2

y +q2
z +q2

w = 1 (6.16)

where ari is the scalar component of the rotation quaternion of qA,i and the counter

i runs through every synchronised time index. For the translation component, we

can apply the same technique as Eq. 6.15 and derive the scalar component of the

translation quaternion in Eq. 6.14 as follows,

qbi,t =
1
2
(~tb−~ti)T (cos

θb

2
sin

θi

2
~li− sin

θb

2
cos

θi

2
~lb) =

1
2
(~tb−~ti)T~lbi (6.17)
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and arrive at the optimisation equation,

φt(~tb) =
N

∑
i=1
||q2

bi,t−a2
ti|| (6.18)

where~tb,θb and~lb are the translation component, degree of rotation and principal

axis of rotation of the recovered transformation,~ti,θi,~li are those of the synchronised

transformations and ati is the scalar component of the translation quaternion in Eq.

6.12.

Both of the derived objective functions are non-linear functions. Since non-

linear functions are generally not easy to solve or may not have a solution [132], we

will show that Eq. 6.16 and 6.18 have at least one minimum. Let us start with the

rotation equation, Eq. 6.16 can be re-written in the form of matrix function with a

quaternion input as follows,

φr(q) = Trace((BqqqT BT
q − ~aq~aq

T )� (BqqqT BT
q − ~aq~aq

T )) (6.19)

where � defines the Hadamard product (an element-wise multiplication), and Bq

and~aq are defined as follows,

Bq =


bx1 by1 bz1 bw1

bx2 by2 bz2 bw2
...

...
...

...

bxN byN bzN bwN

 , ~aq =


ar1

ar2
...

arN

 (6.20)

To find the critical point and analyse the Hessian matrix, we compute the first

and second-order derivatives of φr(q).

∂φr

∂q
= 4BT

q (IN� (BqqqT BT
q −~aq~aT

q ))Bqq (6.21)

∂ 2φr

∂q2 = 4BT
q (IN� (3BqqqT BT

q −~aq~aT
q ))Bq (6.22)

Let us take a look at the Hessian matrix. The term 3BqqqT BT
q −~aq~aT

q in Eq.
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6.22 creates a condition for positive semi-definiteness of the problem which implies

convexity of the problem that for each diagonal value,

3(bxiqx +byiqy +bziqz +bwiqw)
2− (ari)

2 ≥ 0, i = 1,2, ...,N (6.23)

The inequality can be simplified further into an inequality of the difference

between two cosine functions as they both represent rotation quaternions which

formulates the condition for positive semi-definiteness in φr(q) as follows,

cos
θB(q)

2
≥ 1√

3
cos

θA

2
, cos

θB(q)
2
≤− 1√

3
cos

θA

2
(6.24)

The condition derived above helps to identify whether an extremum is a max-

imum or a minimum. To find the extremum of the function, we have to solve the

cubic function derived from the gradient ∂φr
∂q =~0. The most trivial solution for the

equation is q =~0, but the zero vector does not represent a rotation quaternion and

thus the zero vector is not a valid solution. Let us consider the term in the paren-

theses BqqqT BT
q −~aq~aT

q . The term derives from the equating of the square of the

two scalar values in the two quaternions, which are squared to avoid the ambiguity

of the signs in the quaternion. Therefore, regardless of the combinations of signs

in both quaternions and according to the screw constraints (Eq. 6.5), there exists

an optimal solution q∗ and its counterpart −q∗ for the equation BqqqT BT
q −~aq~aT

q .

Substituting q∗ into Eq. 6.22 yields,

∂ 2φr

∂q2 |q=q∗,−q∗ = 8BT
q (In� (BqqqT BT

q ))Bq (6.25)

It is obvious that q∗ and −q∗ yield a positive semi-definite Hessian matrix

as q∗ and −q∗ already satisfy Eq. 6.24 and for any ~x ∈ Rn the inner product

~xT ∂ 2φr
∂q2 |q=q∗,−q∗~x is always greater than or equal to 0. This confirms that the func-

tion is convex in this region and according to the formulation, q∗ and −q∗ yield the

same minimum value.

For the translation function φt(~t), the objective function can be re-formulated
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into the matrix equation as well. The form is similar to that of the rotation objective

function.

