
Approximation Algorithms for Scheduling with
Resource and Precedence Constraints
Gökalp Demirci
Department of Computer Science, University of Chicago
1100 East 58th Street, Chicago, Illinois 60615, USA
demirci@cs.uchicago.edu

Henry Hoffmann
Department of Computer Science, University of Chicago
1100 East 58th Street, Chicago, Illinois 60615, USA
hankhoffmann@cs.uchicago.edu

David H. K. Kim
Department of Computer Science, University of Chicago
1100 East 58th Street, Chicago, Illinois 60615, USA
hongk@cs.uchicago.edu

Abstract
We study non-preemptive scheduling problems on identical parallel machines and uniformly
related machines under both resource constraints and general precedence constraints between
jobs. Our first result is an O(logn)-approximation algorithm for the objective of minimizing
the makespan on parallel identical machines under resource and general precedence constraints.
We then use this result as a subroutine to obtain an O(logn)-approximation algorithm for the
more general objective of minimizing the total weighted completion time on parallel identical
machines under both constraints. Finally, we present an O(logm logn)-approximation algorithm
for scheduling under these constraints on uniformly related machines. We show that these results
can all be generalized to include the case where each job has a release time. This is the first
upper bound on the approximability of this class of scheduling problems where both resource
and general precedence constraints must be satisfied simultaneously.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Scheduling, Resource, Precedence, Weighted Completion Time

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.25

Related Version The full version of the paper is available as University of Chicago, Department
of Computer Science Technical Report with report number TR-2018-01 at https://newtraell.
cs.uchicago.edu/research/publications/techreports/TR-2018-01.

Funding Funding for this work comes from a DOE Early Career Research Award.

Acknowledgements We thank the anonymous reviewers for their time and feedback. We also
thank Janos Simon for his valuable comments on an earlier version of this work.

1 Introduction

Scheduling under resource constraints and scheduling under precedence constraints are both
well studied topics in scheduling theory and approximation algorithms. In the former, each
job has a resource requirement and there is a finite amount of resource; when jobs run in

© Gökalp Demirci, Henry Hoffmann, and David H.K. Kim;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/157699302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:demirci@cs.uchicago.edu
mailto:hankhoffmann@cs.uchicago.edu
mailto:hongk@cs.uchicago.edu
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.25
https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2018-01
https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2018-01
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Approximation Algorithms for Scheduling with Resource and Precedence Constraints

parallel their total resource requirement must not exceed the given resource capacity. In
the latter, a precedence relationship between jobs is given; if a job j has precedence over
another, say j′, then j must be completed before j′ can start. Both of these problems are
central to scheduling theory, and their approximability is well understood. They have (2 + ε)-
and (2− 1/m)-approximation algorithms, respectively, where m is the number of identical
machines. However, the approximability of the natural problem with the combination of
these constraints is still wide open. We study this problem, namely scheduling on parallel
machines under both resource and precedence constraints, and give the first non-trivial
approximation algorithms for several important versions of this problem.

The combination of these two constraints naturally models the computation in emerging
high performance computing systems. Power consumption is one of the central design
considerations for the next generation of exascale supercomputers [16]. These future systems
will have to run parallel computations within a 20 MW operating budget, but will be built
such that if all processors were used at full capacity the budget would be exceeded and the
system would fail catastrophically [10]. Therefore, exascale system software must schedule
parallel computations (with precedence constraints) on this hardware while respecting the
global power budget (a limited shared resource) and minimizing application runtime [18].
This critical problem for emerging supercomputers is a practical example of a scheduling
with simultaneous resource and precedence constraints.

We now define the problem formally. We are given a set J of n jobs to be scheduled on
m parallel machines. The schedule needs to be non-preemptive; i.e. each job, once assigned
to a machine at some point in time, must run to completion on the same machine without
interruption. Each job j ∈ J has a processing time pj ∈ Z≥0 and a resource requirement
sj ∈ Z≥0. There is a global resource capacity S ∈ Z≥0 which any feasible schedule must
respect. That is, the sum of the resource requirements of the jobs running on the m machines
at any point in time must be at most S. Moreover, we have precedence constraints given by
a partial order ≺ on the jobs such that if j ≺ j′ then j must complete before j′ can start.
We study both identical machines and uniformly related machines. The difference between
the two is the time it takes to process a job—on identical machines, it takes pj units of time
to complete job j ∈ J , regardless of the machine it runs on. In the case of uniformly related
machines, we are given as input a speed fi (0 < fi ≤ 1) associated with each machine i for
1 ≤ i ≤ m, and it takes pj/fi units of time to complete job j on machine i.

We also consider two different objectives. The first is minimizing the makespan, or
the final completion time of all jobs. This problem on identical machines is denoted as
P |res1, prec|Cmax in the standard scheduling notation introduced in [6]. Here P denotes
identical parallel machines, as opposed to uniformly related machines which is denoted by Q.
Also, the resource constraint, res1, indicates that we have a single resource, and prec stands
for the general precedence constraint. Cmax indicates that the objective is to minimize the
makespan. The other objective we consider is the more general goal of minimizing the total
weighted completion time. In this setting there is a set of weights {wj}j∈J associated with
the jobs, and the goal is to minimize

∑
j∈J wjCj where Cj is the completion time of job j in

the final schedule. Using the same notation, we denote this problem on identical machines as
P |res1, prec|

∑
j wjCj . Corresponding problems on uniformly related machines are denoted

as Q|res1, prec|Cmax and Q|res1, prec|
∑

j wjCj , respectively. Note that the minimum total
weighted completion time objective (

∑
j wjCj) is more general than the minimum makespan

objective (Cmax) in the presence of precedence constraints as one could transform a Cmax

objective into a
∑

j wjCj objective by simply setting all wj ’s to be 0 and adding a “last” job
j′ with pj′ = 0, sj′ = 0, and wj′ = 1 which depends on every other job.

