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Abstract 

Theories of hominin and human cognitive evolution have traditionally focused on the 

phylogeny of the human brain, and on comparisons of human and primate brains in 

relation to social or ecological variables. Far less attention has been paid to ontogenetic 

processes, despite the recognition that experience has a profound influence on adult 

cognition. In this paper we discuss the interplay between phylogeny and ontogeny by 

examining relationships between human brain size, developmental scheduling and 

cognition.  

 The correlates of large brains include not only altered subsistence and life-history 

strategies to meet associated energetic costs, but also on macro- and micro-scale 

structural adaptations required to meet increased processing costs which mean that 

larger brains are of necessity more highly interconnected brains, with higher degrees of 

folding o the neocortex (gyrification) and higher ratios of myelinated connections 

between neurons (white matter) to neurons themselves (grey matter). Here we argue 

that the combination of these evolutionary trends underpins the complexity of human 

behaviour, as the neural circuits involved in cognitive mechanisms such as the mirror 

neuron system (the system governing motor emulation and imitation) and theory of 

mind (fundamental in social cognition) mature only slowly, and require considerable 

socially-scaffolded experience to develop to their full potential. These abilities are likely 

to be fundamental in characteristically human behaviours such as the cultural 

transmission of complex forms of tool manufacture and use attested to in the 

archaeological record, and their elaborated modern human forms, we argue, are 

possible only in the context of the evolution of relatively slower trajectories of brain 

growth and hence longer periods during which the growing brain can be influenced by 

experience among modern humans relative to other primates.  

Here we review some of the differences in ontogenetic brain development 

between humans and other primates, and compare the rates and trajectories of neural 

development between ourselves and our closest living relatives the chimpanzees to 
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suggest that the human pattern of expanded periods of growth coupled with slower 

trajectories of neural development is likely to have been of huge significance during 

hominin evolution. In addition, we discuss fossil and archaeological proxies which 

might allow the reconstruction of evolutionary patterns of development, suggesting that 

it is only post-Homo erectus and specifically among Homo heidelbergensis and Homo 

neanderthalensis populations that developmental patterns approximate those of 

modern humans, arguing for a similar – but not identical – role for socially-scaffolded 

learning of complex technical skills as among modern groups in these species. 

 

 

Introduction 

 

Theories of hominin and human cognitive evolution have traditionally focused on the 

phylogeny of the human brain in relation to socio-ecological variables. A prominent 

example of such research is the Social Brain Hypothesis, the central tenet of which 

suggests that the size of the neocortex places constraints on social cognition and hence 

the size of the social group (Dunbar 1992, 9). Far less attention has been paid to 

ontogenetic, developmental processes such as the effects of infant socialization within 

these larger and/or more complex social groups, despite the fact that many lines of 

evidence now suggest that length and intensity of development and socialization have a 

profound influence on adult cognition and particularly on social performance.  

By arguing for a renewed focus on ontogeny we are not suggesting that phylogeny 

is not important. Experiments in raising chimpanzee infants in human households did 

not produce simply unusually hairy humans (Hayes 1952) – our genetic heritage is of 

course fundamental to the structure and function of our brains, and to our development 

more generally. Indeed, our argument below will be based on the premise that it is the 

phylogenetic evolution of crucial life history parameters that makes the role of ontogeny, 

development and environmental so important. Adult cognition and indeed brain 

configuration is the result of the interplay between phylogeny and genetics on the one 

hand and ontogeny and an individual‟s interactions with the physical and the social 

environment on the other. Even fully „modern‟ Homo sapiens do not automatically 

become fully-functioning members of their societies, any more than other animals 

denied environmental input at critical periods of development acquire many of their 

own species-typical traits – even those often considered genetically „hardwired‟ such as 



 3 

birdsong require experience and exposure to environmental stimuli to develop (e.g. 

Brainard and Doupe 2002). One of the aims of this paper is thus to argue that both 

phylogeny and ontogeny must be considered in any account of hominin evolution. 

 

We will argue here that it is in fact the strong relationships between brain size and life 

history (Robson and Wood 2008; Barrickman et al. 2007; Smith and Tompkins 1995; 

Harvey et al. 1986) that are key to investigating hominin brains. We will examine the 

general ontogenetic trajectory of brain growth in humans relative to that in 

chimpanzees, and the relevance of these trajectories for social cognition, focusing 

particularly on two specific aspects of brain structure – gyrification and the ratios of 

grey and white matter in the brain – that are of particular importance during brain 

development. In the final section of the paper we consider the implications of a 

difference in trajectories between humans and chimpanzees for an increasing 

(phylo)genetic role for ontogenetic developmental processes of socialization during 

hominin evolution. 

 

Ontogeny and phylogeny of human life history and growth 

 

Modern humans have a larger than expected adult brain for our body size, relative to the 

ratio in other primates (Isler et al. 2008). In theory, encephalization could be achieved 

by either extending the period or increasing the rate of brain growth (or through some 

combination of the two; Robson and Wood 2008, 401). Either of these paths to 

encephalization will necessarily have significant implications for wider life history 

strategies. 

Human life histories have much in common with those of the great apes. All great 

apes have relatively slow life histories, with long lifespans and slow growth (Charnov 

and Berrigan 1993). Slower life histories also correlate with larger adult body size (as 

energy can be invested in growth over a longer period), as well as with a constellation of 

other traits including larger babies (because larger mothers can invest in larger 

offspring), longer gestations and later age at first reproduction (Zollikofer and Ponce de 

Léon 2010; Robson and Wood 2008).  Most elements of the human life history „package‟ 

– with the interesting exceptions of age at first weaning and interbirth interval – see 

discussion in Robson & Wood (2008) are thus predictable from general primate trends, 

but are at the extreme end of the spectrum (Robson and Wood 2008). Our large body 
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and brain size mean that we develop extremely slowly, with an extended period of 

juvenile dependence, late puberty and age at first reproduction, and years (even 

decades) of prolonged and intensive parental effort.  

Pre-reproductive phases of human life are therefore absolutely and relatively 

longer than observed among other large-bodied apes with similar gestation lengths 

(Crews and Gerber 2003) and may even include evolutionarily novel stages of 

development such as adolescence (e.g. del Giudice et al. 2009; Locke and Bogin 2006; 

Bogin 1999; Schultz 1969). This unique human combination of life history traits has 

most frequently been explained in terms of selection for extended periods of 

development as an adaptation for the acquisition of complex ecological and/or 

technological foraging skills (e.g. del Giudice et al. 2009; MacDonald 2007), social skills 

(Joffe 1997), or indeed both (Walker et al. 2006).  

