26,973 research outputs found

    "Involving Interface": An Extended Mind Theoretical Approach to Roboethics

    Get PDF
    In 2008 the authors held Involving Interface, a lively interdisciplinary event focusing on issues of biological, sociocultural, and technological interfacing (see Acknowledgments). Inspired by discussions at this event, in this article, we further discuss the value of input from neuroscience for developing robots and machine interfaces, and the value of philosophy, the humanities, and the arts for identifying persistent links between human interfacing and broader ethical concerns. The importance of ongoing interdisciplinary debate and public communication on scientific and technical advances is also highlighted. Throughout, the authors explore the implications of the extended mind hypothesis for notions of moral accountability and robotics

    The View from Vector Space: an account of conceptual geography

    Get PDF

    From single neurons to social brains

    Get PDF
    The manufacture of stone tools is an integral part of the human evolutionary trajectory. However, very little research is directed towards the social and cognitive context of the process of manufacture. This article aims to redress this balance by using insights from contemporary neuroscience. Addressing successively more inclusive levels of analysis, we will argue that the relevant unit of analysis when examining the interface between archaeology and neuroscience is not the individual neuron, nor even necessarily the individual brain, but instead the socio-cognitive context in which brains develop and tools are manufactured and used. This context is inextricably linked to the development of unique ontogenetic scheduling, as evidenced by the fossil record of evolving hominin lineages

    Two-person neuroscience and naturalistic social communication: The role of language and linguistic variables in brain-coupling research

    Get PDF
    Social cognitive neuroscience (SCN) seeks to understand the brain mechanisms through which we comprehend others? emotions and intentions in order to react accordingly. For decades, SCN has explored relevant domains by exposing individual participants to predesigned stimuli and asking them to judge their social (e.g., emotional) content. Subjects are thus reduced to detached observers of situations that they play no active role in. However, the core of our social experience is construed through real-time interactions requiring the active negotiation of information with other people. To gain more relevant insights into the workings of the social brain, the incipient field of two-person neuroscience (2PN) advocates the study of brain-to-brain coupling through multi-participant experiments. In this paper, we argue that the study of online language-based communication constitutes a cornerstone of 2PN. First, we review preliminary evidence illustrating how verbal interaction may shed light on the social brain. Second, we advance methodological recommendations to design experiments within language-based 2PN. Finally, we formulate outstanding questions for future research.Fil: García, Adolfo Martín. Universidad Nacional de Córdoba. Facultad de Lenguas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina. Universidad Diego Portales; ChileFil: Ibanez Barassi, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina. Universidad Diego Portales; Chile. Universidad Autónoma del Caribe; Colombia. Australian Research Council Centre of Excellence in Cognition and its Disorders; Australi

    Of the Helmholtz Club, South-Californian seedbed for visual and cognitive neuroscience, and its patron Francis Crick

    Get PDF
    Taking up the view that semi-institutional gatherings such as clubs, societies, research schools, have been instrumental in creating sheltered spaces from which many a 20th-century project-driven interdisciplinary research programme could develop and become established within the institutions of science, the paper explores the history of one such gathering from its inception in the early 1980s into the 2000s, the Helmholtz Club, which brought together scientists from such various research fields as neuroanatomy, neurophysiology, psychophysics, computer science and engineering, who all had an interest in the study of the visual system and of higher cognitive functions relying on visual perception such as visual consciousness. It argues that British molecular biologist turned South Californian neuroscientist Francis Crick had an early and lasting influence over the Helmholtz Club of which he was a founding pillar, and that from its inception, the club served as a constitutive element in his long-term plans for a neuroscience of vision and of cognition. Further, it argues that in this role, the Helmholtz Club served many purposes, the primary of which was to be a social forum for interdisciplinary discussion, where ‘discussion’ was not mere talk but was imbued with an epistemic value and as such, carefully cultivated. Finally, it questions what counts as ‘doing science’ and in turn, definitions of success and failure—and provides some material evidence towards re-appraising the successfulness of Crick’s contribution to the neurosciences