G. Demirci, H. Hoffmann, and D.H.K. Kim 25:3

In addition, we consider these problems with release time constraints. In this case, we
have a release time rj ∈ Z≥0 associated with each job in the input such that j can only be
started after time rj . We add rj in the middle constraint section in the scheduling notation to
denote the problems with the additional release time constraint (e.g. P |res1, prec, rj |Cmax).

We have obtained, for the first time, approximation results for all these scheduling problems
with provable upper bounds. Our most general result is an O(logm logn)-approximation
for weighted completion time on uniformly related machines under resource and precedence
constraints with release times (Theorem 12), which makes substantial use of our new results
for more restricted models as well as new specialized linear programming schemes.

Related Work

One important class of problems is scheduling subject to only precedence constraints (e.g.
P |prec|Cmax, Q|prec|

∑
j wjCj). Almost all variants of these problems have been studied ex-

tensively. For the case of identical parallel machines and the minimum makespan objective (P |
prec|Cmax), Graham’s seminal list scheduling algorithm [7] gives a (2− 1/m)-approximation.
We will utilize this algorithm and explain some aspects of its analysis in Section 2.1. An al-
most matching (2−ε)-hardness of approximation result is obtained by Svensson [17] assuming
a stronger version of the Unique Game Conjecture. For the more general weighted completion
time objective (P |prec|

∑
j wjCj), Hall et al. [8] gave a 7-approximation which was later

improved to a 4-approximation by Munier, Queyranne and Schulz [12]. Very recently, Li
[11] obtained the current best ratio of (2 + 2 ln 2 + ε). Of course, all the hardness results for
minimizing makespan hold for minimizing the weighted total completion time; however, no
stronger hardness results are known for this apparently harder problem. For related machines
running at different speeds—Q|prec|

∑
j wjCj and Q|prec|Cmax—Chudak and Shmoys [3]

gave an O(logm)-approximation by grouping the machines into logm groups according to
their speed and treating the machines in each group as identical parallel machines. Li [11]
improved this ratio to O(logm/ log logm). On the negative side, Bazzi and Norouzi-Fard [2]
recently showed the problem is hard to approximate for any constant assuming the hardness
of an optimization problem on k-partite graphs.

Another overlapping set of problems is resource-constrained scheduling with one common
resource (e.g., P |res1|Cmax and Q|res1|

∑
j wjCj). Garey and Graham’s result in [5] implies a

(3−3/m)-approximation for P |res1|Cmax. Later, Niemeier and Wiese [13] gave the algorithm
with the current best approximation ratio of (2 + ε). Recently, Jansen et al. [9] provided
an AFPTAS for the problem. Since bin packing is a special case of this problem, a simple
reduction from the partition problem shows that no approximation with a ratio smaller than
3/2 is possible unless P = NP . Note that, in all the problems we consider here, preemption
is not allowed and the processing time of a job does not depend on the resource allocated to
the job.

There is a clear connection between resource constrained scheduling and packing problems,
such as bin packing and strip packing. In the case of unit processing times (pj = 1), for
example, P |res1, pj = 1|Cmax is the same as the bin packing problem where we pack different
sized items into bins of fixed size and try to minimize the number of bins used. In the strip
packing problem, we have a fixed width strip with one open end and a finite set of rectangles.
The goal is to fit all the rectangles in the strip minimizing the total height that the rectangles
reach. The correspondence between strip packing and resource constrained scheduling is
obvious. The width of the strip corresponds to the global resource limit and the widths
and the heights of the rectangles correspond to the resource requirement and the processing
time of the jobs respectively. In fact, we make use of this correspondence between the two

STACS 2018

25:4 Approximation Algorithms for Scheduling with Resource and Precedence Constraints

problems in our algorithms. One difference between these two problems is that we can pack
as many small width rectangles as the width of the strip allows in the strip packing problem
whereas the number of jobs that can run in parallel is bounded by the number of machines
in the resource constrained scheduling problem.

Our Results and Techniques

We study identical parallel machines in Section 2. First, in Section 2.1, we consider the
objective of minimizing the makespan under both resource and precedence constraints, namely
the problem P |res1,prec|Cmax. We prove the following.

I Theorem 1. There is a 2 + 2 log(n+ 1)-approximation algorithm for P |res1, prec|Cmax.

To show this, we consider the two constraints separately and present a two-step algorithm
for minimizing the makespan. The first step produces an intermediate approximate schedule
satisfying only the precedence constraints with a loss of factor of 2 in the approximation. The
second step uses a divide and conquer algorithm (inspired by [1]) to stretch the intermediate
schedule so that it also satisfies the resource constraint. We generalize this result for the
version of the problem with release times.

I Theorem 7. There is a 2 + 4 log(n+ 1)-approximation algorithm for P |res1, prec, rj |Cmax.

In Section 2.2, we use the algorithm from Section 2.1 as a subroutine to obtain our first
main result:

I Theorem 8. There is an O(logn)-approximation algorithm for P |res1, prec, rj |
∑

j wjCj.

