
Min-Sum Scheduling Under Precedence
Constraints∗

Andreas S. Schulz1 and José Verschae2

1 Departments of Mathematics and Economics, TU Munich, Munich, Germany
andreas.s.schulz@tum.de

2 Department of Mathematics & School of Engineering, Pontifical Catholic
University of Chile, Santiago, Chile
jverschae@uc.cl

Abstract
In many scheduling situations, it is important to consider non-linear functions of job completions
times in the objective. This was already recognized by Smith (1956). Recently, the theory com-
munity has begun a thorough study of the resulting problems, mostly on single-machine instances
for which all permutations of jobs are feasible. However, a typical feature of many scheduling
problems is that some jobs can only be processed after others. In this paper, we give the first
approximation algorithms for min-sum scheduling with (nonnegative, non-decreasing) non-linear
functions and general precedence constraints. In particular, for 1|prec|

∑
wjf(Cj), we propose a

polynomial-time universal algorithm that performs well for all functions f simultaneously. Its ap-
proximation guarantee is 2 for all concave functions, at worst. We also provide a (non-universal)
polynomial-time algorithm for the more general case 1|prec|

∑
fj(Cj). The performance guaran-

tee is no worse than 2 + ε for all concave functions. Our results match the best bounds known
for the case of linear functions, a widely studied problem, and considerably extend the results
for minimizing

∑
wjf(Cj) without precedence constraints.

1998 ACM Subject Classification F.2.2 Sequencing and scheduling

Keywords and phrases scheduling; approximation algorithms; linear programming relaxations;
precedence constraints

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.74

1 Introduction

We consider a single-machine scheduling problem with non-linear objective function under
precedence constraints. Let f : R+ → R+ be a non-decreasing cost function. Given a
set J of n jobs, where each job j ∈ J is characterized by a weight wj ≥ 0 and an integral
processing time pj ≥ 0, our goal is to find a sequence of the jobs that minimizes

∑
j wjf(Cj).

Here, Cj denotes the completion time of job j in the corresponding nonpreemptive schedule.
Additionally, we consider a set of precedence constraints P ⊆ J × J . Now, (i, j) ∈ P

implies that job i must be completed before j can start. Keeping to the standard three-field
notation [11], this problem can be denoted by 1|prec|

∑
wjf(Cj).

Our main result is that there exists a universal schedule, i.e., a feasible sequence that
depends only on (pj), (wj) and P (but not on f), which performs well for all f together.

∗ This work was partially supported by FONDECYT project 3130407, by Núcleo Milenio Información y
Coordinación en Redes ICM/FIC RC130003, and by the Alexander von Humboldt-Foundation.

© Andreas S. Schulz and José Verschae;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 74; pp. 74:1–74:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.74
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

74:2 Min-Sum Scheduling Under Precedence Constraints

This sequence can be computed in polynomial time, and its performance guarantee is

sup
C≥0

C · f(C)∫ C
0 f(t)dt

.

For concave f , the approximation guarantee can be bounded by 2 with a simple geometric
argument. It is worth mentioning that for a vast class of concave functions the approximation
guarantee is strictly better than 2, which improves upon the best possible1 2-approximation
for the linear case.

One somewhat surprising lesson of our study is that an important concept from classic
work on the strongly NP-hard problem 1|prec|

∑
wjCj still holds considerable value for the

more general problem 1|prec|
∑
wjf(Cj). In his PhD thesis, Sidney introduced a (polynomial-

time computable) decomposition of J into mutually disjoint subsets J1, J2, . . . , Jk and showed
that there always exists an optimal solution that follows this order [21]. Chekuri and Motwani
[4] as well as Margot, Queyranne and Wang [16] later realized that any feasible sequence
that is consistent with Sidney’s decomposition is a 2-approximation. This observation was
preceded by a number of linear programming based 2-approximation algorithms [19, 12, 6].
Correa and Schulz subsequently proved that virtually all known 2-approximation algorithms
are of the Chekuri and Motwani/Margot, Queyranne and Wang type; in fact, several common
linear programming relaxations follow Sidney’s decomposition [7].

We analyze the same sequence as Chekuri and Motwani/Margot, Queyranne and Wang,
but for 1|prec|

∑
wjf(Cj). In contrast to the case of linear f , it is not true that one of

the sequences following Sidney’s decomposition is optimal, which requires us to devise a
very different, more complicated analysis. Still, the algorithm is the same, and our analysis
implies that its performance depends on a simple geometric ratio defined by the shape of
f . For all concave f , this ratio is at most 2 – the same bound that was earlier observed for
linear functions f .

Our main technique relies on analyzing a time-indexed LP relaxation that is intimately
related to the partially ordered knapsack problem (POK) and its fractional relaxation. In
POK we are given a set of items J with weights and values, and a knapsack with a given
capacity t. The items have precedence constraints P ⊆ J × J , such that if (i, j) ∈ P and we
pack j into the knapsack, also i must be packed. The total weight of the packing cannot
exceed t, and the objective is to maximize the total value. In its fractional version, we are
allowed to take fractions of the jobs. If a fraction xj ∈ [0, 1] is packed into the knapsack
and (i, j) ∈ P , then a fraction of i at least as large as xj has to be packed. POK and its
relaxation was previously studied by Kolliopoulos and Steiner [15], who derived an FPTAS for
2-dimensional precedence constraints and characterized cases where the natural LP relaxation
has bounded integrality gap. Our main technical contribution is to show that Sidney’s
decomposition implies an optimal solution for fractional POK for each t. This implies that
the solution is optimal for the time-indexed relaxation, independently of the cost function f ,
which in turn allow us to derive the approximation ratio.