    Rethinking Phylogeny and Ontogeny in Hominin Brain Evolution

    Get PDF
    Theories of hominin and human cognitive evolution have traditionally focused on the phylogeny of the human brain, and on comparisons of human and primate brains in relation to social or ecological variables. Far less attention has been paid to ontogenetic processes, despite the recognition that experience has a profound influence on adult cognition. In this paper we discuss the interplay between phylogeny and ontogeny by examining relationships between human brain size, developmental scheduling and cognition. The correlates of large brains include not only altered subsistence and life-history strategies to meet associated energetic costs, but also on macro- and micro-scale structural adaptations required to meet increased processing costs. This means that larger brains are of necessity more highly interconnected brains, with higher degrees of folding of the neocortex (gyrification) and higher ratios of myelinated connections between neurons (white matter) to neurons themselves (grey matter). Here we argue that the combination of these evolutionary trends underpins the complexity of human behaviour, as the neural circuits involved in cognitive mechanisms such as the mirror neuron system (the system governing motor emulation and imitation) and theory of mind (fundamental in social cognition) mature only slowly, and require considerable socially-scaffolded experience to develop to their full potential. These abilities are likely to be fundamental in characteristically human behaviours such as the cultural transmission of complex forms of tool manufacture and use, attested to in the archaeological record. Their elaborated modern human forms, we argue, are possible only in the context of the evolution of relatively slower trajectories of brain growth and hence longer periods during which the growing brain can be influenced by experience among modern humans relative to other primates. Here we review some of the differences in ontogenetic brain development between humans and other primates, and compare the rates and trajectories of neural development between ourselves and our closest living relatives the chimpanzees to suggest that the human pattern of expanded periods of growth coupled with slower trajectories of neural development is likely to have been of huge significance during hominin evolution. In addition, we discuss fossil and archaeological proxies which might allow the reconstruction of evolutionary patterns of development, suggesting that it is only post-Homo erectus and specifically among Homo heidelbergensis and Homo neanderthalensis populations that developmental patterns approximate those of modern humans, arguing for a similar – but not identical – role for socially-scaffolded learning of complex technical skills as among modern groups in these species

    Autism, the Integrations of 'Difference' and the Origins of Modern Human Behaviour

    Get PDF
    It is proposed here that the archaeological evidence for the emergence of 'modern behaviour' (160,000-40,000 bp) can best be explained as the rise of cognitive variation within populations through social mechanisms for integrating 'different minds', rather than by the development of a single 'modern human mind'. Autism and the autistic spectrum within human populations are used as an example of 'different minds' which when integrated within society can confer various selective benefits. It is proposed that social mechanisms for incorporating autistic difference are visible in the archaeological record and that these develop sporadically from 160,000 years bp in association with evidence for their consequences in terms of technological innovations, improved efficiency in technological and natural spheres and innovative thinking. Whilst other explanations for the emergence Of modern human behaviour may also contribute to observed changes, it is argued that the incorporation of cognitive differences played a significant role in the technological, social and symbolic expression of 'modern' behaviour

    A neural marker for social bias toward in-group accents

    Get PDF
    Accents provide information about the speaker's geographical, socio-economic, and ethnic background. Research in applied psychology and sociolinguistics suggests that we generally prefer our own accent to other varieties of our native language and attribute more positive traits to it. Despite the widespread influence of accents on social interactions, educational and work settings the neural underpinnings of this social bias toward our own accent and, what may drive this bias, are unexplored. We measured brain activity while participants from two different geographical backgrounds listened passively to 3 English accent types embedded in an adaptation design. Cerebral activity in several regions, including bilateral amygdalae, revealed a significant interaction between the participants' own accent and the accent they listened to: while repetition of own accents elicited an enhanced neural response, repetition of the other group's accent resulted in reduced responses classically associated with adaptation. Our findings suggest that increased social relevance of, or greater emotional sensitivity to in-group accents, may underlie the own-accent bias. Our results provide a neural marker for the bias associated with accents, and show, for the first time, that the neural response to speech is partly shaped by the geographical background of the listener
    corecore