To obtain this result, we extend the general framework of [8], [15], and [3] with a novel
Linear Programming (LP) relaxation for P |res1, prec, rj |

∑
j wjCj . In this framework, we

divide the time horizon into geometrically increasing intervals. Using our new linear program,
we obtain the approximate completion interval for each job. Then we show that if we consider,
for each interval, the set of jobs completing in the same interval as a separate instance of
P |res1, prec, rj |Cmax problem and schedule them in a separate fragment using the makespan
minimizing algorithm we obtain in Section 2.1, the concatenation of these fragments also gives
a good approximation to the minimum total weighted completion time objective (

∑
j wjCj)

for the original instance. Our core technique is our time-interval-indexed LP where we
carefully incorporate the resource requirements into the LP to guarantee a reasonable total
resource requirement by the set of jobs completing in any given interval. This allows us to
bound the makespan given by our algorithm from Section 2.1 for each P |res1, prec, rj |Cmax

instance.
Finally, in Section 3, we build on our previous techniques to show that they can be

modified to work together with the methods in [3] to get an O(logm logn)-approximation
for scheduling on uniformly related machines subject to simultaneous resource, precedence,
and release times constraints with weighted completion time objective. In particular, we
state a simple generalization of the time-interval-indexed LP used in the previous section
without the resource LP constraints) to machines with different speeds. We use the LP
solution to get the approximate completion time intervals as we did for identical machines
setting as well as job to machine assignments. Then, we argue that the first step of our
two-step makespan minimizing algorithm can be replaced by the O(logm)-approximation
algorithm for Q|prec, rj |Cmax given in [3]. Moreover, the second step of our algorithm will
respect these job to machine assignments. If we begin with an optimal solution to the LP,
we show that these integral job to machine assignments are close enough to the fractional
assignments given by the LP solution.

G. Demirci, H. Hoffmann, and D.H.K. Kim 25:5

I Theorem 12. There is an O(logm logn)-approximation algorithm for Q|res1, prec, rj |∑
j wjCj.

These are the first algorithms with non-trivial approximation ratios for this class of
scheduling problems where a resource constraint and general precedence constraints need to
be satisfied together.

2 Identical Parallel Machines

2.1 The Minimum Makespan Objective
In this section, we present an O(logn)-approximation algorithm for the problem of minimizing
the makespan under both resource and precedence constraints.

I Theorem 1. There is a 2 + 2 log(n+ 1)-approximation algorithm for P |res1, prec|Cmax.

Given an instance (J ,m, {pj}j∈J , S, {sj}j∈J ,≺) of P |res1, prec|Cmax, we let OPT de-
note the makespan of a minimum makespan schedule of this instance. Our algorithm solves
the problem in two steps by handling its precedence and resource constraints separately. First,
we consider the corresponding P |prec|Cmax instance where we drop the resource requirement
(i.e. (J ,m, {pj}j∈J ,≺)). In his seminal work, Graham [7] presents an online machine-driven
list scheduling algorithm for this problem. His algorithm greedily considers the jobs in some
arbitrary extension of the partial order ≺ to a total order (i.e. a list). As soon as a machine
is idle, the algorithm schedules the next available job (i.e. all its predecessors are finished) in
the list on that machine. In the analysis, he uses two standard lower bounds for the value of
OPT :

I Lemma 2 (Load Bound). 1
m

∑
j∈J pj ≤ OPT .

I Lemma 3 (Chain Bound). max
C is a chain

∑
j∈C pj ≤ OPT .

The Load Bound is implied by the observation that a perfectly balanced schedule with no
idle time would have a makespan of 1

m

∑
j∈J pj . Also note that the total processing time of

any “chain” of precedence constraints such as j1 ≺ j2 ≺ · · · ≺ jk is a lower bound on the
makespan of any schedule. His analysis charges the time intervals where all the machines
are busy on the Load Bound and the time intervals where some machines are idle on the
Chain Bound. We run Graham’s list scheduling algorithm on our instance after we drop the
resource constraints and get an approximate intermediate schedule satisfying the precedence
constraints. Let LSJ denote the makespan of this schedule and LS(j) denote the completion
time of a job j ∈ J in it. Graham [7] shows this makespan is bounded by the sum of the
Load and the Chain Bounds LSJ ≤ 1

m

∑
j∈J pj + max

C is a chain

∑
j∈C pj ≤ 2 ·OPT .1

The schedule we get by running Graham’s list scheduling on the corresponding P |prec|
Cmax instance may violate the resource constraints of the original instance. In the second
step of the algorithm, we run a divide and conquer algorithm on this schedule to make it
satisfy the resource constraints without disturbing the precedences already satisfied after our
first step. We lose a factor of 2 in the approximation due to Graham’s algorithm and an
O(logn)-factor in the second step. In the rest of this section, we explain and analyze the
second step of the algorithm in detail.

1 In fact, [7] shows a slightly stronger bound of (2 − 1/m) OP T .

STACS 2018

25:6 Approximation Algorithms for Scheduling with Resource and Precedence Constraints

Algorithm 1 DS(J,B,E) Divide and Schedule.
Input: A subset of jobs J ⊆ J and the beginning B and the end E times of J in the

schedule of the first step
Output: A makespan y for a feasible schedule of J
1: if J = ∅ then
2: return 0
3: end if
4: Jbef ← {j ∈ J | LS(j) < (B + E)/2}
5: Jmid ← {j ∈ J | LS(j)− pj < (B + E)/2 and LS(j) ≥ (B + E)/2}
6: Jaft ← {j ∈ J | LS(j)− pj ≥ (B + E)/2}
7: ybef ← DS(Jbef ,minj∈Jbef

LS(j)− pj ,maxj∈Jbef
LS(j))

8: Schedule Jbef according to DS(Jbef ,minj∈Jbef
LS(j)− pj ,maxj∈Jbef

LS(j)).
9: ymid ← NFDH(Jmid)

10: Schedule Jmid according to NFDH(Jmid) starting at ybef .
11: yaft ← DS(Jaft,minj∈Jaft

LS(j)− pj ,maxj∈Jaft
LS(j))

12: Schedule Jaft according to DS(Jaft,minj∈Jaft
LS(j) − pj ,maxj∈Jaft

LS(j)) starting at
ybef + ymid.

