360 research outputs found

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊄’] may be written or erased at will,” implying (⊄)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊄. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊄a=a (BA has a lower bound, ⊄); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊄}, such that () ⇔ 1 [dually 0], (a) ⇔ aâ€Č, and ab ⇔ aâˆȘb [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a√b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    Boundary Algebra: A Simple Notation for Boolean Algebra and the Truth Functors

    Get PDF
    Boundary algebra [BA] is a simpler notation for Spencer-Brown’s (1969) primary algebra [pa], the Boolean algebra 2, and the truth functors. The primary arithmetic [PA] consists of the atoms ‘()’ and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting the presence or absence of () into a PA formula yields a BA formula. The BA axioms are "()()=()" (A1), and "(()) [=?] may be written or erased at will” (A2). Repeated application of these axioms to a PA formula yields a member of B= {(),?} called its simplification. (a) has two intended interpretations: (a) ? a? (Boolean algebra 2), and (a) ? ~a (sentential logic). BA is self-dual: () ? 1 [dually 0] so that B is the carrier for 2, ab ? a?b [a?b], and (a)b [(a(b))] ? a=b, so that ?=() [()=?] follows trivially and B is a poset. The BA basis abc= bca (Dilworth 1938), a(ab)= a(b), and a()=() (Bricken 2002) facilitates clausal reasoning and proof by calculation. BA also simplifies normal forms and Quine’s (1982) truth value analysis. () ? true [false] yields boundary logic.G. Spencer Brown; boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; C.S. Peirce; existential graphs.

    A graphical approach to relational reasoning

    Get PDF
    Relational reasoning is concerned with relations over an unspecified domain of discourse. Two limitations to which it is customarily subject are: only dyadic relations are taken into account; all formulas are equations, having the same expressive power as first-order sentences in three variables. The relational formalism inherits from the Peirce-Schröder tradition, through contributions of Tarski and many others. Algebraic manipulation of relational expressions (equations in particular) is much less natural than developing inferences in first-order logic; it may in fact appear to be overly machine-oriented for direct hand-based exploitation. The situation radically changes when one resorts to a convenient representation of relations based on labeled graphs. The paper provides details of this representation, which abstracts w.r.t. inessential features of expressions. Formal techniques illustrating three uses of the graph representation of relations are discussed: one technique deals with translating first-order specifications into the calculus of relations; another one, with inferring equalities within this calculus with the aid of convenient diagram-rewriting rules; a third one with checking, in the specialized framework of set theory, the definability of particular set operations. Examples of use of these techniques are produced; moreover, a promising approach to mechanization of graphical relational reasoning is outlined

    Constraint LTL Satisfiability Checking without Automata

    Get PDF
    This paper introduces a novel technique to decide the satisfiability of formulae written in the language of Linear Temporal Logic with Both future and past operators and atomic formulae belonging to constraint system D (CLTLB(D) for short). The technique is based on the concept of bounded satisfiability, and hinges on an encoding of CLTLB(D) formulae into QF-EUD, the theory of quantifier-free equality and uninterpreted functions combined with D. Similarly to standard LTL, where bounded model-checking and SAT-solvers can be used as an alternative to automata-theoretic approaches to model-checking, our approach allows users to solve the satisfiability problem for CLTLB(D) formulae through SMT-solving techniques, rather than by checking the emptiness of the language of a suitable automaton A_{\phi}. The technique is effective, and it has been implemented in our Zot formal verification tool.Comment: 39 page

    Component-wise incremental LTL model checking

    Get PDF
    Efficient symbolic and explicit-state model checking approaches have been developed for the verification of linear time temporal logic (LTL) properties. Several attempts have been made to combine the advantages of the various algorithms. Model checking LTL properties usually poses two challenges: one must compute the synchronous product of the state space and the automaton model of the desired property, then look for counterexamples that is reduced to finding strongly connected components (SCCs) in the state space of the product. In case of concurrent systems, where the phenomenon of state space explosion often prevents the successful verification, the so-called saturation algorithm has proved its efficiency in state space exploration. This paper proposes a new approach that leverages the saturation algorithm both as an iteration strategy constructing the product directly, as well as in a new fixed-point computation algorithm to find strongly connected components on-the-fly by incrementally processing the components of the model. Complementing the search for SCCs, explicit techniques and component-wise abstractions are used to prove the absence of counterexamples. The resulting on-the-fly, incremental LTL model checking algorithm proved to scale well with the size of models, as the evaluation on models of the Model Checking Contest suggests

    Generating Relation Algebras for Qualitative Spatial Reasoning

    Get PDF
    Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques
    • 

    corecore