Sidney’s decomposition and corresponding algorithm can be viewed as an extension of
Smith’s optimal WSPT rule for 1| |

∑
wjCj , which sequences jobs in order of non-increasing

ratios of weight to processing time, to 1|prec|
∑
wjCj . In this sense, our work also generalizes

earlier contributions by Stiller and Wiese [23] and Höhn and Jacobs [13] for 1| |
∑
wjf(Cj),

to instances with precedence constraints. For arbitrary concave f , Stiller and Wiese showed
that Smith’s rule guarantees an approximation factor of (

√
3 + 1)/2 ≈ 1.366. Höhn and

1 Assuming a stronger version of the Unique Games Conjecture [1].

A. S. Schulz and J. Verschae 74:3

Jacobs built on their analysis to obtain refined and tight bounds of Smith’s rule for any
specific concave or convex function f . Unlike our LP-based analysis, their techniques rely on
identifying a worst-case instance, which can be shown to only contain jobs with the same
weight to processing time ratio. The argument then exploits the fact that for concave or
convex functions it is easy to identify the worst WSPT solution and the optimal value. For
general functions f , Im, Moseley and Pruhs [14] proved that Smith’s rule is a (2 + ε)-speed
O(1)-approximate algorithm. Epstein et al. [8] also gave a universal algorithm (quite different
from Smith’s rule, based on earlier work by Hall et al. [12]), which has performance guarantee
4 + ε, for any cost function f . Additionally, they derived a randomized version of their
algorithm with performance guarantee e+ ε, also for any f . As for non-universal algorithms,
Megow and Verschae designed a PTAS for 1| |

∑
wjf(Cj) [17] for any given function f .

The entire area of min-sum scheduling with non-linear functions of the completion times
was arguably revived by Bansal and Pruhs ([2], see also [3]). They considered the more
general objective

∑
j fj(Fj), where fj is a (nonnegative, non-decreasing) job-dependent cost

function, Fj − rj is the flow time of job j, and rj its release date. In case rj = 0 for all jobs j,
i.e., the setting considered here, their algorithm has performance guarantee 16. Subsequently,
a better primal-dual algorithm was given with approximation ratio 4 + ε [5, 18].

Here, we also give the first polynomial-time approximation algorithm for 1|prec|
∑
fj(Cj),

i.e., the case of job-dependent non-linear functions and general precedence constraints; see
Section 3. Its approximation guarantee is at most 2 + ε for concave functions. The algorithm
relies on solving a time-indexed LP relaxation and then rounding the fractional solution
using randomized α-points. This type of rounding has been extensively used for the sum
of weighted completion times objective (see, e.g., [22] for a summary); to the best of our
knowledge this is the first time it is applied to a non-linear objective function.

2 A universal algorithm

In this section, we show that the 2-approximation algorithm for the linear case by Margot et
al. [16] and Chekuri and Motwani [4] yields the following theorem.

I Theorem 1. For any non-decreasing function f : R+ → R+, the problem 1|prec|
∑
wjf(Cj)

admits a polynomial-time, purely combinatorial algorithm with approximation guarantee

Γf := sup
C≥0

C · f(C)∫ C
0 f(t)dt

.

Moreover, the solution is universal, that is, it is independent of the cost function f .

We say that a set of jobs I ⊂ J is an ideal or initial set if it is a feasible prefix of a
schedule; that is, for any j ∈ I, if (i, j) ∈ P , then i ∈ I. Also, if an ideal I maximizes
w(I)/p(I) over all ideals, we say that I is a density maximal ideal. Here, w(I) =

∑
j∈I wj ,

and p(I) is defined similarly. We assume that precedence constraints are given by a precedence
digraph G = (J, P), with jobs as nodes and arcs given by P . For a given set of jobs K,
we denote by GK the graph induced by set K. A Sidney decomposition is a collection of
sets J1, J2, . . . , J` such that Ji is a density maximal ideal in G(J\∪k<iJk). The problem of
computing a Sidney decomposition can be seen as a parametric network flow problem, and
thus it can be computed efficiently [16].

The algorithm computes a Sidney decomposition J1, J2, . . . , J` of set J , and creates
a schedule that processes all jobs in the order given by the decomposition; that is, if
j ∈ Ji, k ∈ Js and i < s, then j is processed before k. Within each set Ji we pick an arbitrary

ESA 2016

74:4 Min-Sum Scheduling Under Precedence Constraints

linear ordering of the jobs that is consistent with the precedence constraints. To analyze this
algorithm we use a time-indexed linear programming relaxation and find an explicit optimal
solution that follows a Sidney decomposition. This is the core of our analysis.

A preemptive relaxation. Unlike in the classic setting, i.e., 1|prec|
∑
wjCj , for non-linear

cost functions we cannot necessarily find an optimal solution that follows a Sidney de-
composition. Indeed, in the absence of precedence constraints a Sidney decomposition
corresponds to a solution given by Smith’s rule, and such a solution is not necessarily optimal
for non-linear f [13]. However, we will show that for a relaxed version of our problem a
Sidney decomposition indeed gives an optimal solution. The relaxation considers preemptive
solutions. To model precedence constraints in this relaxation we use the concept of fractional
precedence constraints; that is, for (i, j) ∈ P we impose that for any time t the fraction of
job i processed in [0, t] is as least as large as that of j.

