935 research outputs found

    Min-Sum Scheduling Under Precedence Constraints

    Get PDF
    In many scheduling situations, it is important to consider non-linear functions of job completions times in the objective. This was already recognized by Smith (1956). Recently, the theory community has begun a thorough study of the resulting problems, mostly on single-machine instances for which all permutations of jobs are feasible. However, a typical feature of many scheduling problems is that some jobs can only be processed after others. In this paper, we give the first approximation algorithms for min-sum scheduling with (nonnegative, non-decreasing) non-linear functions and general precedence constraints. In particular, for 1|prec|sum w_j f(C_j), we propose a polynomial-time universal algorithm that performs well for all functions f simultaneously. Its approximation guarantee is 2 for all concave functions, at worst. We also provide a (non-universal) polynomial-time algorithm for the more general case 1|prec|sum f_j(C_j). The performance guarantee is no worse than 2+epsilon for all concave functions. Our results match the best bounds known for the case of linear functions, a widely studied problem, and considerably extend the results for minimizing sum w_jf(C_j) without precedence constraints

    An Approximately Optimal Algorithm for Scheduling Phasor Data Transmissions in Smart Grid Networks

    Full text link
    In this paper, we devise a scheduling algorithm for ordering transmission of synchrophasor data from the substation to the control center in as short a time frame as possible, within the realtime hierarchical communications infrastructure in the electric grid. The problem is cast in the framework of the classic job scheduling with precedence constraints. The optimization setup comprises the number of phasor measurement units (PMUs) to be installed on the grid, a weight associated with each PMU, processing time at the control center for the PMUs, and precedence constraints between the PMUs. The solution to the PMU placement problem yields the optimum number of PMUs to be installed on the grid, while the processing times are picked uniformly at random from a predefined set. The weight associated with each PMU and the precedence constraints are both assumed known. The scheduling problem is provably NP-hard, so we resort to approximation algorithms which provide solutions that are suboptimal yet possessing polynomial time complexity. A lower bound on the optimal schedule is derived using branch and bound techniques, and its performance evaluated using standard IEEE test bus systems. The scheduling policy is power grid-centric, since it takes into account the electrical properties of the network under consideration.Comment: 8 pages, published in IEEE Transactions on Smart Grid, October 201

    Flow shop scheduling with earliness, tardiness and intermediate inventory holding costs

    Get PDF
    We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding) and intermediate (work-in-process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two di erent, but closely related, Dantzig-Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig-Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two di erent lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near-optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with di erent types of strongly NP-hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near-optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs

    Approximation Algorithms for Scheduling with Resource and Precedence Constraints

    Get PDF
    We study non-preemptive scheduling problems on identical parallel machines and uniformly related machines under both resource constraints and general precedence constraints between jobs. Our first result is an O(logn)-approximation algorithm for the objective of minimizing the makespan on parallel identical machines under resource and general precedence constraints. We then use this result as a subroutine to obtain an O(logn)-approximation algorithm for the more general objective of minimizing the total weighted completion time on parallel identical machines under both constraints. Finally, we present an O(logm logn)-approximation algorithm for scheduling under these constraints on uniformly related machines. We show that these results can all be generalized to include the case where each job has a release time. This is the first upper bound on the approximability of this class of scheduling problems where both resource and general precedence constraints must be satisfied simultaneously
    • …
    corecore