φt(~t) = Trace((Bqd~t−~b)(Bqd~t−~b)T −~at~aT
t )� ((Bqd~t−~b)(Bqd~t−~b)T −~at~aT

t ))

(6.26)

and the parameters in the function are defined as follows,

Bqd =
1
2


~lT

b1

~lT
b2
...

~lT
bN

 , ~b =
1
2


~lT

b1~t1
~lT

b2~t2
...

~lT
bN~tN

 , ~at =


at1

at2
...

atN

 (6.27)

Similarly to Eq. 6.20, we can derive the gradient and the Hessian of the func-

tion as follows,

∂φt

∂~t
= 4BT

qd(In� ((Bqd~t−~b)(Bqd~t−~b)T −~at~aT
t ))(Bqd~t−~b) (6.28)

∂ 2φt

∂~t2 = 4BT
qd(In� (3(Bqd~t−~b)(Bqd~t−~b)T −~at~aT

t ))Bqd (6.29)

The only difference between this equation from Eq. 6.21 is that the normality

constraint does not exist on the three roots for Eq. 6.28. By applying the same

principle as for the rotation function, the three roots are the solution to these linear

equations,

Bqd~t∗1 −~b =~0 (6.30)

Bqd~t∗2 −~b = 2~at (6.31)

−Bqd~t∗3 +~b = 2~at (6.32)

By substituting each solution to the Hessian matrix, we can see that the solution

from Eq. 6.30 yields a negative diagonal value which implies that the Hessian is not

positive definite and that it yields a local maximum. On the contrary, the solution

from Eq. 6.31 and 6.32 gives a positive definite Hessian and the function φt at
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Figure 6.4: An example of the recovered transformations in between each sample.
The trajectory recovered using Eq. 6.16 and 6.18 is clearly different from the linear
interpolation which assumes the linearity in the trajectory between any two samples
which is not always the case.

~t =~t∗2 ,~t
∗
3 gives local minima.

Therefore, it is clear that both objective functions φr(q) and φt(~t) are con-

vex functions in the regions of interest as their Hessian matrices are positive semi-

definite, and therefore minimum values exist. Although the solutions in the analy-

sis are derived from the linear function, the original function can be optimised by

using a Lagrangian multiplier for the normality constraint in φr together with the

Levenberg-Marquardt algorithm to locate the extrema.

However, the screw constraints on both rotation and translation components

contain ambiguity on their signs, i.e. a degree of rotation θ around the rotation

axis~l is equivalent to a degree of rotation −θ around the axis −~l and this implies

an opposite direction for the translation component too. Therefore, the recovery

transformations using Eq. 6.16 and 6.18 must be compared with the adjacent trans-

formations to ascertain whether or not the motion is continuous. This check can be

performed in the Lie Algebra domain, i.e. if the motion is not continuous in se(3),

the sign of the component must be changed.
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Algorithm 4 Synchronising and calibrating hand-eye

1: procedure CHESS(CAMTGRID,
ROBOT TBASE)

2: A← construct camera’s relative motions
3: B← construct robot’s relative motions
4: θA,θB,dA,dB← compute screw constraints
5: Estimating time-delay parameter τ and synchronise the data streams
6: Recover the lost data using Eq. 6.16 and 6.18.
7: Use Algorithm 1 or 2 to calibrate the hand-eye matrix
8: end procedure

By applying the recovery method described above, an example of interpolated

translation in the z-axis can be shown (Figure 6.4), together with the result from

using the linear interpolation technique. The interpolated motions from the screw

motions are different from the motion recovered by the linear interpolation. Al-

though the motion between two sampled is small and the difference between screw

motion and linear interpolation is also small, all the motions used in the hand-eye

calibration equations must conform to the screw constraints. Otherwise, this small

discrepancy can be propagated to the calibrated hand-eye matrix and yields a sig-

nificant error in the estimation as shown in Figure 3.10.

For the hand-eye calibration itself, let us apply the algorithm from Chapter 3

to solve the problem as it outperforms the other methods and the translation com-

ponent can be optimised using either one of the data streams. A summary of the

whole process is written in Algorithm 4.

6.3 Experiments and results
This section shows the results of the experiments and calibration after pre-

processing the data using the synchronisation and recovery technique explained in

the previous section.