Let T =
∑
j pj be the time horizon (assuming, w.l.o.g., that there is no idle-time). In

order to avoid discretizing time, or making unnecessary assumptions on the structure of
optimal solutions, we describe an arbitrary preemptive solution as a family of non-decreasing
piecewise linear functions xj : [0, T] → [0, 1] for each j ∈ J , where xj(t) represents the
fraction of job j that is processed up to time t. In our relaxation, a job can be split in
small pieces, each with the same density ρj = wj/pj as the original job j. If a small piece
of (infinitesimal) processing time δ finishes at time t, in our relaxation this incurs a cost
of δρjf(t). Equivalently, function xj increases by xj(t+ δ)− xj(t) = δ/pj and we incur a
cost of wj · f(t) · (xj(t+ δ)− xj(t)). With this in mind, we define the cost of a preemptive
solution as∑

j∈J
wj ·

∫ T

0
f(t)x′j(t)dt,

where x′j is the derivative of xj , which is defined almost everywhere, except for the breakpoints
of the function. More formally, our relaxation is given by the following optimization problem.

[Rel] Optf = inf
∑
j∈J

wj ·
∫ T

0
f(t)x′j(t)dt

s.t.xj(T) = 1 for all j ∈ J, (1)∑
j∈J

xj(t)pj ≤ t for all t ∈ [0, T], (2)

xj(t) ≥ xk(t) for all (j, k) ∈ P, t ∈ [0, T] (3)
xj : [0, T]→ R+ non-decreas., piecew. lin. for all j ∈ J. (4)

We call any solution (xj)j∈J that satisfies all conditions of this problem a preemptive schedule.
Let Opt be the optimal value of our original, non-preemptive, problem. It is not hard to

see that the optimal value of this program is a lower bound on Opt. Indeed, let S be an
arbitrary non-preemptive schedule, and let Sj and Cj = Sj + pj be the starting time and
completion time of job j in that solution, respectively. Naturally, we define xj as a piecewise
linear function

xj(t) =

0 if t ≤ Sj ,
t−Sj

pj
if Sj < t < Cj ,

1 if t ≥ Cj .
(5)

A. S. Schulz and J. Verschae 74:5

It is easy to see that this definition yields a feasible solution to [Rel]. Moreover, the objective
function can be upper bounded as follows,

∑
j∈J

wj ·
∫ T

0
f(t)x′j(t)dt =

∑
j∈J

wj ·
∫ Cj

Sj

1
pj
f(t)dt ≤

∑
j∈J

wj · f(Cj), (6)

where the equality holds since xj has non-zero slope only in (Sj , Cj), where its derivative
equals 1/pj . The last inequality follows since f is non-decreasing. We conclude that
Optf ≤ Opt.

An explicit optimal fractional solution. In what follows we explicitly find an optimal
solution to [Rel]. Indeed, let J1, . . . , J` be a Sidney decomposition of the instance. For
any set Ji we define its starting time by S(Ji) =

∑
`<i p(J`) and its completion time as

C(Ji) = S(Ji) + p(Ji). For any given j ∈ Ji, we define

x∗j (t) =

0 if t ≤ S(Ji),
t−S(Ji)
p(Ji) if S(Ji) < t < C(Ji),

1 if t ≥ C(Ji).

We will show that this solution is optimal for [Rel]. Notice that x∗ does not depend on f ,
which is why we can derive a universal schedule. Our solution can be interpreted as a schedule
in which we first process all jobs in J1, and within J1 we process all jobs in a round robin
fashion: we first schedule an infinitesimal fraction δ of each job in J1, the same fraction for
each job, ordering the fractions within J1 according to any feasible linear ordering. With
this we are able to process a set of jobs with density w(J1)/p(J1), which gives us the most
bang for the buck since J1 is a density maximal ideal. This operation is repeated until J1 is
completely processed. Then we continue for each Ji for i = 2, . . . , k iteratively with the same
strategy. It is straightforward to check that the constructed solution is feasible to [Rel].

To establish that x∗ is optimal, we show that it simultaneously solves a family of fractional
partially ordered knapsack problems. For a given t ∈ [0, T] we consider the linear program,

[FK(t)] max
∑
j∈J

xjwj (7)

s.t.
∑
j∈J

xjpj ≤ t (8)

xj ≥ xk for all (j, k) ∈ P, (9)
0 ≤ xj ≤ 1 for all j ∈ J. (10)

We show that, for a fixed t, the vector (x∗j (t))j∈J yields an optimal solution to [FK(t)]. To
do so we first start by characterizing the structure of feasible solutions to this LP. For a
given set S ⊆ J we denote by χS the indicator vector of set S, that is, χSj = 1 if j ∈ S and
χSj = 0 otherwise.