A related possibility is that the human life history strategy may have been 

adaptive because it mitigates ecological risk or reduces mortality. Under this hypothesis 

juvenile growth rates are slow because energetic resources are directed towards brains 

and immune systems to reduce the risk of starvation, and because slower rates of 

growth free up resources that can be used to feed younger siblings (Crews and Gerber 

2003). The resulting reduction in adult mortality among humans compared to other 

great apes (Robson and Wood 2008) may have reduced constraints on prolongation of 

growth, development and longer life spans in general, perhaps aided by cultural factors 

such as „material culture, language, and socio-culturally elaborated life ways, including 

long-term care of family members and late-life reproduction by men‟ (Crews and Gerber 

2003). 

Although in this argument 

 

„… juvenility did not evolve primarily for skill-learning, … it would nonetheless 

permit extensive learning ... once extended skills/social learning became possible 

thanks to a long juvenility, a self-reinforcing cycle could have ensued, in which 

the advantages of learning generated an evolutionary pressure to increase 

juvenility even further and promote the growth of even bigger brains‟ (del 

Giudice et al. 2009, 9)  

 

As well as their derived life history strategies modern humans are characterized 

by a distinctive pattern of growth. While human gestations are not significantly longer 
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than those of other anthropoids (Crews and Gerber 2003), they do demonstrate several 

differences in the allocation of energy to their foetuses, particularly in the last trimester 

when human foetal neurological development is fast-tracked at the expense of other 

tissues (Crews and Gerber 2003), contributing greatly to humans‟ secondary altriciality. 

This prioritization of brain growth continues throughout the first few years of life in 

humans: while brain growth continues at its rapid early pace for some time after 

infancy, bodily growth rates decline until the pubertal growth spurt corrects the 

imbalance (Bogin 1999).  

Regardless of this rapid peri- and post-natal brain growth, at birth human infants 

have achieved a smaller proportion of their brain growth than other great apes,  and this 

difference is maintained throughout their growth., as demonstrated clearly in Figure 1. 

Humans therefore reach their adult brain size more slowly than other primates. 

However, the differences have been exaggerated; the allometric exponent of neonatal 

brain size relative to adult brain size is negative (i.e., larger-brained species typically 

have smaller relative neonatal brain sizes), and human neonates have more or less the 

size of brain expected for an anthropoid primate of our brain size (DeSilva and Lesnik 

2008), at ~29.9% of adult size compared to ~40.1% for chimpanzees (see DeSilva and 

Lesnik 2006 for a comprehensive review). Human infants also reach adult brain size 

earlier than usually claimed – on average 90% of adult brain size is achieved by around 

5 years, only 1 year later than in chimpanzees (Robson and Wood 2008). While human 

mothers give birth to unusually large infants, then, those infants‟ brains are only slightly 

smaller than we would expect based on primate trends. 

In addition, the overall trajectories of relative brain growth for both humans and 

chimpanzees are remarkably similar (Figure 1), suggesting that if humans were simply 

born later we would not deviate markedly from general great apes‟ gestational strategies 

– at least, in terms of brain development. As discussed above, when dental and somatic 

or bodily growth are also taken into account, human ontogenetic patterns deviate much 

more markedly from those of chimpanzees, being significantly slower; Zollikofer and 

Ponce de Léon 2010, 443. Nevertheless, in terms of the degree of neural development of 

our offspring relative to those of other primates, humans do appear to have an 

anomalously short gestation period. One potential selective pressure for this probably 

relates to the constraints imposed by the size of the female pelvic canal, itself reduced 

relative to that of other primates by the bipedal posture of humans (Franciscus 2009).  
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However, pelvic capacity is unlikely to be the only cause of these difference 

between humans‟ and other primates‟ brain development. Postnatal development is not 

linear, and while comparisons of neonatal and adult brain size are informative, 

consideration of patterns of growth at a finer scale reveal more differences between 

humans and other great apes that may have significant implications for adult cognition 

and behaviour. 

While among precocial primates high gestational brain growth rates slow rapidly 

after birth relative to overall bodily growth, among (secondarily) altricial primates these 

rapid gestational rates of brain growth continue (Martin 1990). In humans these rapid 

growth trajectories continue for a full year after birth, compensating somewhat for our 

highly altricial offspring‟s small neonatal brain size. By a year after birth, human infants 

are pursuing a brain to body growth trajectory much like that of other primates – clearly 

demonstrated in Figure 2, in which we have „shifted‟ a chimpanzee trajectory to be as 

altricial (i.e. small-brained) at birth as a human neonate. 

Thus while trajectories of growth relative to adult brain size are not radically 

different among humans compared to other primates, growth rates do display some 

interesting differences. Figure 2 compares the growth rates of chimpanzees and humans 

over the first five years of life, and demonstrates that while rates of brain growth in 

chimpanzees peak no more than two months after birth, the human peak again occurs a 

full year later, at approximately 14 months. Note also that the peak growth rate in 

humans is somewhat lower than that in chimpanzees – meaning that despite our 

extreme altriciality, our brains never grow as fast postnatally (relative to their size) as do 

those of chimpanzees. Finally, it is also clear from this graph that the relative amount of 

brain growth occurring postnatally is substantially greater in humans than it is in 

chimpanzees (i.e. the area beneath the postnatal section of human curve is substantially 

greater). 