To generate the synthetic data for this section, we generated several 6× 1

control points (three for the rotation component and three for the translation com-

ponent) and 10 points describing a polynomial trajectory connecting each control

point. This trajectory was defined as the robot’s motion. We then used the method

in Section 3.3 to complete the loop of transformations.
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(a) (b)

Figure 6.5: The setup for the experiment with the KUKA robot. (a) Endoscope at-
tached to the flange of the robot. (b) Endoscope capturing a video of the calibration
grid. The data streams {camTgrid} and {robotTbase} define the relative motions of the
camera and the robot arm, respectively.

We then compared the performance of the algorithm with that of the linear

interpolation and state-of-the-art probabilistic methods [61]. However, the original

probabilistic method described in [61] does not include a case in which the capture

rate of the two data streams are not the same. Further, the results in [58] show

that the method does not work well as it requires correspondences in between both

data streams. Therefore, the probabilistic algorithm used in this section is similar

to Algorithm 4 and replaces the ATA method with a probabilistic method. The

experimental setups are simulated by varying the intensity of Gaussian noise, the

time delay and the difference in the sampling interval. For each set of parameters,

the experiment was run 100 times.

For the experiment with real data, we attached an endoscope to the flange of

the KUKA LBR iiwa 7 R800 and move the arm around the calibration grid to obtain

the data for the calibration. The capture rate of the robot and the endoscope are 70

and 30 data points per second, respectively. Note that this capture rate may vary
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in different robots, cameras and sensors. The hand motion is computed by forward

kinematics and the grid detector and camera calibration algorithm in the MATLAB

Camera Calibration Toolbox are used to detect the calibration grid and compute the

camera pose, respectively (similar to Figure 3.2(a) and 3.2(b). The camera motions

and robot motions are then used to computed the eye {A} and hand motions {B}

using Eq. 6.1-6.4, respectively.

All experiments were run on a 2.9 GHz Intel Core i9-8950HK laptop. For

the real data, the synchronisation and recovery steps took the processor around 760

seconds to complete the whole dataset of 7,000 transformations (around 0.1 seconds

per pose). The algorithm has a high computational cost with a long set of motions

as it takes into account the transformations from the whole dataset to recover the

missing poses. However, not all 7,000 transformations were required to obtain the

optimal recovered pose in each frame.

Similarly to the experiments in the previous chapter, the method in [73] was

used to predict the camera’s extrinsic parameters and evaluate the calibration per-

formance of the selected hand-eye algorithm.

6.3.1 Error in time-delay estimation

First, we evaluated the performance of the time delay estimation component

with varying the experimental setups; we did not consider the accuracy of the hand-

eye calibration to check which factors contribute to the error in time delay estima-

tion. The constant noise in the system is set at 0.5 degrees in the rotation component

and 0.5 mm in the translation component, whereas the constant activation time is

30 seconds and the constant difference in the sampling interval is 5. These values

are changed accordingly to the factor of interest in each experiment.

The result shown in Figure 6.6(a) was obtained when the noise was increased

from 0 to 1 mm in the translation component and 0 to 1 degree in the rotation

component with a step of 0.1. As expected, the algorithm could estimate the time

delay without any error for the data streams with a low noise intensity and the error

increased with increasing noise.

Figure 6.6(b) shows that the synchronisation algorithm can accurately estimate
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Figure 6.6: Performance of the time-delay estimation algorithm when it is tested
with different experimental parameters. (a) Increasing noise in the transformations
(b) Increasing in the time-delay (c) Increasing in the difference between sampling
rate when noise is set at 0.5 degrees in rotation and 0.5 mm in translation (d) In-
creasing in the difference between sampling rate when noise is set at 0.25 degrees
in rotation and 0.25 mm in translation.

the time delay regardless of its increase, albeit with a small error due to the constant

noise in the data streams. This shows that the increasing time delay between each

system does not affect the algorithm.

The difference in capture rates is varied to simulate a setup in which two track-

ing systems with different specifications are used together. Figure 6.6(c) shows

increasing error in the time delay estimation. This increasing error is caused by the

combination of noise and the difference in the sampling interval. According to Eq.