I Lemma 2 (Fractional Decomposition). Let z be any feasible solution to [FK(t)]. Then there
exist r sets A1, . . . , Ar and numbers 1 ≥ γ1 > . . . > γr > 0 such that
1. z =

∑r
i=1 γi · χAi ,

2. for all s ∈ {1, . . . , r} the set ∪i≤sAi is an ideal,
3.
∑r
i=1 γip(Ai) ≤ t, and

4. Ai ∩A` = ∅ for all i, ` ∈ J with i 6= `.

ESA 2016

74:6 Min-Sum Scheduling Under Precedence Constraints

Proof. Consider the set Z = {zj 6= 0 : j ∈ J} and assume that Z = {γ1, . . . , γr} with
γ1 > γ2 > . . . > γr > 0. Define Ai = {j : zj = γi}. Property 4 is obvious. Property 1 follows
by 4 and the definition of Ai. Property 3 follows from Property 1 and Inequality (8) of
[FK(t)]. To show Property 2, notice that ∪i≤sAi = {j ∈ J : zj ≥ γs}. Consider an arbitrary
job k ∈ ∪i≤sAi, so that zk ≥ γs. We need to show that for any j ∈ J with (j, k) ∈ P , it
holds that zj ≥ γs. This follows because by Inequality (9) we have that zj ≥ zk ≥ γs. J

For a given feasible solution z, we call the sets A1, . . . , Ar and numbers γ1, . . . , γr given by
the lemma a fractional decomposition of z.

I Lemma 3 (Extremal Fractional Decomposition). For any feasible solution z to [FK(t)] there
exists another feasible solution z′ = χA1 + γ · χA2 such that
1.
∑
j zjwj ≤

∑
j z
′
jwj,

2. A1 and A1 ∪A2 are ideals,
3. p(A1) + γ · p(A2) ≤ t,
4. A1 ∩A2 = ∅.

Proof. For a given feasible solution z, consider its fractional decomposition given by sets
A′1, . . . , A

′
r and numbers γ1 > . . . > γr. To show the lemma we write an LP to optimize over

the weights γ. We use βi for the variables representing the weights γi.

max
r∑
i=1

βiw(A′i)

s.t.
r∑
i=1

βip(A′i) ≤ t,

1 ≥ β1 ≥ . . . ≥ βr ≥ 0.

Let β∗ be an extreme point optimal solution to this LP. Since there are r+ 2 inequalities and
r variables, at most 2 inequalities in 1 ≥ β1 ≥ . . . ≥ βr ≥ 0 are not satisfied with equality.
Let us first assume that β∗ is not an integral solution, and let ` be the smallest index such
that β∗` ∈ (0, 1). This already induces one strict inequality β∗` < β∗`−1 = 1. Let γ = β∗` .
There must exists an index u ∈ {`, . . . , r} such that β∗i = γ for all i ∈ {`, . . . , u} and β∗i = 0
for all i > u, because otherwise there would be in total 3 strict inequalities. We get the
following property: there exist a number γ ∈ [0, 1] and two indices 1 ≤ ` ≤ u ≤ r such that
β∗i = 1 if i < `, β∗i = γ if i ∈ {`, . . . , u}, and β∗i = 0 if i > u. This property holds also if β∗
is integral by taking γ = 0.

Now we can define A1 = ∪`−1
i=1A

′
i, A2 = ∪ui=`A′i and γ = β∗` . Property 1 follows since β∗

is optimal for the LP and setting βi = γi for all i yields a feasible solution. Properties 2 and
4 hold because of the Fractional Decomposition Lemma. Finally, Property 3 is implied by
the first inequality of the LP and since the sets A′i are pairwise disjoint. J

The next lemma shows that, if we are given a density maximal ideal I ⊂ J such that
t ≤ p(I), then an optimal solution of [FK(t)] can be constructed by taking each job in I with
a fraction of t

p(I) . A similar statement was given by Kolliopoulos and Steiner [15], although
they used a different proof technique.

I Lemma 4. Given any density maximal ideal I ⊆ J , then for any t ≤ p(I) the vector
x = t

p(I)χ
I is an optimal solution to [FK(t)].

Proof. Let x be as defined in the statement of the lemma. It is clear that x is a feasible
solution to [FK(t)]. Consider any optimal solution to [FK(t)] which, by the Extremal

A. S. Schulz and J. Verschae 74:7

Fractional Decompostion Lemma, can be taken as χA1 + γ · χA2 . Recalling that A1 and
A1 ∪ A2 are ideals, and that A1 ∩ A2 = ∅, the difference in objective values of the two
solutions is given by

t

p(I)w(I)−(w(A1) + γw(A2)) = t

p(I)w(I)− (γw(A1 ∪A2) + (1− γ)w(A1))

= γ

(
t

p(I)w(I)− w(A1 ∪A2)
)

+ (1− γ)
(

t

p(I)w(I)− w(A1)
)

= γ

(
w(I)
p(I) t−

w(A1 ∪A2)
p(A1 ∪A2) p(A1 ∪A2)

)
+ (1− γ)

(
w(I)
p(I) t−

w(A1)
p(A1) p(A1)

)
≥ w(I)
p(I) {γ · (t− p(A1 ∪A2)) + (1− γ) · (t− p(A1))}

= w(I)
p(I) {t− p(A1)− γp(A2)} ≥ 0,

where the first inequality follows since I is density maximal, and the last one because
χA1 + γ · χA2 is feasible for [FK(t)]. J

I Lemma 5. For any t ∈ [0, T], solution (x∗j (t))j∈J is an optimal solution to [FK(t)].

Proof. By Lemma 3, there exists an optimal solution z to [FK(t)] such that z = χA1 + γχA2

where sets A1 and A2 satisfy properties 2, 3, and 4 of Lemma 3. Without loss of generality,
we assume that

∑
j zjpj = p(A1) + γp(A2) = t, since otherwise we can add to A2 a dummy

job (which does not participate in any precedence constraint) of zero weight and processing
time 1

γ (t− p(A1))− p(A2). We split the proof in two cases.