 

Socialization, mirroring and Theory of Mind 

 

Explanations of the specific advantages of extensive relative post-natal brain growth 

focus on the adaptiveness of a „critical period‟ in which the brain can be „tuned‟ to its 

environment during a relatively plastic growth phase. Some degree of neural plasticity 

continues well into adulthood (e.g. Merzenich 1987; Greenfield 1997, 115-118). However, 

the brain is particularly plastic early in life as the synapses develop between neurons 
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(„synaptogensis‟; Fig 3). Many of these developing synapses will be lost as the brain 

matures, due to competition for limited synaptic space and neural apoptosis 

(„programmed cell death‟; Fig 3). Thus the synaptic capacity of immature neurons is 

almost 50% greater than that of adult cells (Lenroot and Giedd 2006, 720). In the 

prefrontal cortex, peak synaptic density occurs at 3-4 years of age and declines as brains 

mature, particularly after puberty (Höistad et al. 2009, 6; Bear et al. 2007, 709), as 

those synapses that are reinforced by frequent use out-compete those that are under-

utilized, and grow stronger to enable more efficient transmission of information 

between neurons that are frequently associated in particular recurrent tasks (Deacon 

1997). „Slower‟ trajectories of brain growth thus allow for a much longer period of 

„experience-expectant information storage‟ (Greenough et al. 1987) over which these 

processes of synaptic proliferation, competition and pruning and neural apoptosis can 

occur (Figure 3), and during which they can be influenced by environmental stimuli 

(Bear et al. 2007; Westermann et al. 2006; see also Grove and Coward 2008 for further 

discussion). This long period of extreme plasticity in human children coincides with the 

development of „higher-order‟ neurobehavioural cognitive functions, including highly 

developed motor and social skills (Courchesne et al. 2003: 343). 

 

The mirror neuron system 

Mirror neurons, which are activated by both performance and observation of specific, 

goal-directed actions (Rizzolatti and Craighero 2004), were first identified in macaques 

and only later in humans. Until very recently, most work has thus assumed an 

evolutionarily primitive heritage among primates for the basic mechanisms involved in 

motor emulation that were elaborated later in the hominin and human lines. However, 

more recent work has suggested that the information necessary to match observed with 

executed actions may not be (completely) genetically specified, but that sensorimotor 

learning during development may also have a vital role to play. Experimental work has 

demonstrated that the functioning of the mirror neuron system (MNS) in both monkeys 

and humans is strongly affected by training and experience (Catmur et al. 2008; Iriki 

and Sakura 2008; Catmur et al. 2007; Keysers and Gazzola 2006; Ferrari et al. 2005), 

suggesting that the „mirroring‟ properties of the system are not completely innate. 

Instead, many are acquired through simple Hebbeian or associative learning processes,  

in which the temporal correlation of observation and motor performance activates both 

neural circuitries simultaneously, entraining the circuitries associated with both 
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observation of others‟ actions (in multiple sensory modes) and kinaesthetic and sensory 

feedback from one‟s own actions and links them into a shared „mirroring system‟, The 

Hebbeian maxim is thus, „what fires together wires together‟ (Catmur et al. 2007; 

Keysers and Perrett 2004). 

Neurological imaging and kinematic studies have demonstrated the vital role of 

sensorimotor functions and bodily „know-how‟ in tool manufacture and use (Stout et al. 

2008; Bril and Roux 2005; papers in Roux and Bril 2005) alongside - if not primary to - 

the „higher-level‟ prefrontal and executive functions presumably involved in the broader 

contexts of action from the sourcing of raw materials to schemata of use. Among all tool-

using primates, tool use is socially acquired and therefore likely to be reliant on MNS-

mediated motor imitation – suggesting that it is the evolution and/or development of 

the MNS that underpins the appearance and elaboration of stone tools in the 

archaeological record. While the monkey MNS has now been demonstrated to respond 

to actions performed with tools (previously thought to be a human specialism), this has 

been demonstrated only after a long period of experimentation and familiarization of 

the monkeys to the tools and their use (Ferrari et al. 2005, 213, 221). In contrast, recent 

studies have suggested that in humans mere observation, or even simply thinking about 

motor actions may be almost equivalent to actual motor practice in improving motor 

learning (Heyes 2001, 256). While trained individuals do demonstrate stronger 

activations in response to others‟ actions (for example, trained pianists report finding it 

difficult to keep their fingers still while listening to piano music), even naïve individuals 

show some degree of neural activation when they observe others‟ actions (Keysers and 

Gazzola 2006, 389). This probably reflects the flexibility inherent in the varying 

selectivity of different neurons in the MNS, with some responding only to very specific 

motor actions and others more broadly, so that even novel actions can be extrapolated 

from the wide variety of motor skills that are within the observer‟s motor vocabulary 

(Keysers and Gazzola 2006, 389).  

It is also notable that in monkeys, an MNS response to tool-actions was not 

sufficient for them to actually imitate the behaviour – given the opportunity to use a 

stick used in an experiment to access food left out of reach, the monkeys never 

attempted to do so (though at least one did pick up the stick and bite it; Ferrari et al. 

2005). In fact, primates generally, while good emulators (being able to reproduce the 

physical results of actions in often very creative ways), are usually considered rather 

poor at imitation. In Horner and Whiten‟s „puzzle box‟ experiments (2005), for 
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example, juvenile chimpanzees shown how to access food inside the box performed only 

those actions relevant to retrieve the prize, while human children performed even the 

unnecessary actions they had observed. However, results of similar experiments 

designed to test apes‟ imitation skills have been mixed, and Heyes‟ review of the 

evidence suggest that chimpanzees „can imitate to the extent that they have had prior 

experience of interacting with humans and/or explicit training to imitate‟ (Heyes 2001, 

253; see also Iacoboni 2005). Animals deliberately exposed to particular forms of 

stimuli not frequently encountered in the wild routinely develop skills and behaviours 

not practiced by their wild conspecifics – hence the mismatch in a wide range of 

cognitive skills demonstrated by human-enculturated and wild chimpanzees (e.g. 

Ferrari et al. 2005; Heyes 2001, 253), suggesting that development of both the MNS and 

imitation are heavily scaffolded by experience . 

A key observation here is that motor „mirroring‟ among humans is also very 

closely linked to social skills. Humans tend to (non-consciously) imitate one another‟s  

facial expressions, gestures and mannerisms during social interactions (Frith 2008), 

with the degree of mirroring related to high scores on paper tests for empathy. Such 

mirroring inclines the „imitated‟ party to perceive the interaction (and his/her 

interlocutor) positively (Heyes 2001, 256). Significantly, many of the motor actions 

involved in such social mirroring involve „perceptually opaque‟ movements. For 

„transparent‟ motor behaviours such as hand movements, others‟ and one‟s own actions 

can be perceived simultaneously and the neural pathways are thus amenable to simple 

associative learning processes. However, the movements of the face and trunk that are 

so crucial to social interaction are typically only visible using cultural artefacts such as 

mirrors, or through interaction with others (Catmur et al. 2007; Heyes 2001). Co-

activation and entrainment of the motor and sensory neural circuits involved in these 

actions requires that we, „watch others as they do what we are doing – whether they are 

deliberately imitating our movements, as adults imitate infants, or simply reacting in 

the same way to ongoing events, like fellow spectators at a sports match‟ (Catmur et al. 