6.9 and 6.10, the data stream with the lower sampling rate has to be normalised be-

fore time delay estimation. However, with the noise in the system, the normalised
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(a)

(b)

Figure 6.7: Performance of the data recovery algorithm when it is tested with differ-
ent experimental parameters (a) Variation in the input motion and its computational
cost (b) Increasing noise in the transformations .

data is not smooth and this creates suboptimal temporal alignment. On the con-

trary, the results shown in Figure 6.6(d), which simulate the time-delay estimation

error when a smaller noise intensity is applied, are quite similar to those in Figure

6.6(b). The results from the two plots indicate that when the noise is small enough,

the increase in the difference between two sampling intervals does not affect the

time-delay estimation.

6.3.2 Error in data recovery

We evaluated the performance of the data recovery algorithm by varying the

input noise intensity and the number of control points which defines the input mo-

tion range for the data recovery. The computational cost for each pose was also

recorded along with the accuracy of the estimation calculated from the comparison

with the ground truth.

Figure 6.7(a) shows how the variation of input motion in terms of the number

of control points affects data recovery performance. The error in the recovered

poses is decreased by the number of control points. This effect is similar to that
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shown in the plot in Figure 3.9(b) as both are derived from the screw constraints.

The computational cost is also reduced as the number of control points increase

because the variety of motions can make the algorithm converge faster. However,

this can also increase the cost once the convergence is reached as shown in in the

plot. The results suggest that around 700 poses are sufficient to obtain the optimal

recovered pose without considerably increasing the computational cost.

The plots in Figure 6.7(b) show that the error in the recovered poses increases

as the noise in the transformations increases. The plots are similar to the simulation

experiments in Chapter 3 as the objective functions are directly derived from the

original hand-eye equation. The computational cost is not affected by noise as it is

in the last plots because the noise intensity is still so small that it does not destabilise

the gradient of the defined objective functions.

Table 6.1: P-value from using ANOVA on the raw results from the calibration from
the synchronised and recovered data as shown in Figure 6.8. The unit of the σt is
mm.

σr = 0.1◦ σr = 0.2◦ σr = 0.3◦ σr = 0.4◦ σr = 0.7◦ σr = 0.8◦ σr = 0.9◦

σt = 0.1 σt = 0.2 σt = 0.3 σt = 0.4 σt = 0.7 σt = 0.8 σt = 0.9
R < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
~t < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

δ t = 2.5 s δ t = 5 s δ t = 7.5 s δ t = 10 s δ t = 17.5 s δ t = 20 s δ t = 22.5 s
R < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.0712
~t < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

δ
1
f = 1 δ

1
f = 2 δ

1
f = 3 δ

1
f = 4 δ

1
f = 7 δ

1
f = 8 δ

1
f = 9

R 0.3592 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.6378
~t < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

6.3.3 Increasing Gaussian noise in the transformations

The purpose of this experiment is to compare the performance of the data pre-

processing algorithm when there is noise in the data streams. The noise in the

translation component in this experiment was increased from 0 to 1 mm and the

noise in the rotation component was increased from 0 to 1 degree, in steps of 0.1

mm and degrees, respectively. The time delay was kept constant at 30 seconds. The

sampling interval of the camera motion is three samples, and the robot motion is

recorded every four samples. Figure 6.8(a) demonstrates that our algorithm yields
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(a)

(b)

(c)

Figure 6.8: Calibration performance of each algorithm when it is tested with (a) In-
creasing Gaussian noise in the transformations (b) Increasing time-delay imposing
on one data stream (c) Different sampling interval. In some of the plots, the blue
graph is not shown because the error and the standard deviation are too high to be
plotted in the same plot.

better calibration accuracy than the other methods. This not only demonstrates that

the proposed method is robust to noise and can be used in the hand-eye calibration
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algorithm but also that calibrating the hand-eye matrix using only the average of

transformations and the covariance yields a less accurate result than the conven-

tional formulation. The linear data recovery performs the worst among the three

algorithms. Although the translational motion between poses is quite small and

close to linear, this does not apply to the rotational motion. This is why the error

in the rotation component is very high in comparison to the error in the translation

component. This demonstrates that the data recovered by linear interpolation can-

not be used in the hand-eye problem as it does not conform to the screw constraints

which means that it is not valid in Eq. 2.17.