Case 1: p(J1) ≥ t. In this case x∗(t) = t
p(J1)χ

J1 and thus it is optimal by Lemma 4.

Case 2: p(J1) < t. We modify z to obtain a solution that takes set J1 integrally. For
some number γ′ ∈ [0, 1], we will subtract from z the following vector in order to leave space
for J1

y = χA1∩J1 + γχA2∩J1 + γ′χA1\J1 + γ′γχA2\J1 .

Notice that if we choose γ′ = 0 then
∑
j∈J pjyj = p(A1 ∩ J1) + γp(A2 ∩ J1) ≤ p(J1), and

setting γ′ = 1 we obtain that
∑
j∈J pjyj = p(A1) + γp(A2) = t > p(J1). Therefore, by

continuity we can choose γ′ ∈ [0, 1] so that
∑
j∈J pjyj = p(J1), that is,

γ′ = p(J1 \A1)− γp(A2 ∩ J1)
p(A1 \ J1) + γp(A2 \ J1) ∈ [0, 1].

We first notice that the total weight of y is larger than the weight of χJ1 . To this end,
we first show that y is a feasible solution to [FK(p(J1))]. This suffices to conclude that
w(J1) ≥

∑
j∈J wjyj , since χJ1 is optimal to [FK(p(J1))] by Lemma 4. To show that y

is feasible to [FK(p(J1))], notice that Inequality (8) is satisfied by our choice of γ′. Let
us check (9) for some (j, k) ∈ P . Notice that if k 6∈ A1 ∪ A2 then zk = 0 and thus the
corresponding inequality in (9) is satisfied immediately. Similarly, if j 6∈ A1 ∪A2 then, since
A1∪A2 is an ideal, k 6∈ A1∪A2 and thus (9) holds. Thus it suffices to consider j, k ∈ A1∪A2.
Since J1, A1, and A2 are ideals, the only precedence constraints that we need to check are:
(j, k) ∈ (A1∩J1)× (A2∪ (A1 \J1)), (j, k) ∈ (A1 \J1)× (A2 \J1), (j, k) ∈ (A2∪J1)× (A2 \J1).

ESA 2016

74:8 Min-Sum Scheduling Under Precedence Constraints

For each of these cases, it holds that yj ≥ yk since 1 ≥ γ ≥ γγ′ and 1 ≥ γ′ ≥ γγ′. We
conclude that y is feasible for [FK(p(J1))] and thus w(J1) ≥

∑
j∈J wjyj .

We are now ready to construct a new solution for [FK(t)],

z′ = z − y + χJ1 = (1− γ′)
(
χA1\J1 + γχA2\J1

)
+ χJ1 ,

has a weight that is less or equal to z. Moreover, we can check that this solution is also
feasible for [FK(t)]. Indeed, by construction it holds that

∑
j pjz

′
j =

∑
j pjzj ≤ t. Similarly

as before, the only precedence constraints (j, k) ∈ P that we need to check are when
(j, k) ∈ J1× ((A1 \J1)∪ (A2 \J1)), and (j, k) ∈ (A1 \J1)× (A2 \J1). All of these constraints
hold since 1 ≥ γ ≥ γγ′.

We conclude that there exists an optimal solution z′ to [FK(t)] that assigns integrally J1,
that is, z′j = 1 for all j ∈ J1. As well we have that x∗j (t) = 1 for all j ∈ J1. We can then
remove J1 from our instance and consider a residual problem with precedence graph GJ\J1

for a remaining fractional knapsack problem with capacity t− p(J1). The lemma follows by
recursing on this argument. J

I Lemma 6. The solution (x∗j)j∈J is an optimal solution for [Rel].

Proof. Integrating by parts, the objective function of [Rel] can be rewritten as2

∑
j∈J

wj ·
∫ T

0
f(t)x′j(t)dt = w(J) · f(T)−

∫ T

0

∑
j∈J

wjxj(t)df(t),

and hence we can obtain a problem equivalent to [Rel] if we change the objective to maximize∫ T
0
∑
j∈J wjxj(t)df(t). Since any solution (xj(·))j∈J for [Rel] defines a feasible solution

(xj(t))j∈J to [FK(t)], and (x∗j (t))j∈J optimizes [FK(t)], we obtain that
∑
j∈J wjxj(t) ≤∑

j∈J wjx
∗
j (t). Because f is non-decreasing, then

∫ T

0

∑
j∈J

wjxj(t)df ≤
∫ T

0

∑
j∈J

wjx
∗
j (t)df,

which helps us to conclude that (x∗j (·))j∈J is an optimal solution to [Rel]. J

We are finally ready to prove Theorem 1.

Proof of Theorem 1. Consider a feasible schedule S that follows the Sidney decomposition
J1, . . . , Jk. Since for any j ∈ Ji we have that Cj ≤ C(Ji), the cost of that solution can
be bounded from above by

∑k
i=1 w(Ji)f(C(Ji)). On the other hand, the optimal fractional

value, attained at solution x∗, can be rewritten as

n∑
j=1

wj

∫ T

0
f(t)

dx∗j (t)
dt

dt =
k∑
i=1

w(Ji)
∫ C(Ji)

S(Ji)

f(t)
p(Ji)

dt,

2 Here the integral taken is the Riemann-Stieltjes integral. This is well defined since f is of bounded
variation (since it is non-decreasing) and xj is continuous. Integration by parts is then valid [10,
Theorem 12.14]. Notice that if f were differentiable we could simply write

∫ T

0

∑
j∈J

wjxj(t)f ′(t)dt.