2007, 1529; see also Keysers and Gazzola 2006, 396; Heyes 2001). 

The key to how the human MNS functions to imitate skilled behaviours such as 

tool manufacture and use is therefore to be found not only in phylogeny but also in 

ontogeny, as social skills and behaviours are critical to imitation and the acquisition of 

skilled motor actions. Chimpanzee tool use is of course highly skilled and socially 

acquired, particularly in the context of the mother-infant bond where infants have 
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strong intrinsic motivation to copy behaviour and mothers to facilitate such copying 

(e.g. Matsuzawa 2007). However, this facilitation stops short of formal teaching 

(Tomasello 1999), and it has been argued that chimpanzee learning is based on a dyadic 

subject-object framework (mother-infant; mother-object; infant-object; object-object) 

focused on the emulation of actions on objects, rather than on socially-referenced triadic 

relationships among mothers-and-infants-and-objects (Matsuzawa 2007, 10; see also 

Sherwood et al. 2008, 435).  In human children, such triadic relations commence from 

around 9 months of age (Sherwood et al. 2008, 435), and are strongly associated with 

other social skills, notably the capacities for joint attention and intentionality.  

Individuals of many species may act together, either because their actions 

mutually affect one another and become coordinated or because of „simultaneous 

affordances‟ in the environment that stimulate similar behaviours, for example a fresh 

carcass or indeed a buffet table (Knoblich and Sebanz 2008). However, higher levels of 

joint action may occur when individuals are able not only to perceive behavioural cues 

such as direction of gaze or bodily orientation but also to interpret them in the light of 

their own motor repertoire (via the MNS) and to attend to the same object(s) together  - 

for example a parent pointing out things of interest (Knoblich and Sebanz 2008). Gaze 

following in particular has been widely studied in a variety of animal species, but studies 

on chimpanzees have produced mixed results (Sherwood et al. 2008, 430, 434 for 

review) while both dogs (e.g. Hare and Tomasello 2005) and goats (Kaminski et al. 

2005) are consistently capable of following humans‟ gazes. This would suggest that 

domestication/socialization to (human) social systems in which joint attention is 

common may again be a key stimulus for the development of these abilities.  

Once individuals are able to determine what someone is attending to, they may 

also be able to compare their own perceptions with those of the other to determine 

whether they are shared (Knoblich and Sebanz 2008). This level of joint attention 

clearly requires complex social cognitive skills, notably Theory of Mind (see below), and 

is likely to be the essential prerequisite for teaching, allowing the instructor to 

determine whether the learner has all the necessary perceptual attention or whether 

attention-guiding gestures such as pointing may be necessary (Frith 2008). While, as 

noted above, chimpanzee mothers facilitate infants‟ learning by making all the 

necessary equipment available, they do not direct attention to parts of the task they get 

wrong or correct their mistakes (Matsuzawa 2007; Tomasello 1999), and chimpanzees 

do not appear to use „ostensive‟ gestures that would indicate the signal to follow will be a 
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deliberate communication about something of relevance to the receiver. In contrast, 

human infants are very sensitive to these behavioural cues; for example, eye contact 

prior to demonstration of a novel action or the naming of objects dramatically improves 

a child‟s imitation  of that action or recall of the name (Frith 2008).  

Among humans, individuals are also usually able to move beyond this stage of 

behavioural cueing to model the intentions behind actions and to engage in 

complementary action to aid (or to hinder) others‟ actions – joint intentionality. In 

order to achieve this it is necessary to represent both their own and others‟ 

contributions to the final goal (Knoblich and Sebanz 2008, 2025). Among humans, of 

course, there is a questionmark over the extent to which the evolution of human 

language scaffolds the development of higher stages of joint attention during childhood, 

or indeed the evolution of the underlying cognitive mechanisms among our hominin 

ancestors. However, many of these behaviours have precursors in other primates and 

thus were probably inherited from a common ancestor, and language learning itself is 

hugely reliant on social interaction and cognition in general, and ToM (see below), joint 

attention and perhaps also the MNS more specifically, suggesting that these forms of 

fundamentally social cognition are primary to language, not results of it. 

In short, far from being innate, genetically specified mechanisms for acquiring 

skilled behaviour, the MNS and skilled motor imitation more generally are hugely 

influenced by experience acquired during development, which is provided as much by 

the social as the physical environment. The acquisition of these skills, utilising 

genetically inherited basal capacities, is thus strongly associated with - and probably 

scaffolded by - fundamental mechanisms of social cognition such as Theory of Mind 

(ToM).  

 

Theory of Mind 

Theory of Mind (ToM) is perhaps most usefully defined as the ability to understand that 

not only do others think in much the same way that you do, but also that what they 

think may differ. This appreciation that others have a different perspective from 

yourself, and to model that alternative perspective, underpins human social interaction, 

and sets  us apart from most other primates in kind, and from all other primates in 

degree (see e.g. review in Emery and Clayton 2009). In modern human infants ToM 

emerges fully in infants by 4-5 years of age (Emery and Clayton 2009; Grove and 

Coward 2008 and references therein; Brüne and Brüne-Cohrs 2006, 440), i.e. during 
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the period of extreme plasticity occurring during the key phase of ontogenetic brain 

growth discussed previously.  

However, in some individuals ToM does not develop in the usual manner; autistic 

spectrum disorders (ASD), whose severe forms are sometimes known as Asperger‟s 

Syndrome, are characterized by deficits in social cognition and interaction and the 

avoidance of novel situations and behaviours of any kind. Although the specific nature 

of both the deficits and the neurological mechanism(s) involved in ASD remain the 

subject of considerable debate, one significant line of enquiry suggests that the 

condition can be defined, at least in part, by a lack of ToM abilities (Baron-Cohen et al. 

1985) while many other cognitive capacities and „non-social‟ forms of intelligence are 

preserved (Brüne and Brüne-Cohrs 2006, 446).  

In addition, individuals with ASD often demonstrate difficulties with imitation 

that seem to represent a failure of the ToM capacities that would normally „scaffold‟ the 

development of the MNS 

 

„…resulting from early inattention to social stimuli (including adults imitating the 

autistic infant), and deficits in joint attention reducing the frequency of 

synchronous movement in response to a common stimulus‟ (Heyes 2001, 259, 

 

such that Hebbeian processes responsible for the necessary neural connections 

do not occur, or occur to a lesser extent, in these individuals.  