13: return ybef + ymid + yaft

Note that the total resource required to complete a job j ∈ J is its resource requirement
integrated over the time it takes to complete the job:

∫ pj

0 sj dt = sjpj . We denote this value
by RB(j). We define RB(J) for any subset J ⊆ J of jobs as the sum of the total resource
required for jobs in J (i.e. RB(J) =

∑
j∈J RB(j)). Our algorithm uses another lower bound

derived by comparing the resource available in a makespan and total resource required by all
jobs.

I Lemma 4 (Resource Bound). RB(J)/S ≤ OPT .

To incorporate the resource constraint into the schedule obtained in the first step, we run a
divide and conquer algorithm similar to the one employed by Augustine et al. [1] for strip
packing. This algorithm (Algorithm 1: DS) will need to use a subroutine for scheduling at
most m jobs J ⊆ J with resource constraints that have no precedence constraints among
them on m machines. We denote this subroutine by Next-Fit Decreasing-Height: NFDH(J)
and it guarantees a makespan that is bounded by NFDH(J) ≤ 2RB(J)/S + maxj∈J pj . A
simple greedy algorithm that schedules the jobs respecting their resource constraints in the
order of non-increasing processing time will have this guarantee. Next-Fit Decreasing-Height
algorithm for strip packing analyzed in [4] is one such algorithm when applied to scheduling
m jobs on m machines with resource constraints and no precedence constraints.

The algorithm is called with the following initial arguments: all jobs J , beginning time
B = 0, and end time E = LSJ , the makespan of the schedule obtained in the first step.
It takes the set of jobs Jmid scheduled to cross the mid time point LSJ /2 in the schedule
obtained in the first step. It schedules these jobs in a separate time fragment and concatenates
it with schedules obtained recursively on the jobs before, Jbef , and the jobs after, Jaft. We
need the following lemma to justify the initial condition required to call NFDH(Jmid).
Proofs of all the lemmas in the rest of the paper can be found in the full version of the paper.

I Lemma 5. The jobs in Jmid have no precedence constraints among them and 1 ≤ |Jmid| ≤
m.

G. Demirci, H. Hoffmann, and D.H.K. Kim 25:7

In any given level of the recursion tree, the total loss across all recursive calls in this
level is at most an additive factor of O(OPT). Since the algorithm terminates in at
most dlogne levels, we get an O(logn) approximation. Lemma 6 proves this formally
and gives a bound on our initial call to Divide and Schedule algorithm: DS(J , 0, LSJ) ≤
2RB(J)/S+LSJ log (|J |+ 1) ≤ (2+2 log(n+1))OPT . This completes the proof of Theorem
1.

I Lemma 6. DS(J,B,E) ≤ 2RB(J)/S + (E −B) log (|J |+ 1)

The first step of our algorithm can be extended to accommodate release times constraints:

I Theorem 7. There is a 2 + 4 log(n+ 1)-approximation algorithm for P |res1, prec, rj |Cmax.

In addition to resource and precedence constraints, each job j ∈ J now has a release time
rj such that j can only be started after time rj (P |res1, prec, rj |Cmax). Munier, Queyranne
and Schulz [12, 14] provide a 4-approximation for P |prec, rj |Cmax. We replace Graham’s list
scheduling in the first step of our algorithm with their 4-approximation algorithm to get a
similar bound for the problem with all three constraints. Note that, after the first step, we
obtain a schedule that satisfies the release times and precedence constraints. The second step
of our algorithm can easily be made to never schedule a job before its starting time in the
schedule from the first step (by forcing Jmid’s fragment to start at max{(E −B)/2, ybef}).

We note that an o(logn)-approximation is not possible using only the Load, Chain, and
Resource Bounds. The bottleneck is in the second step where we use divide-and-conquer.
The gap example in [1] for strip packing shows one needs stronger lower bounds on OPT
than “the area bound” (Resource Bound in our setting) and “the longest chain of rectangles
bound” (Chain Bound in our setting) for an o(logn) approximation. Their example can
easily be translated into a scheduling instance with m = logn machines. Setting m = logn
allows any solution to their example be interpreted as a scheduling solution because the
example has at most logn parallel precedence chains at any point. Also, the Load Bound
of the translated instance is at most Θ(1), where OPT = Ω(logn).2 Thus, for both the
makespan and the weighted completion time objectives, one needs stronger lower bounds on
OPT than any combination of the three bounds we use for a better approximation ratio.

2.2 The Minimum Weighted Completion Time Objective
In this section, we generalize our result by giving an O(logn)-approximation algorithm for
the minimum total weighted completion time objective. In addition to processing time pj ,
resource requirement sj , and release time rj , we now have a weight wj associated with
each job j ∈ J and our goal is to minimize the total weighted completion time

∑
j wjCj ,

where Cj is the completion time of j in the final schedule. This problem is denoted as
P |res1, prec, rj |

∑
j wjCj .