A. S. Schulz and J. Verschae 74:9

and thus the approximation ratio is at most∑k
i=1 w(Ji)f(C(Ji))∑k

i=1 w(Ji)
∫ C(Ji)
S(Ji)

1
p(Ji)f(t)dt

≤ max
i

f(C(Ji))∫ C(Ji)
S(Ji)

1
p(Ji)f(t)dt

≤ sup
0≤S<C

f(C)
1

C−S
∫ C
S
f(t)dt

≤ sup
0≤C

C · f(C)∫ C
0 f(t)dt

,

where the last inequality follows since 1
C−S

∫ C
S
f(t)dt ≥ 1

C

∫ C
0 f(t)dt, because f is non-

decreasing. This shows the theorem. J

I Corollary 7. There exists a universal solution that, for any concave function f , achieves
an approximation guarantee of 2. This solution can be computed in polynomial time.

Proof. It is enough to notice that if f is concave and non-negative, then f(t) ≥ tf(C)/C for
any t ∈ [0, C]. Hence,

∫ C
0 f(t)dt ≥ Cf(C)/2 and thus Γf ≤ 2 . J

It is worth noticing that the result of Theorem 1 is tight, in the sense that the integrality
gap of [Rel] is exactly Γf . Indeed, note that for any C ≥ 0 we can take an instance with
one job of processing time C and weight 1. Then the optimal LP solution has a cost of
(1/C)

∫ C
0 f(t)dt, whereas the optimal schedule has a cost of f(C).

3 A Rounding Procedure for Job-Dependent Cost Functions

The more general case with objective function
∑
j fj(Cj) for fj non-decreasing can also be

tackled based on [Rel]. For this we simple generalize the objective function to
∑
j

∫ T
0 fjx

′
j .

We call the new relaxation [G-Rel]. In this case we are not able to give an analytic optimal
solution for the relaxation. Instead, we discretize the time in the relaxation in order to
compute (1 + ε)-approximate solutions. Afterwards, we round this solution to obtain a non-
preemptive schedule. Notice that this does not yield a universal solution. The approximation
guarantee is not the same as in Theorem 1, however it also yields a guarantee of 2 + ε for
concave functions.

We first show the rounding procedure, which is based on the concept of α-points. Consider
a feasible solution (xj)j for [G-Rel]. For a given number α ∈ [0, 1], we define the α-point
of job j as CLP

j (α) := min{t ≥ 0 : xj(t) ≥ α}, that is, the first point in time in which an α
fraction of j is processed. We schedule the jobs in the order of α-points, for some (random)
value of α. For simplicity, relabel the jobs so that CLP

1 (α) ≤ . . . ≤ CLP
n (α), and thus the

completion time of job j in the algorithm is CALG
j =

∑
k≤j pj . The next lemma relates the

α-point of a job to its actual completion time. The one thereafter relates the function CLP
j (·)

with the objective function of [G-Rel]. The exposition here takes cues from that in [20].

I Lemma 8 (Goemans [9]). For any α ∈ [0, 1] and j ∈ J it holds that

CALG
j ≤ 1

α
CLP
j (α).

Proof. Notice that for all k ≤ j it holds that xk
(
CLP
j (α)

)
≥ xk

(
CLP
k (α)

)
= α (since xk is

non-decreasing), and thus

CALG
j =

∑
k≤j

pk ≤
1
α

∑
k≤j

pkxk(CLP
j (α)) ≤ 1

α

∑
k∈J

pkxk(CLP
j (α)) ≤ 1

α
CLP
j (α),

where the last inequality follows from (2). J

ESA 2016

74:10 Min-Sum Scheduling Under Precedence Constraints

I Lemma 9. For any j it holds that∫ 1

0
fj(CLP

j (α))dα =
∫ T

0
fj(t)x′j(t)dt.

Proof. Consider a fixed job j and let 0 = s1 < s2 < . . . < s` = T be the breakpoints of
the piecewise linear function xj . Let us also denote by δk the derivative of x′j in (sk, sk+1),
and denote by αk = xj(sk) the fraction of job j processed up to time sk. Notice that
0 = α1 ≤ α2 ≤ . . . ≤ α` = 1. Then∫ 1

0
fj(CLP

j (α))dα =
`−1∑
k=1

∫ αk+1

αk

fj(CLP
j (α))dα

Notice that if αk < αk+1, within the interval α ∈ (αk, αk+1) the function CLP
j (α) is linear

and has a slope of 1/δk (observe that αk < αk+1 iff δk 6= 0). Hence, using the change of
variable t = CLP

j (α) we obtain that

`−1∑
k=1

∫ αk+1

αk

fj(CLP
j (α))dα =

∑
k:αk<αk+1

∫ αk+1

αk

fj(CLP
j (α))dα =

∑
k:αk<αk+1

∫ sk+1

sk

fj(t)δkdt

=
`−1∑
k=1

∫ sk+1

sk

fj(t)δkdt =
∫ T

0
fj(t)x′j(t)dt. J

In our algorithm we take α randomly in [0, 1] with density 2α.