6.3.4 Increasing the time-delay between the two data streams

We varied the time delay in this experiment to see whether a larger temporal

misalignment results in an inaccurate synchronisation. The noise in the translation

and rotation components in this experiment was kept constant at 0.5 mm and 0.5

degrees, respectively. The sampling rates of the two data streams also remained the

same as the previous experiment. Calibration accuracy is demonstrated in Figure

6.8(b) which shows that the difference in activation time does not have a significant

effect on the synchronisation algorithm. Despite the added noise in the systems, the

algorithm maintains its performance regardless of increasing time delay between the

two data streams which confirms the hypothesis that the screw constraints are time-

invariant. The p-value computed from the raw experimental result is above 0.05.

This is because linear interpolation between poses yields an unstable calibration

performance as the interpolated poses are not valid Eq. 2.17.

6.3.5 Increasing the difference in the sampling interval

In this experiment, we varied the sampling interval of one data stream from

3 to 16, i.e. the difference to the other sampling interval is 0 to 13, whilst noise

was kept at the same level as in the previous tests and the time delay was fixed at

30 seconds. We show in Figure 6.8(c) that the proposed algorithm can estimate the

missing transformations for the lower capture rate data stream and use the recovered

information to estimate the hand-eye matrix. Furthermore, the calibration result is
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Figure 6.9: Synchronisation of the two signals after resampling and cross-
correlation. The upper graph shows the screw constraint on the translation com-
ponent and the bottom graph show the constraint on the rotation component.

more accurate than that of the linear interpolation and probabilistic methods. The

calibration error obtained from the probabilistic method increases exponentially at

the end of the plot mainly because the recovered poses cannot provide an accurate

estimation of the average transformation and true covariance of each data pool, due

to uncertainty during the recovery process. This invalidates the hand-eye equation

and the formulation that uses the Dirac delta function [64]. Some of the p-value

shown in Table 6.1 are also higher than 0.05; because the tested algorithms, partic-

ularly linear and the probabilistic methods, become unstable in some experimental

settings.

6.3.6 Experiments with real data

The screw constraints on both the rotation and translation components after

data pre-processing are shown in Figure 6.9. The screw parameters d and θ are

heavily corrupted by noise, and the patterns in the data are not clearly visible (the

translation component in particular), yet the proposed algorithm can still find the

point in time where the similarity score is the highest and synchronise the data

streams accordingly. The synchronisation is evident over the second half of the

data. Then, the data is recovered based on the screw constraints and a segment
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Figure 6.10: Data recovery result and the calibration performance based on the
synchronised and recovered data (a) the segment of the whole motion starting from
t = 67 seconds to t = 69 seconds. The blue curve is the interpolated version of the
lower sampling rate data. It interpolates between the two points that synchronise
with the higher sampling rate data (b) Performance of the two algorithms when
they are tested with the real data captured from the KUKA robot.

of the whole motion is shown in Figure 6.10(a). A small amount of ripples and

uncertainties appearing in the recovered data stream is due to the influence of noise.

Since the distance the robot arm and camera travel between two sampled points

is small in magnitude, the noise in the interval can become more significant and

corrupt the recovery process. However, the recovered data can still be used in the

main calibration and yield satisfied results as shown in Figure 6.10(b).

Typically, calibration results start to converge when 10 motions are used in the

calibration according to Figure 3.9(b), 3.13(a) and 3.15 and we may not need more

than 20 motions to achieve an optimally calibrated matrix, but this does not apply
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to the motion range used in the calibration. The variation in the transformations can

produce a wider motion range as the recovered transformation may be able to yield

a more optimal set of relative transformations.

For the hand-eye calibration performance, the errors can be computed by using

Eq. 3.27 and 3.28 to validate the rotation and the translation components, respec-

tively. As shown in the plots, the calibration performance of our algorithm is su-

perior to the other two methods in both rotation and translation estimation, despite

the convergence of the error at around 4 mm and 1.3 degrees. The results in this

plot agree with those in Figure 6.8(c) that the recovered pose does not produce the

correct average transformations and covariance and therefore yields a higher error

than the other algorithms. On the other hand, with the synchronised and recovered

data, we obtain the smallest error and the large quantity of data included in the cal-

ibration is not sufficient to deteriorate the calibration result which means that the

synchronised and recovered data stream conforms to the screw constraints.