I Theorem 8. There is an O(logn)-approximation algorithm for P |res1, prec, rj |
∑

j wjCj.

We first reduce the problem of minimizing weighted completion time (
∑

j wjCj) to a set
of smaller problems with the objective of minimizing the makespan (Cmax). We then use our
O(logn)-approximation algorithm from Section 2.1 for the minimum makespan objective as
a subroutine on these problems. In the reduction, we use the general framework of Hall et al.

2 See [1] and their illustrations for a detailed description of the gap example.

STACS 2018

25:8 Approximation Algorithms for Scheduling with Resource and Precedence Constraints

[8] and Queyranne and Sviridenko [15] (see also, for example, [3] for an application of this
framework in uniformly related machines setup).

We start with a trivial upper bound 2L on the length of an optimal schedule, where L
= dlog(n·maxj∈J (rj +pj))e, and divide the time horizon into a set of geometrically increasing
intervals [1, 2], (2, 4], (4, 8], · · · , (2L−1, 2L]. For the problem with only precedence and release
time constraints (P |prec, rj |

∑
j wjCj), Hall et al. argue that for each job j, if we are given

the interval in which it completes in the optimal schedule, or the completion interval of j”,
we can get an approximate schedule based on this information [8]. All the jobs completing in
(2l−1, 2l] in the optimal schedule can be scheduled to start and complete in (2l+1, 2l+2] using
a makespan minimizing algorithm on this subset of jobs as a subroutine. This results in an
8-approximation for the weighted completion time objective. Since the completion intervals
in an optimal schedule are not known, Hall et al. use an LP relaxation to obtain approximate
values for the completion intervals [8]. The makespan of the makespan minimizing algorithm
they use for P |prec, rj |Cmax depends only on the Load Bound and the Chain Bound, which
are both easy to bound in the same LP where they get the completion intervals. However, in
our setting, we need stronger guarantees when obtaining the completion intervals with an
LP than prior work provides. In particular, we need the jobs completing in a given interval
to have a total resource requirement that is comparable to the resource available up to that
interval. In this way, we introduce the following linear programming relaxation for the P |
res1,prec, rj |

∑
j wjCj problem which ensures that we get a good estimate on the completion

interval of each job and simultaneously guarantees that the total resource requirement by
jobs completing in some interval is not “too much”. We let [a] denote the set {1, 2, · · · , a}
for a positive integer a.

min
∑
j∈J

wjCj s.t. (LPP)

m∑
i=1

L∑
t=1

xijt = 1, ∀j ∈ J ; (2.1)

pj ≤ Cj − rj , ∀j ∈ J ; (2.2)
pj ≤ Cj − Cj′ , ∀j′ ≺ j; (2.3)

L∑
t=1

2t−1
m∑

i=1
xijt ≤ Cj , ∀j ∈ J ; (2.4)

∑
j∈J

pj

l∑
t=1

xijt ≤ 2l, ∀i ∈ [m], l ∈ [L]; (2.5)

m∑
i=1

l∑
t=1

xijt ≤
m∑

i=1

l∑
t=1

xij′t, ∀j′ ≺ j, l ∈ [L]; (2.6)

∑
j∈J

pjsj

m∑
i=1

l∑
t=1

xijt ≤ 2lS, ∀l ∈ [L]; (2.7)

xijt ≥ 0, ∀i ∈ [m], j ∈ J , t ∈ [L]; (2.8)

In LPP , we have two sets of variables: a set of real valued variables for the completion times
of the jobs {Cj}j∈J and a set of decision variables {xijt}i∈[m],j∈J ,t∈[L] that take 0-1 values
in an integral solution with xijt = 1 implying that the job j completed on machine i in the
time interval (2t−1, 2t]. Constraint 2.1 says a job needs to complete on some machine and in

G. Demirci, H. Hoffmann, and D.H.K. Kim 25:9

some interval. Constraints 2.2 and 2.3 make sure that the completion times are not infeasible
with respect to release times and the precedence constraints. Constraint 2.4 says that the
completion time of a job needs to be later than the time point marking the start of the time
interval in which the job completes. Constraint 2.5 ensures that the total processing time of
the jobs completing on machine i in the first l intervals is at most the time point marking the
end of the lth interval. Constraint 2.6 ensures that a job j depending on another job j′ must
complete in j′’s completion interval or later. Finally, Constraint 2.7 is how we guarantee
that the total resource requirement of the jobs completing in the first l intervals is at most
the total amount of resource available in these intervals.

Let {x̃ijt} and {C̃j} be a solution to LPP . We now describe how to obtain the approximate
completion intervals from this fractional LP solution and the smaller problems with minimum
makespan objective by partitioning the set of jobs with respect to these completion intervals.
Let `1(j) be the first interval l where the sum of job j’s variables xijt across all machines
exceed 1/2 (i.e. minimum l s.t.

∑l
t=1

∑m
i=1 x̃ijt ≥ 1/2). Also, define `2(j) to be the

interval containing job j’s completion time (i.e. minimum l s.t. Cj ≤ 2l). We let `(j) =
max{`1(j), `2(j)}. Define, for each l ∈ [L], Jl = {j ∈ J : `(j) = l} ⊆ J to be the subset of
jobs that “complete” in the lth interval (jobs with `(j) = l). Note that the sets J1, J2, · · · , JL

are disjoint and they partition the set of jobs J .
Next, we consider each Jl as a separate instance of P |res1, prec|Cmax problem and run

our makespan minimizing algorithm from Section 2.1 on the smaller instance (Jl,m, {pj}j ,

S, {sj}j ,≺Jl
) where ≺Jl

⊆≺ is the subset of the precedence constraints that are between the
jobs in Jl.