I Lemma 10. Let Γ′f = sup0≤t≤τ
tf(τ)
τf(t) . Taking α ∈ [0, 1] randomly with density 2α yields a

solution such that

E

∑
j∈J

fj(CALG
j)

 ≤ 2(max
k∈J

Γ′fk
) ·
∑
j∈J

∫ T

0
fjx
′
j(t)dt.

Proof. Due to the Lemma 8,

E(fj(CALG
j)) ≤

∫ 1

0
fj

(
1
α
CLP
j (α)

)
2αdα.

Since for any 0 ≤ t ≤ τ it holds that t · fj(τ) ≤ Γ′fj
· τ · fj(t), we can take τ = 1

αC
LP
j (α) and

t = CLP
j (α) ≤ τ and thus fj(1

αC
LP
j (α)) ≤ Γ′fj

· 1
α · fj(C

LP
j (α)) we obtain that

E(fj(CALG
j)) ≤ 2Γ′fj

∫ 1

0

1
α
fj(CLP

j (α))αdα = 2(Γ′fj
) ·
∫ T

0
fj(t)x′j(t)dt.

The lemma then follows by summing over j and using linearity of expectations. J

Notice that if fj is concave then Γ′fj
≤ 1, and hence taking x to be optimal for [G-Rel] we

would obtain a 2-approximation algorithm.
Moreover generally, if we can compute in polynomial time a solution x that is a (1 +

ε)-approximate solution to [G-Rel], then this lemma shows that the problem admits a
(2(maxk∈J Γ′fk

)(1 + ε))-approximation algorithm. In what follows we show how to compute
such solution x. The proof relies in the classic technique of discretizing the time axis in
polynomially many intervals. Similar techniques were used by Bansal and Pruhs [2] and
Cheung and Shmoys [5].

A. S. Schulz and J. Verschae 74:11

In what follows we must assume that we are given an oracle that allows us to query the
values fj(t) for any t ∈ N (recall that we assume the processing times to be integral, and thus
we only need to query fj at integral points). Recall also that T =

∑
j pj is our time horizon.

We assume that fmax := maxj fj(T) and fmin := min{fj(t) : j ∈ J, t ∈ {1, . . . , T}, fj(t) > 0}
are part of the input, and thus we can manipulate these values in polynomial time. Notice
that in any feasible (non-preemptive) schedule the functions fj get evaluated only at integral
points. Hence, without loss of generality, we assume that fj(t) = fj(dte) for all t ∈ [0, T].

Let us fix a job j now. We partition the time horizon {0, 1, 2, . . . , T} in consecutive sets.
The first set is defined as I0

j = {t ∈ N : fj(t) = 0}, and for any integer ` ≥ 1 we define

I`j = {t ∈ N : fmin · (1 + ε)`−1 < fj(t) ≤ fmin · (1 + ε)`}.

Notice that the intervals I`j for ` ∈ {0, 1, . . . , ν} completely cover {0, 1, . . . , T} if ν =
dlog1+ε(fmax/fmin)e, and thus a polynomial number of interval suffices. Let t`j be the largest
number in I`j and consider the set T = {0, T} ∪ {t`j : for all j ∈ J, ` ∈ {0, . . . , ν}, t`j ≤ T}.
Let us relabel the elements in T = {τ1, τ2, . . . , τh} such that 0 = τ1 < τ2 < . . . < τh. We
remark that |T | = h ≤ (ν + 1)n+ 2.

With this we define a rounded version of the cost function f̃j . For any t ∈ [0, T] the
value f̃j(t) is defined as f(τ`(j,t)), where `(j, t) is defined such that τ`(j,t)−1 < t ≤ τ`(j,t). We
obtain that fj(t) ≤ f̃j(t) = fj(τ`(j,t)) ≤ (1 + ε)fj(dte) = (1 + ε)fj(t) for all t ∈ [0, T]. Hence,
obtaining an optimal solution [G-Rel] with cost functions f̃j yields a (1 + ε)-approximate
solutions for the original cost functions.

I Lemma 11. We can compute in polynomial time an optimal solution to [G-Rel] with cost
functions f̃j.

Proof. Consider any solution x for [G-Rel] with cost functions f̃j . Consider a new solution
x̃ obtained by interpolating the values at T , that is,

x̃j(0) = xj(0) for all j ∈ J,

x̃j(t) = τ` − t
τ` − τ`−1

xj(τ`−1) + t− τ`−1

τ` − τ`−1
xj(τ`) for all `, t ∈ (τ`−1, τ`], j ∈ J. (11)

Since the functions f̃j are constant within an interval (τ`−1, τ`], it is easy to see that the
new solution achieves the same objective function, and it is also feasible. Hence, we can
restrict [G-Rel] to have solutions as in (11) for all j ∈ J and t ∈ [0, T]. We can regard this
LP as having variables xj(τ`) for all j ∈ J, τ` ∈ T . This yields a problem with a polynomial
number of variables:

|J | · |T | = nh ≤ n((ν + 1)n+ 2) = O(n2 log1+ε(fmax/fmin)) = O((n2/ε) log(fmax/fmin)).