A growing number of researchers have also implicated abnormal neurological 

developmental processes in ASD. Current evidence suggests that the autistic brain 

grows substantially faster than that of normally developing individuals (Courchesne et 

al. 2003, 2004, 2007; Redcay and Courchesne 2005), reaching adult weight 

considerably earlier as a result. Yet the adult brain size of autistic individuals does not 

differ significantly from that of neurotypical individuals, implying that it is the pattern 

of growth that is the crucial factor.  

In figure 4 we plot rates of brain growth of both neurotypical children and those 

with ASD  for comparison; the important point to note here is that the ASD phenotype 

involves a period of neural „overgrowth‟ relative to  neurotypical controls (Redcay and 

Courchesne 2005). As a result, children with ASD have substantially bigger brains than 

neurotypical controls between the ages of approximately 2 and 5, „at the beginning of an 

important period of developmental neuroplasticity and learning‟ (Courchesne et al. 



 13 

2003:343). Courchesne and colleagues argue that this more rapid growth of the brain in 

individuals with ASD shortens the critical period during which experience of the 

physical and social environments may influence synaptic proliferation and pruning.  

One argument is that this reduction of the timeframe in which the selective 

effects of experience may „shape‟ patterns of neural development means that ASD 

synaptic proliferation is explosive and random, resulting in early fixation of potentially 

anomalous connections and the subsequent inability of the apoptosis mechanism to 

achieve targeted pruning of maladaptive synaptic connections (Casanova et al. 2008; 

see below). 

Further support for this position may be found in recent arguments that ASD 

individuals often experience sensory hypersensitivity. Individuals with ASD have much 

better eyesight (≈2.79x better than average) and more sensitive olfactory, haptic and 

auditory systems than neurotypical controls; furthermore, the degree of hypersensitivity 

correlates with scores on measures of ASD severity (Baron-Cohen et al. 2009). As 

Baron-Cohen et al. point out, such hypersensitivity could be the result of processing 

differences at multiple levels: sensory receptors could be denser or more sensitive, 

neural processing could be faster and/or top-down inhibition systems could be affected. 

This last might mean that the process of forming higher-level „holistic concepts and 

meaningful labels‟ (Snyder 2009) that usually help structure perception of sensory 

information and inhibit the costly processing of lower-level details does not occur (or 

occurs to a lesser extent) among individuals with ASD. These individuals would then 

routinely experience sensory „overload‟, with reduced top-down processing constraints 

resulting in a low signal-to-noise ratio.  

Neuroimaging of the brains of individuals with ASD does indeed appear to show 

reduced coordination of activity between association areas and those mediating 

perceptual and emotional processing. Brains are more connected between local regions, 

and differences in gyrification and in grey and white matter distribution (see below) 

suggest an increase in short-range relative to long-range connections (Casanova et al. 

2008). One argument is that among children with ASD, short-range neural connections 

proliferate at the expense of long-range  circuits and systems relating to top-down 

control and coordination during early development.Such a pattern of development 

might result from a failure of synaptic pruning mechanisms following early over-

production and/or a disturbance in white matter production, such as in processes of 
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myelination that would make long-range connections more efficient and competitive. 

(Casanova et al. 2008).  

 It therefore seems likely that the development and refinement of higher-order and 

particularly social cognition is intimately related to the evolution of slower trajectories 

of neural developmental trajectory in normally developing humans, relative to that in 

other primates and in our hominin ancestors, and that a focus on the interplay between 

ontogenetic and phylogenetic factors is therefore fundamental to understanding 

hominin brain evolution. Most studies of hominin brain evolution have focused 

primarily on gross brain size and/or the relative sizes of different brain and particularly 

neocortical structures. However, larger brains are associated not only with the energetic 

costs offset by changing life-history strategies, but also with significaitn processing 

costs, as increased brain (and body) size is associated with increased transmission times 

for nerve impulses. In addition, as the number of neurons increases, the number of 

connections between them increases exponentially, and thus, given already extremely 

high levels of connectivity between cortical neurons, larger brains are potentially highly 

costly and inefficient. The ways in which these costs are offset, and the ways in which 

these interrelate with solutions to large brains‟ energetic costs, have significant 

repercussions for large-brained species. Two of these adaptations to the increased 

processing costs of large brains – gyrification and the ratio of white to grey matter in the 

brain - are examined briefly  in the following sections.  

 

 

Gyrification 

 

Perhaps the most obvious feature of the brain‟s gross anatomy is the wrinkled and 

folded surface of the neocortex. Viewed in section, it is clear that some parts of the 

neocortex bulge outward (gyri) while some are folded inward (sulci). The ratio of total 

cortical surface (i.e. including the surface area of cortex hidden in cerebral sulci) to 

exposed cortical surface (i.e. excluding the surface area of cortex within sulci; Rilling 

2006) yields a „gyrification index‟ (GI) which varies both phylogenetically and 

ontogenetically (Figures 5 and 6). 

The traditional explanation for increased levels of gyrification in large-brained 

primates has centred on the need to fit a larger brain (or, more specifically, neocortex) 

into a semi-spherical skull. This explains why gyrification of the expanded surface of the 
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neocortex is more pronounced in larger-brained species (White et al. 2009; Rilling 

2006; Zilles et al. 1988) - figure 5 demonstrates the existence of distinct evolutionary 

relationships between GI and brain weight in prosimians and anthropoids: the latter 

have substantially higher GIs than the former across much of the range of empirically 

documented brain weights, and GI increases with brain weight at a substantially higher 

rate in anthropoid primates (though it should be noted that the abscissa in Figure 5 

represents a logarithmic scale, indicating that, although GI is absolutely higher in larger 

brained animals, GI as a ratio to brain weight is relatively higher in smaller-brained 

primates). 

Among humans the degree of gyrification in some areas (notably 

temporal/parietal association regions and prefrontal cortex) is even greater than 

predicted from our larger brain size (White et al. 2009; Sherwood et al. 2008; see also 

Rilling 2006). This observation is better explained by newer theories of gyrification 

which argue that sulci and gyri develop as strongly connected regions are drawn 

together by the many axons linking them, reducing transit time for action potentials and 

enhancing the efficiency of specific circuits (White et al. 2009; Lenroot and Giedd 2006, 

720). Such a mechanism would explain the general link between brain size and GI (as 

transit time and efficiency become increasingly significant costs as brains become 

absolutely larger), and the human deviation from general mammalian trends in this 

regard is of particular interest here, suggesting adaptations for processing efficiency 

over and above those required by encephalization per se. 