I Lemma 9. Algorithm 1 in Section 2.1 on the instance (Jl,m, {pj}j∈Jl
, S, {sj}j∈Jl

,≺Jl
)

returns a feasible schedule of length (4 + 3 log(|Jl|+ 1))2l.

Using Lemma 9, we schedule, for each l ∈ [L], the jobs in Jl to start after (4 + 3 log(n+
1))(1 + 2 + 4 · · ·+ 2l−1) and complete before (4 + 3 log(n+ 1))(1 + 2 + 4 · · ·+ 2l).

I Lemma 10. The resulting schedule satisfies resource, precedence, and release time con-
straints.

The next lemma completes the proof of Theorem 8.

I Lemma 11. The resulting schedule has weighted completion time within 32 + 24 log(n+ 1)
factor of the LPP value

∑
j∈J wjC̃j.

3 Uniformly Related Machines

In this section, we describe our O(logn logm)-approximation algorithm for the problem
of scheduling jobs on uniformly related machines (i.e. machines running at different
speeds) under resource, precedence, and release time constraints. Again, the objective
is to minimize the more general total weighted completion time. This problem is denoted as
Q|res1, prec, rj |

∑
j wjCj .

I Theorem 12. There is an O(logm logn)-approximation algorithm for Q|res1, prec, rj |∑
j wjCj.

Now, we have a speed fi associated with each machine i ∈ [m] in the input and it takes
pj/fi amount of time to complete job j ∈ J on machine i ∈ [m]. We note that the Load,
Chain, and Resource Bounds do not only depend on the set of jobs anymore, but also on

STACS 2018

25:10 Approximation Algorithms for Scheduling with Resource and Precedence Constraints

the job to machine assignments in a solution (in particular, an optimal solution). This is
because the processing time pj/fi of a job j now depends on the machine i to which it is
assigned. Note that this processing time does not change between machines running at the
same speed. Thus we will be more interested in the speed that a job is assigned to than
the particular machine. We let K be the number of distinct speeds and f1, f2, · · · , fK be all
the distinct speeds among all m machines. We also let mk be the number of machines with
speed fk for each k ∈ [K]. We start by solving a time-interval indexed linear program similar
to the one we used in Section 2.2 but incorporates the different machine speeds in the LP.

min
∑
j∈J

wjCj s.t. (LPQ)

K∑
k=1

L∑
t=1

xkjt = 1, ∀j ∈ J ; (3.1)

K∑
k=1

pj

fk

L∑
t=1

xkjt ≤ Cj − rj , ∀j ∈ J ; (3.2)

K∑
k=1

pj

fk

L∑
t=1

xkjt ≤ Cj − Cj′ , ∀j′ ≺ j; (3.3)

L∑
t=1

2t−1
K∑

k=1
xkjt ≤ Cj , ∀j ∈ J ; (3.4)

1
fkmk

∑
j∈J

pj

l∑
t=1

xkjt ≤ 2l, ∀k ∈ [K], l ∈ [L]; (3.5)

K∑
k=1

l∑
t=1

xkjt ≤
K∑

k=1

l∑
t=1

xkj′t, ∀j′ ≺ j, l ∈ [L]; (3.6)

∑
j∈J

K∑
k=1

pj

fk
sj

l∑
t=1

xkjt ≤ 2lS, ∀l ∈ [L]; (3.7)

xkjt ≥ 0, ∀k ∈ [K], j ∈ J , t ∈ [L]; (3.8)

Constraints and variables of LPQ are similar to the ones in LPP of Section 2.2. We still
have the real-valued completion time variables {Cj}j∈J . However, we are now interested
in the distinct speed group a job is assigned to rather than the particular machine. In this
way, we modify the decision variables as {xkjt}k∈[K],j∈J ,t∈[L] where the first index k now
indicates the speed group among the machines. In an integral solution, xkjt = 1 would
stand for the job j completing in the time interval (2t−1, 2t] on some machine with speed
fk. Since the processing time pj of a job j now depends on the speed it runs on, we replace
pj in the constraints by

∑K
k=1 pj/fk

∑L
t=1 xkjt which essentially is the average processing

time of j with respect to fractional speed assignments of j. We make the required change to
Constraints 2.2, 2.3, 2.5, and 2.7 to obtain corresponding Constraints 3.2, 3.3, 3.5, and 3.7.

Similar to what we did in the identical machine setting, our algorithm will partition the set
of jobs according to approximate completion intervals obtained from LPQ. Then it will obtain
a set of smaller Q|res1, prec, rj |Cmax instances from the original Q|res1, prec, rj |

∑
j wjCj

instance. We solve each minimum makespan instance again in two steps by considering
the Q|prec, rj |Cmax instance in the first step and handling the resources in the second step.
The bound on the makespan minimizing algorithm of Section 2.1 is analyzed in terms of

G. Demirci, H. Hoffmann, and D.H.K. Kim 25:11

Load, Chain, and Resource Bounds. However, as we have indicated above, we do not have
well-defined Load, Chain, and Resource Bounds in the case of machines running at different
speeds. In order to use and analyze a similar two-step algorithm, we use the solution to
LPQ to first fix job to machine speed assignments, then show that the Load, Chain, and
Resource Bounds under these assignments are comparable to the LPQ value. We adapt the
speed-based list scheduling algorithm of [3] as our first step for solving Q|prec, rj |Cmax and
finally we apply the Divide and Schedule procedure of Section 2.1 as our second step.