Hence, it suffices to argue that we can impose a polynomial number of inequalities that imply
the restrictions of the LP. Notice that any solution given by (11) is piecewise linear. The fact
that xj is non-decreasing is equivalent to xj(τ`−1) ≤ xj(τ`) for all j, `. Since the value xj(t)
for t ∈ (τ`, τ`+1] is a convex combination of xj(τ`) and xj(τ`+1), restriction (3) is implied by
xj(τ`) ≥ xk(τ`) for all (j, k) ∈ P and ` ∈ {1, . . . , h}. For the same reason (2) is implied by∑

j∈J
xj(τ`)pj ≤ τ` for all ` ∈ {1, . . . , h}.

Combining all these inequalities yields an equivalent problem of polynomial size. J

Collecting our results, we obtain the following theorem.

ESA 2016

74:12 Min-Sum Scheduling Under Precedence Constraints

I Theorem 12. For any ε > 0, the problem 1|prec|
∑
j fj(Cj) admits a polynomial-time ap-

proximation algorithm with approximation factor (1+ε)·2·maxj∈J supt,τ
{
tfj(τ)
τfj(t) : 0 ≤ t ≤ τ

}
.

This implies the existence of a (2 + ε)-approximation algorithm if fj is concave for all j ∈ J.

References
1 N. Bansal and S. Khot. Optimal long code test with one free bit. In Proceedings of the

50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pages
453–462. IEEE, 2009.

2 N. Bansal and K. Pruhs. The geometry of scheduling. In Proceedings of the 51th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2010), pages 407–414. IEEE,
2010.

3 N. Bansal and K. Pruhs. The geometry of scheduling. SIAM Journal on Computing,
43:1684–1698, 2014.

4 C. Chekuri and R. Motwani. Precedence constrained scheduling to minimize sum of
weighted completion times on a single machine. Discrete Applied Mathematics, 98:29–38,
1999.

5 M. Cheung and D. Shmoys. A primal-dual approximation algorithm for min-sum single-
machine scheduling problems. In Proceedings of the 14th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX 2011), vol-
ume 6845 of Lecture Notes in Computer Science, pages 135–146. Springer, 2011.

6 F. A. Chudak and D. S. Hochbaum. A half-integral linear programming relaxation for
scheduling precedence-constrained jobs on a single machine. Operations Research Letters,
25:199–204, 1999.

7 J. R. Correa and A. S. Schulz. Single-machine scheduling with precedence constraints.
Mathematics of Operations Research, 30:1005–1021, 2005.

8 L. Epstein, A. Levin, A. Marchetti-Spaccamela, N. Megow, J. Mestre, M. Skutella, and
L. Stougie. Universal sequencing on a single machine. SIAM Journal on Computing, 41:565–
586, 2012.

9 M. X. Goemans. Improved approximation algorithms for scheduling with release dates.
In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1997), pages 591–598, 1997.

10 R. A. Gordon. The Integrals of Lebesgue, Denjoy, Perron, and Henstock. American Math-
ematical Society, 1994.

11 R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5:287–326, 1979.

12 L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. Mathematics of Operations
Research, 22:513–544, 1997.

13 W. Höhn and T. Jacobs. On the performance of Smith’s rule in single-machine scheduling
with nonlinear cost. ACM Transactions on Algorithms, 11, 2015.

14 S. Im, B. Moseley, and K. Pruhs. Online scheduling with general cost function. In Proceed-
ings of the 23rd Annual Symposium on Discrete Algorithms (SODA 2012), pages 1254–1265,
2012.

15 S. G. Kolliopoulos and G. Steiner. Partially ordered knapsack and applications to schedul-
ing. Discrete Applied Mathematics, 155:889–897, 2007.

16 F. Margot, M. Queyranne, and Y. Wang. Decompositions, network flows, and a precedence
constrained single-machine scheduling problem. Operations Research, 51:981–992, 2003.

A. S. Schulz and J. Verschae 74:13

17 N. Megow and J. Verschae. Dual techniques for scheduling on a machine with varying
speed. In Automata, Languages, and Programming (ICALP 2013), volume 7965 of Lecture
Notes in Computer Science, pages 745–756, 2013.

18 J. Mestre and J. Verschae. A 4-approximation for scheduling on a single machine with
general cost function. arXiv:1403.0298, 2014.

19 A. S. Schulz. Scheduling to minimize total weighted completion time: Performance guaran-
tees of LP-based heuristics and lower bounds. In Integer Programming and Combinatorial
Optimization (proceedings of IPCO V), volume 1084 of Lecture Notes in Computer Science,
pages 301–315, 1996.

20 A. S. Schulz and M. Skutella. Random-based scheduling: New approximations and LP lower
bounds. In Randomization and Approximation Techniques in Computer Science, volume
1269 of Lecture Notes in Computer Science, pages 119–133, 1997.

21 J. B. Sidney. Decomposition algorithms for single machine scheduling with precedence
relations and deferral costs. Operations Research, 23:283–298, 1975.

22 M. Skutella. List scheduling in order of α-points on a single machine. In E. Bampis,
K. Jansen, and C. Kenyon, editors, Efficient Approximation and Online Algorithms: Recent
Progress on Classical Combinatorial Optimization Problems and New Applications, volume
3484 of Lecture Notes in Computer Science, pages 250–291. Springer, 2006.

23 S. Stiller and A. Wiese. Increasing speed scheduling and flow scheduling. In Proceedings
of the 21st Symposium on Algorithms and Computation (ISAAC 2010), volume 6507 of
Lecture Notes in Computer Science, pages 279–290, 2010.

ESA 2016

	Introduction
	A universal algorithm
	A Rounding Procedure for Job-Dependent Cost Functions

