28 research outputs found

    Integration of Co-expression Networks for Gene Clustering

    Get PDF
    Simultaneous overexpression or underexpression of multiple genes, used in various forms as probes in the high-throughput microarray experiments, facilitates the identification of their underlying functional proximity. This kind of functional associativity (or conversely the separability) between the genes can be represented proficiently using co-expression networks. The extensive repository of diversified microarray data encounters a recent problem of multi-experimental data integration for the aforesaid purpose. This paper highlights a novel integration method of gene co-expression networks, based on the search for their consensus network, derived from diverse microarray experimental data for the purpose of clustering. The proposed methodology avoids the bias arising from missing value estimation. The method has been applied on microarray datasets arising from different category of experiments to integrate them. The consensus network, thus produced, reflects robustness based on biological validation

    Comparison of threshold selection methods for microarray gene co-expression matrices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Network and clustering analyses of microarray co-expression correlation data often require application of a threshold to discard small correlations, thus reducing computational demands and decreasing the number of uninformative correlations. This study investigated threshold selection in the context of combinatorial network analysis of transcriptome data.</p> <p>Findings</p> <p>Six conceptually diverse methods - based on number of maximal cliques, correlation of control spots with expressed genes, top 1% of correlations, spectral graph clustering, Bonferroni correction of p-values, and statistical power - were used to estimate a correlation threshold for three time-series microarray datasets. The validity of thresholds was tested by comparison to thresholds derived from Gene Ontology information. Stability and reliability of the best methods were evaluated with block bootstrapping.</p> <p>Two threshold methods, number of maximal cliques and spectral graph, used information in the correlation matrix structure and performed well in terms of stability. Comparison to Gene Ontology found thresholds from number of maximal cliques extracted from a co-expression matrix were the most biologically valid. Approaches to improve both methods were suggested.</p> <p>Conclusion</p> <p>Threshold selection approaches based on network structure of gene relationships gave thresholds with greater relevance to curated biological relationships than approaches based on statistical pair-wise relationships.</p

    Biomolecular network querying: a promising approach in systems biology

    Get PDF
    The rapid accumulation of various network-related data from multiple species and conditions (e.g. disease versus normal) provides unprecedented opportunities to study the function and evolution of biological systems. Comparison of biomolecular networks between species or conditions is a promising approach to understanding the essential mechanisms used by living organisms. Computationally, the basic goal of this network comparison or 'querying' is to uncover identical or similar subnetworks by mapping the queried network (e.g. a pathway or functional module) to another network or network database. Such comparative analysis may reveal biologically or clinically important pathways or regulatory networks. In particular, we argue that user-friendly tools for network querying will greatly enhance our ability to study the fundamental properties of biomolecular networks at a system-wide level

    Genome-wide discovery of missing genes in biological pathways of prokaryotes

    Get PDF
    <p> Abstract</p> <p>Background</p> <p>Reconstruction of biological pathways is typically done through mapping well-characterized pathways of model organisms to a target genome, through orthologous gene mapping. A limitation of such pathway-mapping approaches is that the mapped pathway models are constrained by the composition of the template pathways, e.g., some genes in a target pathway may not have corresponding genes in the template pathways, the so-called ā€œmissing geneā€ problem.</p> <p>Methods</p> <p>We present a novel pathway-expansion method for identifying additional genes that are possibly involved in a target pathway after pathway mapping, to fill holes caused by missing genes as well as to expand the mapped pathway model. The basic idea of the algorithm is to identify genes in the target genome whose homologous genes share common operons with homologs of any mapped pathway genes in some reference genome, and to add such genes to the target pathway if their functions are consistent with the cellular function of the target pathway.</p> <p>Results</p> <p>We have implemented this idea using a graph-theoretic approach and demonstrated the effectiveness of the algorithm on known pathways of <it>E. coli</it> in the KEGG database. On all KEGG pathways containing at least 5 genes, our method achieves an average of 60% positive predictive value (PPV) and the performance is increased with more seed genes added. Analysis shows that our method is highly robust.</p> <p>Conclusions</p> <p>An effective method is presented to find missing genes in biological pathways of prokaryotes, which achieves high prediction reliability on <it>E. coli</it> at a genome level. Numerous missing genes are found to be related to knwon <it>E. coli</it> pathways, which can be further validated through biological experiments. Overall this method is robust and can be used for functional inference.</p

    Clique-based data mining for related genes in a biomedical database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Progress in the life sciences cannot be made without integrating biomedical knowledge on numerous genes in order to help formulate hypotheses on the genetic mechanisms behind various biological phenomena, including diseases. There is thus a strong need for a way to automatically and comprehensively search from biomedical databases for related genes, such as genes in the same families and genes encoding components of the same pathways. Here we address the extraction of related genes by searching for densely-connected subgraphs, which are modeled as cliques, in a biomedical relational graph.</p> <p>Results</p> <p>We constructed a graph whose nodes were gene or disease pages, and edges were the hyperlink connections between those pages in the Online Mendelian Inheritance in Man (OMIM) database. We obtained over 20,000 sets of related genes (called 'gene modules') by enumerating cliques computationally. The modules included genes in the same family, genes for proteins that form a complex, and genes for components of the same signaling pathway. The results of experiments using 'metabolic syndrome'-related gene modules show that the gene modules can be used to get a coherent holistic picture helpful for interpreting relations among genes.</p> <p>Conclusion</p> <p>We presented a data mining approach extracting related genes by enumerating cliques. The extracted gene sets provide a holistic picture useful for comprehending complex disease mechanisms.</p

    A novel parametric approach to mine gene regulatory relationship from microarray datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray has been widely used to measure the gene expression level on the genome scale in the current decade. Many algorithms have been developed to reconstruct gene regulatory networks based on microarray data. Unfortunately, most of these models and algorithms focus on global properties of the expression of genes in regulatory networks. And few of them are able to offer intuitive parameters. We wonder whether some simple but basic characteristics of microarray datasets can be found to identify the potential gene regulatory relationship.</p> <p>Results</p> <p>Based on expression correlation, expression level variation and vectors derived from microarray expression levels, we first introduced several novel parameters to measure the characters of regulating gene pairs. Subsequently, we used the naĆÆve Bayesian network to integrate these features as well as the functional co-annotation between transcription factors and their target genes. Then, based on the character of time-delay from the expression profile, we were able to predict the existence and direction of the regulatory relationship respectively.</p> <p>Conclusions</p> <p>Several novel parameters have been proposed and integrated to identify the regulatory relationship. This new model is proved to be of higher efficacy than that of individual features. It is believed that our parametric approach can serve as a fast approach for regulatory relationship mining.</p

    Enumeration of condition-dependent dense modules in protein interaction networks

    Get PDF
    Motivation: Modern systems biology aims at understanding how the different molecular components of a biological cell interact. Often, cellular functions are performed by complexes consisting of many different proteins. The composition of these complexes may change according to the cellular environment, and one protein may be involved in several different processes. The automatic discovery of functional complexes from protein interaction data is challenging. While previous approaches use approximations to extract dense modules, our approach exactly solves the problem of dense module enumeration. Furthermore, constraints from additional information sources such as gene expression and phenotype data can be integrated, so we can systematically mine for dense modules with interesting profiles

    MINE: Module Identification in Networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks.</p> <p>Results</p> <p>MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the <it>C. elegans </it>protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties.</p> <p>Conclusions</p> <p>MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both <it>S. cerevisiae </it>and <it>C. elegans</it>.</p
    corecore