The calibration results using the linearly interpolated data are comparable to

the performance of the proposed algorithm. The only difference between the two

approaches is that the linear method assumes linear motion between any two con-

secutive poses. This produces a different result from Figure 6.8 that the linear inter-

polation method outperforms the probabilistic method in rotation estimation. This

is simply because the sampling rate of the KUKA is very high (≈ 70 samples per

second) which causes every consecutive motion to be very close to linear motion.

However, the linearity of the motions cannot be safely assumed here because lin-

earity does not imply conforming to the hand-eye screw constraints. Therefore, the

poses recovered by the linear interpolation approach may not satisfy the hand-eye

equation which can create the error as shown in plots. On the contrary, the proposed

method interpolates the missing poses using the screw constraints and recover valid

data for calibration of the hand-eye matrix which yields a superior calibration result.
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6.4 Discussion

This chapter presents a data pre-processing approach to solving the asyn-

chronicity problem for hand-eye calibration and also presents a data recovery al-

gorithm that is able to perform online using the hand-eye screw constraints. The

asynchronicity problem exists because robotic platforms usually have sensors and

vision systems with different specifications to help to navigate and localise the sur-

roundings. Therefore the data pre-processing step is crucial task to making such

systems usable. The designed algorithm exploits the fact that, due to the rigid hand-

eye connection, both the camera and robot motions must conform to the screw con-

straints. The approach consists of two main steps: data synchronisation and data

recovery.

The results shown in the previous sections indicate that our method is not only

robust against noise in the sensors, time delays and differences in sampling inter-

vals but also that it can outperform the state-of-the-art probabilistic approach. The

results also demonstrates that calibrating the hand-eye matrix with the complete set

of synchronised data yields better calibration accuracy than working with only the

average of the transformations and the covariance. Moreover, the recovered poses

can be used as input for calibrating the hand-eye matrix as they all conform to the

screw constraints. Therefore, the data synchronisation and recovery algorithms pro-

posed in the chapter can increase calibration accuracy when there is asynchronicity

in the input data streams. Furthermore, we also show that the recovery algorithm

can be applied online to fill in the missing transformations as it can determine the

missing poses at a rate of 0.01 second per pose. This ensures the validity of the data

streams and introduces the potential to improve calibration accuracy even further as

more motions and a wider motion range can then be included in the calibration.

Although it may be argued that we can programmatically synchronise all the

data streams by using the common timestamp available in Robot Operating System

(ROS), this capacity depends highly on the availability, integrality and compatibility

of the hardware specifications. Our method on the other hand, is applicable to

the setup and has been validated in the experiments. The findings in this chapter
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creates the potential to perform further work on screw constraints and to develop the

hand-eye solution specifically for the designed synchronisation algorithm. This will

enable the improvement of calibration accuracy such that any tracking equipment

can be used with a robotic system. For instance, an ultrasound transducer may be

held by the manipulator and used in the system to track the deformable motion of

an organ so the pre-operative scan can be correctly registered. Although a common

timestamp can be found in the kinematic and imaging data, this is not the case for

data from an ultrasound transducer.

To summarise, the presented algorithm works as a data synchronisation and

recovery which is an important data pre-processing and refining step for increasing

calibration accuracy of the hand-eye matrix. We demonstrate through extensive ex-

periments that the post-processed data conform to the screw constraints and increase

calibration accuracy.



Chapter 7

Conclusion and discussions

In this thesis, solutions to the hand-eye calibration formulation and pipeline are

proposed along with extensive validations. The findings contribute to the literature

regarding hand-eye calibration and introduce the potential to be developed further

as a part of the RMIS applications. The contributions of each chapter are briefly

summarised as follows.

In Chapter 3, we introduce a state-of-the-art stereoscopic formulation for the

hand-eye problem and an alternating solution to the problem using the adjoint trans-

formation. The stereoscopic formulation yields a better calibration accuracy as it

contains more motion constraints than the monocular case, and the alternating so-

lution can guarantee the global minimum due to the nature of the alternating opti-

misation. The proposed methods are validated by both synthetic and real data from

three robots and show superiority in terms of calibration performance when noise is

present. However, the methods do not solve the motion range problem in the RMIS

environment.