The argument that gyrification relates to the development and elaboration of 

neural circuits also explains the ontogenetic changes in gyrification. Early stages of 

gyrification occur in the foetus only 10-15 weeks after conception (White et al. 2009, see 

Figure 5), but it is during the third trimester (when maternal resources are increasing 

directed towards foetal brain growth; see above) that GI increases dramatically and the 

brain begins to develop its adult morphology (White et al. 2009, see below; Lenroot and 

Giedd 2006). Although it was traditionally thought that gyrification plateaus after birth 

(i.e. matches the threefold postnatal volumetric growth of the brain), 3D techniques of 

assessing GI are now beginning to document changes in GI occurring throughout 

childhood and adolescence (White et al. 2009). In particular, gyrification appears to 

increase significantly in later-maturing regions such as prefrontal cortex between 6 and 

16 years and declines thereafter, perhaps especially at adolescence (White et al. 2009). 
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Although individuals‟ patterns of gyrification do appear to be strongly heritable, 

there is considerable individual variation and monozygotic twins also show considerable 

differences. Deeper and earlier-developing sulci such as the Sylvian fissure (the two very 

deep sulci lateral sulci that are one of the most prominent landmarks of the brain) are 

more similar between twins (and thus likely to be more highly constrained genetically) 

than superficial sulci which develop postnatally and which may thus be more plastic in 

response to stimuli from the physical and social environments (Sherwood et al. 2006; 

White et al. 2009).  

In short, then, the phylogenetic and ontogentic development of gyrification 

indices in the human brain suggest adaptations for greater connectivity to offset the 

potential inefficiency of larger brains – and, indeed, the evolution of gyrification indices 

greater even than this requirement in some parts of the human brain. Ontogenetically, 

the gradual development of gyrification among late-maturing parts of the brain may 

suggest a role for developmental experience in literally shaping the adult brain. 

 

 

Grey and White Matter Ratios 

 

The relative balance of „grey‟ and „white‟ matter in the brain provides an alternative 

perspective on these processes. Grey matter (actually a blood-suffused rosy colour in the 

living brain) is comprised of neural cell bodies, while „white‟ matter is mainly comprised 

of supporting glial tissue such as astrocytes (which play a role in regulating neuronal 

energy uptake), oligodendrocytes and myelin (the former synthesizes the latter, which 

sheathes axons to facilitate long-range propagation of action potentials; Barton 2006).  

The ratio of neurons to glia has long been known to vary phylogenetically (see 

Figure 7), with larger-brained (and bodied) species having lower neuronal densities 

(Barton 2006; Sherwood et al. 2006). However, in larger-brained species those neurons 

are larger and have longer and thicker axons (improving conduction velocity) which are 

increasingly myelinated (sheathed in fatty myelin), helping to insulate them and 

speeding up synaptic transmission), thus conserving processing speed in the face of 

greater transmission distances (Barton 2006). As brains grow larger across speciesthe 

volume of white matter thus rises disproportionately (Sherwood et al. 2006), and the 

ratio of grey to white matter in human brains is as expected for a primate of our brain 

size (Smaers et al. 2010; Schoenemann et al. 2005), making them relatively more 
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connected than those of smaller nonhuman primates - perhaps especially in prefrontal 

areas (Höistad et al. 2009, 5). 

However, ratios of white to grey matter also vary ontogenetically. Most of the 

neurons we will ever have are present by birth, and therefore volumes of grey matter do 

not change significantly post-natally. The rapid postnatal growth of the brain is instead 

due mainly to proliferation of synapses, maturation of the glial cells and myelination of 

axons (Höistad et al. 2009, 5), and white matter volume thus increases dramatically 

between birth and adolescence (see Figure 8), when considerable amounts of synaptic 

pruning occur. Myelination of cortical axons begins before birth. First to myelinate are 

the spinal cord and brainstem; the fibres linking the cerebellum to the cerebral cortex 

and which are necessary to the fine control of voluntary movement only begin to 

myelinate after birth, and do not mature until about 4 years of age (Höistad et al. 2009, 

5; Grove and Coward 2008; Lenroot and Giedd 2006), while intra-cortical connections, 

particularly in prefrontal regions, continue to myelinate well into the third decade of 

life, and do not decline here until after 50 years (see Figure 3 and refs in Höistad et al. 

2009, 401). In contrast, in humans grey matter growth declines after the age of 5, with 

volumes peaking at 10-12 years in frontal and parietal and 16-18 years in temporal 

regions (Höistad et al. 2009). 

Both gyrification and white:grey matter ratios undergo significant changes during 

adolescence, when a variety of gross psychological and behavioural changes also occur 

and also when a number of psychiatric disorders such as schizophrenia first manifest. 

This may thus be another critical period for brain development, as growth patterns 

change and brains enter the later, less plastic stages of maturation. While ASD seems to 

relate to atypical early  brain development trajectories (see above),  schizophrenia has 

been argued to represent an exaggeration of „normal‟ brain maturation mechanisms 

occurring during adolescence, such as reductions in grey matter volume, although 

myelin deficiencies and changes in white matter volume also often occur (Paus 2001; 

Paus et al. 2008, cited Höistad et al. 2009, 1, 6). While arguments continue to rage over 

the relative contributions of genetic inheritance and environment to conditions such as 

schizophrenia and ASD, genetic components do appear to be substantial (Picchioni and 

Murray 2007; Freitag 2006), suggesting high heritability of such developmental 

disturbances, which may be an unwelcome negative result of the extreme scaling of large 

brains. As discussed above, large brains – or, rather, enlarged neocortices – necessarily 

entail several functional correlates in order to maintain efficiency. They are  increasingly 
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dominated by disproportionately large late-maturing neocortices, which are increasingly 

closely inter-connected, with greater ratios of white to grey matter and larger 

gyrification indices. All of these  features of large brains require concomitantly slower 

maturational schedules and thus longer „critical periods‟ of plasticity during which they 

are influenced by social and physical environmental stimuli. The downside would seem 

to be that the complexity and prolongation of the process of „wiring‟ the brain renders 

larger brains more vulnerable to a variety of developmental abnormalities such as ASD 

or schizophrenia, as well as to degenerative conditions such as Alzheimer‟s or multiple 

sclerosis (Sherwood et al. 2006), suggesting that humans‟ large brains may be near the 

functional limits of encephalization (see e.g. Hofman 2001 for discussion) 