Let {x̃kjt} and {C̃j} be a solution to LPQ. We obtain “completion intervals” (`(j)’s)
for all the jobs and partition J by defining Jl for 1 ≤ l ≤ L in the same way as we did in
Section 2.2. We let `(j) = max{`1(j), `2(j)} where `1(j) is defined as the minimum l s.t.∑l

t=1
∑K

k=1 x̃kjt ≥ 1/2 and `2(j) as the minimum l s.t. C̃j ≤ 2l. We partition J by letting
Jl = {j ∈ J : `(j) = l} for each l ∈ [L].

Chudak and Shmoys [3] solve a similar LP without Constraint 3.7 to get an O(logm)
approximation for Q|prec, rj |

∑
j wjCj . They follow a similar framework by first giving a

makespan minimizing algorithm for Q|prec, rj |Cmax and then using it on Jl’s as a subroutine
to get the same result for the weighted completion time objective. We replace Graham’s list
scheduling for P |prec|Cmax with Chudak and Shmoys’ speed-based list scheduling algorithm
[3] for Q|prec, rj |Cmax in our first step. We now briefly discuss their speed-based list
scheduling algorithm, its analysis, and how to integrate it into our setup.

Their speed-based list scheduling algorithm uses a list to process the jobs greedily in the
order given by the list similar to Graham’s list scheduling. In addition, it uses a function f
mapping each job j to a speed f(j) ∈ {f1, f2, · · · fK}. As soon as a job finishes processing, all
idle machines are considered in some fixed order one by one. The algorithm considers each
machine with speed fk and schedules the first available job j in the list with f(j) = fk on
this machine, where a job is available if all its predecessors are completed. They analyze
this algorithm by considering the Load Bound of each speed group separately. They use
an argument similar to the analysis of Graham’s list scheduling by charging the busy time
intervals on the Load Bounds and idle intervals on the Chain Bound. They show that the
length of the makespan returned by this algorithm is at most the sum of the Load Bounds
for each speed group and the Chain Bound:

K∑
k=1

1
mk

∑
j:f(j)=fk

pj

f(j) + max
C is a chain

∑
j∈C

pj

f(j)

Note that the bound given above depends heavily on job to speed assignments f used by
the algorithm. Given the assignments of an optimal solution, the Load Bound of each speed
group and the Chain bound will be bounded by the optimal makespan length. This would
put the makespan of the algorithm within a factor K + 1 of the optimal solution length.
Since we do not have the optimal assignments, we now describe how to get approximate job
to speed assignments f by applying standard filtering techniques on the fractional solution
{x̃kjt} to LPQ. Consider a partition Jl and a job j ∈ Jl. Let αj =

∑K
i=1

∑l
t=1 x̃kjt and let

xkj =
∑l

t=1 x̃kjt/αj . Note αj ≥ 1/2 by definition of `(j) = l. Let the average processing
time of a job j in LPQ solution be pavg

j =
∑K

k=1(pj/fk)xkj . We define f(j) to be the speed
of the maximum capacity speed group among all speeds more than half the average speed
that j is assigned to in the fractional LPQ solution.3 Formally, let

3 Equivalently, since pj is a constant in the evaluation of f(j), we can define it to be the fk that maximizes
fkmk.

STACS 2018

25:12 Approximation Algorithms for Scheduling with Resource and Precedence Constraints

f(j) = arg min
fk: pj/fk≤2pavg

j

pj

fkmk
.

Similar to [3], we show that the sum of the Load Bounds of all speed groups under these
job to speed assignments given by f is bounded by 4K · 2l:

I Lemma 13.
K∑

k=1

1
mk

∑
j∈Jl: f(j)=fk

pj

fk
≤ 4K · 2l.

Now we show that the total processing time of any chain in Jl under the assignments
given by f is also bounded:

I Lemma 14. For any chain C of precedence constraints from ≺Jl
, we have

∑
j∈C pj/f(j) ≤

4 · 2l.

Lemmas 13 and 14 show that the speed-based list scheduling algorithm we employ in
the first step returns a schedule of length O(K) · 2l on the smaller instance we get from the
partition Jl.

After getting the intermediate schedule from the first step of our algorithm, we run our
second step (Divide and Schedule) respecting job to machine assignments of the intermediate
schedule. Note that Jmid in DS has only one job per machine because jobs in Jmid all run in
parallel at some point in the intermediate schedule. Thus, we do not need any modification to
the NFDH subroutine to ensure the same job to machine assignments in the final schedule.

Next, we show that Resource Bound of the sub instance obtained from the partition Jl is
bounded by 4S · 2l under the same job to speed assignments f .

I Lemma 15. RB(Jl) ≤ 4S · 2l.

Our second step returns a schedule of length bounded by DS(J,B,E) ≤ 2RB(J)/S +
(E −B) log (|J |+ 1) where (E −B) is the length of the intermediate schedule obtained by
the first step. Lemmas 13, 14, and 15 prove that, for any l ∈ [L], this bound is at most
O(K logn) · 2l on the sub-instance obtained from the jobs in Jl.

As we did in Section 2.2, we schedule the jobs in Jl for each l ∈ [L] to start after
O(K logn)(1 + 2 + 4 · · ·+ 2l) and complete before O(K logn)(1 + 2 + 4 · · ·+ 2l + 2l+1). This
again gives us a feasible schedule as in Lemma 10 and, given that 2l−2 ≤ C̃j as in the proof
of Lemma 11, we have an O(K logn) approximation.