Chapter 4 presents a solution to the motion range problem using the RCM po-

sition. While the RCM position in the robot coordinate is typically defined before-

hand, the RCM position in the camera coordinate can be deduced from the camera

poses. The RCM positions in two different coordinates create another constraint for

the hand-eye problem that compensates for the missing DoF when the motion range

is limited. Moreover, we also show that prior knowledge on the frame arrangements

can simplify the problem even further in terms of the starting point of the optimi-



129

sation. The solution is validated using synthetic and real data from two robots and

the results suggest that the RCM constraint offers better calibration accuracy than

its counterpart in Chapter 3;

The potential for using a surgical instrument as the calibration target is pre-

sented in Chapter 5. The method makes use of the tool tracking algorithm to deter-

mine the camera pose and together with the kinematics of the robot data, construct

the hand-eye relationship. We test the method with synthetic data and data from the

da Vinci Standard and find that, although still not satisfactory due to the error and

the drifting from the tool tracking algorithm, the calibration performance contains

a similar noise characteristic to the normal hand-eye problem, which can be miti-

gated by more accurate input data. Therefore, this chapter shows the potential for

using the other object as a calibration target. Moreover, further development of the

algorithm may simplify the complexity of the calibration procedure and make the

calibration more adaptive such that it causes less disruption to the surgical work-

flow;

We present a data synchronisation and recovery method based on the screw

constraints in Chapter 6. Asynchronicity in the data streams for the hand-eye prob-

lem occurs more than one piece of tracking equipment is working in the systems.

The method is derived from the fact that the two coordinate systems are rigidly

connected and therefore always conform to the screw constraints. By using the

cross-correlation method to find temporal misalignment, the synchronisation can

be performed by simply compensating for the delay. Then, the data recovery can

be applied by using the equality of the screw constraints in a pair of motions. We

test the robustness of the synchronisation and recovery method on synthetic data

and compare the calibration performance of the proposed method with the state-

of-the-art probabilistic hand-eye solution. The results show that the synchronised

and recovered data conform to the screw constraints and performs better than the

probabilistic method.

Although the contributions in this thesis introduce potential solutions to the

problems in hand-eye calibration, there are limitations in the proposed methods that
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require further research. First, we will consider the calibration accuracy of a poten-

tial online hand-eye calibration. As suggested in Chapter 5, calibrating the hand-eye

matrix using a surgical instrument is feasible and will simplify the calibration pro-

cedure and surgical workflow. However, the use of a surgical tool introduces more

noise sensitivity and inaccuracy to the hand-eye problem due to the drifting in the

tracking results and yields high calibration errors. Therefore, in order to combine

the tracking technique with hand-eye calibration, we need to investigate how the

error in the drift propagates to the calibrated matrix so that a more robust-to-drift

formulation can be introduced to mitigate the problem accordingly. Furthermore,

the hand-eye calibration algorithms could also be improved by using a non-rigid ob-

ject as the calibration target. Recently developed SLAM for non-rigid objects [133]

could be applied to localise an operative site and simultaneously retrieve respective

camera poses which can be used to calibrate the hand-eye matrix.

Second, the conventional hand-eye formulation used throughout the thesis con-

tains a major flaw for RMIS applications. It has been pointed out in the literature

that achieving a wide motion range in order to obtain an optimal calibration accu-

racy is challenging in the RMIS setup. Although Chapter 4 introduces a modifica-

tion to the hand-eye solution using the RCM position and the absolute orientation

constraint, the achieved calibration accuracy may not be sufficient (more than 4 de-

grees in the rotation and high re-projection error). To solve the motion range prob-

lem in RMIS, more kinematic constraints should be added to the problem to further

simplify it and compensate for the missing DoF as suggested in the formulation.