 

 

Discussion: the Evolution of Ontogeny 

 

The complex relationship between the phylogenetical evolution of the human brain and 

its ontogenetic development merits serious consideration of the extent to which the two 

processes may have interacted throughout hominin evolution  (see e.g. Zollikofer & 

Ponce de Léon 2010 for discussion). Relatively small variations in developmental 

patterns can have large effects both overall brain size and the relative sizes of brain 

components. One hypothesis is that encephalization may have been achieved via 

relatively simple single-gene mutations affecting the number of cycles of symmetric 

division precursor cells for neurons undergo before each cell begins to increase 

exponentially (Rakic 2009, 726): the more precursor cells that can be formed, the larger 

the structure that results, and as brain size increases, late-maturing structures such as 

the neocortex grow disproportionately larger via the same mechanism (Finlay and 

Darlington 2005; Finlay et al. 2001). Many of the genes thought to have been under 

selection in recent human evolution are believed to be regulatory genes governing the 

timing of developmental processes, and indeed regulatory genes may be fundamental to 

evolution more generally (Vaquerizas et al. 2009, 260). 

Large brains are associated with many costs, including reduced efficiency and 

high energetic demands. Nevertheless, encephalization has clearly been adaptive among 

primates generally, and the hominin lineage in particular, indicating that these costs are 

adequately balanced on an evolutionary timescale by benefits. One obvious possibility is 

that large brains are adaptive because of a net cognitive gain of some kind, although the 
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nature of the relationships between brain size, cognitive prowess and behavioural 

sophistication remains frustratingly unclear. Another possibility is that the wider 

constellation of adaptations surrounding large brains themselves are also adaptive.  

As we have seen, comparison of human brains with those of other primates 

demonstrate clearly that the energetic and efficiency costs of larger brains have been 

met by evolutionary changes to the structure of the adult brain - for example through 

increasing gyrification and greater proportions of white to grey matter – as well as to 

broader life histories strategies such as  longer, slower developmental schedules (Isler & 

van Schaik 2009). However, it is also highly possible that these „side-effects‟ of larger 

brains were also adaptive in and of themselves, and contributed to a positive feedback 

loop during hominin evolution in which the ontogenetically selective effects of extended 

„critical periods‟ of development, via which the structure of the brain itself can be at least 

partly fine-tuned to be optimal for the required functions, was also evolutionarily 

adaptive and therefore selected for in and of itself, 

Larger brains are of necessity relatively more interconnected brains to maintain 

efficiency of signalling; however, the complexity of human (and indeed ape) behaviour 

and of the neural „wiring‟ involved is such that our brains require extremely significant 

environmental input from both the physical and social environments if the individual is 

to function sufficiently well to survive and to negotiate a complex social world in order 

to reproduce. Thus, an increasing reliance on physical and especially social interaction 

to structure hominins‟ slower-growing brains is likely to have been adaptive not only as 

a means of off-setting the energetic and processing costs of larger brains, but also 

because it allowed the development of elaborated forms of hgher-order and social 

cognition possible only in the context of extended periods of growth and slower 

trajectories of neural development. Modern human patterns of brain growth and 

development trajectories may thus represent an extreme state of such a positive 

feedback loop, maximising the length of time during which environmental input can 

significantly influence the brain and allow the development of complex forms of 

cognition, to the extent that only small deviations are associated with conditions such as 

ASD and schizophrenia, which significantly impact on particularly social cognition, and 

reduce the likelihood of reproduction and thus evolutionary fitness (Avila et al. 2001; 

Walsh et al. 2008). 

Clearly, such fine-grained neurological developmental processes as gyrification 

and white:grey matter ratios cannot be studied directly in fossil remains. Work is 
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needed to establish the extent to which they may be estimated from proxies such as 

gross brain sizes ascertained from endocranial volumes or from the, many elements of 

the broaderlife-histories of extinct hominins which can be accessed in the fossil record, 

and allow tentative estimates as to the nature and timing of possible inflection points in 

the evolution of human developmental scheduling.   

In a previous paper (Grove and Coward 2008) the authors argued for Homo 

erectus as a possible break-point in hominin developmental scheduling. More recent 

work, including a comprehensive review by Robson and Wood (2008) and work by 

Zollikofer and Ponce de Léon (2010) have since provided further data, and allow a more 

detailed consideration of the evidence.  

Certainly in terms of overall brain size Homo erectus would seem to be a highly 

plausible candidate. „Archaic‟ hominins (the pre-erectines, in Robson & Wood‟s 

terminology; 2008) remained relatively small-brained (with the larger brains of the 

robust australopithecines apparently a specialized adaptation related to their derived 

dental and jaw morphology; DeSilva and Lesnik 2008). DeSilva and Lesnik calculated 

that the brains of australopithecine neonates would have been around 38.1% of adult 

size at birth and those of early Homo 35.2%, compared to values of ~40% for 

chimpanzees and only 29% for humans (see refs in Franciscus 2009), suggesting a 

general lack of selection for secondary altriciality for both the australopithecines and the 

earlier Sahelanthropus and Ardipithecus (refs in Zollikofer and Léon 2010, 447; Robson 

and Wood 2008, 412-415). The rejection of derived life-history scheduling for these 

early hominins is also supported by dental data documenting a more rapid trajectory of 

growth (Robson and Wood 2008, 411), although dental analyses of the robust 

australopithecines underline the mosaic nature of life history among different hominins 

by suggesting a unique „package‟ of dental ontogenetic scheduling (Zollikofer and Ponce 

de Léon 2010, 447). 