Finally using the preprocessing of Chudak and Shmoys [3], we can assume that we only
have K = logm distinct speed groups. This comes with a loss of an additional constant
factor on the approximation ratio of our algorithm for the minimum makespan objective.
We first discard all the machines with speed less than 1/m times the speed of the fastest
machine and then round down each remaining speed to the nearest power of 1/2. Discarding
slow machines only increases the optimal makespan by a factor of 2 because we discard no
more than m machines each of which is at most as fast as 1/m times the speed of the fastest
machine. This means the fastest machine can process the jobs of the discarded machines with
a loss of factor 2 in the length of the schedule. Similarly, we only lose another factor of 2 by
rounding down the speeds of the remaining machines. Since we have at most logm distinct
speeds after the preprocessing, the algorithm described above on each Q|res1, prec, rj |Cmax

sub-instance is an O(logm logn)-approximation with K = logm.

G. Demirci, H. Hoffmann, and D.H.K. Kim 25:13

References
1 John Augustine, Sudarshan Banerjee, and Sandy Irani. Strip packing with precedence

constraints and strip packing with release times. In Proceedings of the Eighteenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’06, pages 180–189,
New York, NY, USA, 2006. ACM.

2 Abbas Bazzi and Ashkan Norouzi-Fard. Towards tight lower bounds for scheduling prob-
lems. In Proceedings of the 23rd Annual European Symposium on Algorithms, ESA’15,
volume 9294, page 118. Springer, 2015.

3 Fabián A. Chudak and David B. Shmoys. Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different speeds. In
Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’97, pages 581–590, Philadelphia, PA, USA, 1997. Society for Industrial and Applied Math-
ematics.

4 Jr. E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds for
level-oriented two-dimensional packing algorithms. SIAM Journal on Computing, 9(4):808–
826, 1980.

5 M. R. Garey and R. L. Grahams. Bounds for multiprocessor scheduling with resource
constraints. SIAM Journal on Computing, 4:187–200, 1975.

6 R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287–326, 1979. Discrete Optimization II.

7 Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell Labs Technical
Journal, 45(9):1563–1581, 1966.

8 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms. Mathematics of
Operations Research, 22(3):513–544, 1997.

9 Klaus Jansen, Marten Maack, and Malin Rau. Approximation schemes for machine schedul-
ing with resource (in-)dependent processing times. In Proceedings of the Twenty-seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pages 1526–1542, Phil-
adelphia, PA, USA, 2016. Society for Industrial and Applied Mathematics.

10 Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen
Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan Sna-
vely, Thomas Sterling, R. Stanley Williams, Katherine Yelick, Keren Bergman, Shekhar
Borkar, Dan Campbell, William Carlson, William Dally, Monty Denneau, Paul Franzon,
William Harrod, Jon Hiller, Stephen Keckler, Dean Klein, Peter Kogge, R. Stanley Willi-
ams, and Katherine Yelick. Exascale computing study: Technology challenges in achieving
exascale systems, 2008.

11 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear
programming relaxations. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS ’17, 2017.

12 Alix Munier, Maurice Queyranne, and Andreas Schulz. Approximation bounds for a general
class of precedence constrained parallel machine scheduling problems. In Integer Program-
ming and Combinatorial Optimization, IPCO ’98, 1998.

13 Martin Niemeier and Andreas Wiese. Scheduling with an orthogonal resource constraint.
In 10th Workshop on Approximation and Online Algorithms (WAOA2012), number EPFL-
CONF-181146, 2012.

14 Maurice Queyranne and Andreas S. Schulz. Approximation bounds for a general class of pre-
cedence constrained parallel machine scheduling problems. SIAM J. Comput., 35(5):1241–
1253, 2006.

STACS 2018

25:14 Approximation Algorithms for Scheduling with Resource and Precedence Constraints

15 Maurice Queyranne and Maxim Sviridenko. Approximation algorithms for shop scheduling
problems with minsum objective. Journal of Scheduling, 5(4):287–305, 2002.

16 Vivek Sarkar, Saman Amarasinghe, Dan Campbell, William Carlson, Andrew Chien, Wil-
liam Dally, Elmootazbellah Elnohazy, Mary Hall, Robert Harrison, William Harrod, Kerry
Hill, Jon Hiller, Sherman Karp, Charles Koelbel, David Koester, Peter Kogge, John
Levesque, Daniel Reed, Robert Schreiber, Mark Richards, Al Scarpelli, John Shalf, Allan
Snavely, and Thomas Sterling. Exascale software study: Software challenges in extreme
scale systems, 2009. DARPA IPTO Study Report for William Harrod.

17 Ola Svensson. Conditional hardness of precedence constrained scheduling on identical
machines. In Proceedings of the Forty-second ACM Symposium on Theory of Computing,
STOC ’10, pages 745–754, New York, NY, USA, 2010. ACM.

18 ExaOSR Team. Exascale operating systems and runtime software report. Online
document, https://science.energy.gov/~/media/ascr/pdf/research/cs/Exascale%
20Workshop/ExaOSR-Report-Final.pdf.

https://science.energy.gov/~/media/ascr/pdf/research/cs/Exascale%20Workshop/ExaOSR-Report-Final.pdf
https://science.energy.gov/~/media/ascr/pdf/research/cs/Exascale%20Workshop/ExaOSR-Report-Final.pdf

	Introduction
	Identical Parallel Machines
	The Minimum Makespan Objective
	The Minimum Weighted Completion Time Objective

	Uniformly Related Machines