Third, the distributions of the calibration errors in Chapter 3 suggest that the

main sources of error are noise and inaccuracy (an offset caused by mechanical

compliance and external forces) in a positioning system. While the proposed hand-

eye algorithm minimises the error from noise, the offset in robot poses is not taken

into account by the formulation. Typically, the error from the offset can be mitigated

by applying robot calibration, but the procedure can cause a disruption in the work-

flow as it requires a re-calibration for every change in a system. Therefore, a neural

network method could be an alternative solution to the hand-eye problem [134–136]
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as the method can generalise the relationship between the kinematic model and the

camera using the difference in the relative poses detected in images and the ones

calculated by the kinematic model.

In summary, this thesis proposes several modifications to the classic hand-eye

problem suited to solving the current challenges in hand-eye calibration in RMIS.

Although the accuracy of the potential online hand-eye calibration and a formula-

tion requires further investigation to achieve an optimal and usable calibration algo-

rithm in RMIS, the findings in this thesis contribute to finding an optimal solution

to the hand-eye problem in robotic surgery.



Appendix

DH parameters
The DH parameters of each robot arm used in the research are listed in this

section. Both of the KUKA arms use the Standard DH convention [35], while the

ECM arm and the PSM1 arm of the da Vinci Standard use the modified DH con-

vention [79]. Every robot follows the frames assignment described in the respected

table except the PSM1 of the da Vinci Standard which starts after the following

constant transformation,

T0 =


−1 0 0 −101.6

0 −1 0 −101.6

0 0 1 430

0 0 0 1



Table 7.1: DH parameters of KUKA LBR IIWA 7 R800.

Frame Types of joints ai (mm) αi (rad) di (mm) θi (rad)
1 Revolute 0 −π

2 190 θ1
2 Revolute 0 π

2 0 θ2
3 Revolute 0 π

2 400 θ3
4 Revolute 0 −π

2 0 θ4
5 Revolute 0 −π

2 400 θ5
6 Revolute 0 π

2 0 θ6
7 Revolute 0 0 126 θ7
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Table 7.2: DH parameters of KUKA LBR IIWA 14 R820.

Frame Types of joints ai (mm) αi (rad) di (mm) θi (rad)
1 Revolute 0 −π

2 202.5 θ1
2 Revolute 0 π

2 0 θ2
3 Revolute 0 π

2 420 θ3
4 Revolute 0 −π

2 0 θ4
5 Revolute 0 −π

2 400 θ5
6 Revolute 0 π

2 0 θ6
7 Revolute 0 0 126 θ7

Table 7.3: DH parameters of the ECM arm of the da Vinci Standard.

Frame Types of joints ai−1 (mm) αi−1 (rad) di (mm) θi (rad)
0 Fixed 0 0 430 π

2
1 Prismatic 89.79 0 d1 0
2 Revolute 0 0 416.6 θ2
3 Revolute 431.8 0 142.88 θ3
4 Revolute 431.8 0 -345.88 θ4 +

π

2
5 Fixed 0 −π

4 0 π

2
6 Fixed -66.41 0 0 0
7 Fixed 612.6 0 101.6 −π

2
8 Revolute 0 π

2 0 θ8 +
π

2
9 Revolute 0 −π

2 0 θ9− π

2
10 Prismatic 0 π

2 −382.2+d10 0
11 Revolute 0 0 382.8 θ11
12 Fixed 0 −π

2 0 −π

2
13 Fixed 0 −π

2 0 −π

2
14 Fixed 0 −π

2 0 0
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Table 7.4: DH parameters of the PSM1 arm of the da Vinci Standard.

Frame Types of joints ai−1 (mm) αi−1 (rad) di (mm) θi (rad)
1 Prismatic 89.79 0 d1 0
2 Revolute 0 0 416.6 θ2
3 Revolute 431.8 0 142.88 θ3
4 Revolute 431.8 0 -130.2 θ4 +

π

2
5 Revolute 0 π

2 408.9 θ5
6 Revolute 0 −π

2 -102.9 θ6
7 Fixed 478 0 152.4 π

2
8 Revolute 0 π

2 0 θ8 +
π

2
9 Revolute 0 −π

2 0 θ9− π

2
10 Prismatic 0 π

2 −431.8+d10 0
11 Revolute 0 0 415.9 θ11
12 Revolute 0 −π

2 0 θ12− π

2
13 Revolute 9 −π

2 0 θ13− π

2
14 Fixed 0 −π

2 0 0
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