Only among Homo erectus specimens (sensu lato) do brain sizes increase to 

nearer modern than chimpanzee values (DeSilva and Lesnik 2008; Leigh 2006; Walker 

and Ruff 1993), and a number of studies have suggested that Homo erectus brain sizes 

were consistent with modern human brain-growth, with only ~33.1% of adult brain size 

achieved by birth (DeSilva and Lesnik 2008; Robson and Wood 2008). Other 

anthropological and archaeological developments associated with late erectus have also 

been used to suggest a significant change in lifeways including increased body size 

(Robson and Wood 2008), a greater focus on dietary meat and longer limbs suggesting 
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adaptations for more efficient bipedalism (O‟Connell et al. 1999) as well as expansion 

into northern latitudes (see refs in Grove and Coward 2008, 396) that might relate to 

both dietary and social innovations in meeting the different energetic demands of 

human developmental schedules. The association of erectus with the handaxe in 

particular has been argued to suggest an increased role for cognitive mechanisms 

permitting the faithful imitation of skilled motor behaviours. Acquiring the skills of 

Oldowan core-and-flake technologies may require only a relatively straightforward 

extension of action repertoires and social skills (Knoblich and Sebanz 2008). However, 

more complex tool behaviours involving „roughing-out‟ stages intended not to produce 

useful flakes but to prepare for later stages of manufacture may require higher levels of 

joint attention and intentionality to learn - the imitation, rather than emulation, of goal-

directed rather than simply sequential motor sequences. Thus ToM is also likely to be 

significant here (Knoblich and Sebanz 2008) in order to translate between one‟s own 

and others‟ perceptions – from „what I see‟ to „what s/he sees‟ and vice versa) – even 

before considering the significance or otherwise of handaxe symmetry, symbolism 

and/or „sexiness‟ (Hodgson 2009a, 2009b; Kohn and Mithen 1999 and comments 

thereafter; Wynn 1995; see also McNabb this volume for further discussion).  

However, other research has suggested that Homo erectus may not have been 

quite so modern after all. In particular, interpretations based on two of the major fossil 

specimens for examining life history scheduling in Homo erectus - the Mojokerto and 

Nariokotome juveniles – remain controversial. A mismatch in age at death as calculated 

using dental and skeletal methods for the Nariokotome juvenile (Dean and Smith 2009; 

Walker and Leakey 1993) has been used to argue that the derived modern human 

pattern of delayed juvenile growth and catch-up adolescent growth-spurt had not yet 

become established (Smith and Tompkins 1995), and that the Nariokotome boy had 

already undergone an early growth spurt more similar to that known among 

chimpanzees (Zollikofer & Ponce de Léon 2010, 448). Several more recent analyses of 

the material have also argued for a primate-style growth trajectory (Dean and Smith 

2009; DeSilva and Lesnik 2006; Leigh 2006).  

Age estimates of the Mojokerto child vary much more widely, ranging from 0.1-

1.5yrs to 4-6 years of age at death, and make it difficult to determine how much brain 

growth had occurred during gestation. If the Mojokerto child does fall at the younger 

end of this proposed age-range this would suggest a fast trajectory of growth more akin 

to that of modern non-human primates. However, if older a slower, more derived 
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„human‟ pattern is more likely (DeSilva and Lesnik 2006; Coqueugniot et al. 2004). 

Meanwhile, while the the subadult specimen from Dmanisi apparently developed faster 

than modern humans based on its degree of skeletal maturation, it nevertheless fell 

within the 95% range of modern human variation (Zollikofer & Ponce de Léon 2010, 

446). Zollikofer and Ponce de Léon‟s recent review concluded that early brain growth in 

Homo erectus was likely to have been fast (i.e., more „modern‟), but that these rates 

were not sustained for long (i.e., more „primitive‟; 2010, 446).   

In short, the Homo erectus material does not provide unambiguous evidence of a 

shift towards derived human life history and developmental scheduling. Perhaps this is 

not surprising given the wide geographical and temporal distribution and variability of 

specimens.  

It is therefore worth expanding on the arguments put forward previously (Grove 

and Coward 2008) to consider the later pre-modern Homo species more thoroughly. 

Although antecessor, heidelbergensis and neanderthalensis share considerable 

similarities with modern Homo sapiens in both postcranial and cranial morphology, 

insofar as it is fair to judge from the archaeological record they appear to have 

demonstrated several differences in behaviour and perhaps also cognition. Body masses 

and brain sizes among these species are statistically indistinguishable from those of 

modern Homo sapiens, and DeSilva and Lesnik (2008) calculate that ~29.5% of brain 

growth would have been completed prenatally among Middle Pleistocene Homo, 

compared to a figure of 29.9% for modern humans. Zollikofer and Ponce de Léon (2010) 

suggest that while postnatal brain growth rates were higher among Neanderthals than 

modern humans, their larger adult brain sizes meant they took the same amount of time 

to develop as in modern humans. 

However, a variety of other lines of evidence have also been used to investigate 

patterns of gestation and development in these mid- Pleistocene species. Studies on 

dental development, including crown and root formation and eruption times, have given 

mixed results (perhaps not surprising given the small sample sizes of many of the 

studies and the variability of modern human dental developmental schedules). Studies 

have variously argued that Neanderthals:  

1. Developed on faster and more rapid trajectories than Homo sapiens (e.g. Smith 

et al. 2007); 
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2. Had shifted towards the derived slow growth rate characteristic of humans 

relative to the shorter, more rapid periods of growth of Homo antecessor and Homo 

heidelbergensis (e.g. Bermúdez de Castro et al. 1999);  

3. Developed on a trajectory almost indistinguishable from modern humans 

(Machiarelli et al. 2006; Guatelli-Steinberg et al. 2005; Ramírez Rossi and Bermudez de 

Castro 2004; Dean et al. 2001), and 

4. Shared with all pre-modern Homo, including erectus (s.l.) a similar pattern of 

dental development, in contrast to non-human primates and archaic hominins, with 

Homo ergaster representing the evolutionary link between the two (e.g. Bermúdez de 

Castro et al. 2003; see review in Robson and Wood 2008, 414).  

The much better preserved fossil record of the Neanderthals (including many 

finds of juveniles and two neonates (Holloway et al. 2004) also allows consideration of 

other skeletal traits that might inform on life history strategies, notably the dimensions 

and shape of the pelvis. Trinkaus (1984) had suggested that Neanderthal pubic 

morphology was consistent with a longer period of gestation in this species, but this 

suggestion was strongly refuted by Rak and Arensburg (1987) and Rosenburg (1988). 

More recently, Weaver and Hublin (2009), based on the pelves of the Tabun female and 

Kebara male, concluded that Neanderthals retained a more primitive birth mechanism 

than modern humans, but that obstetric difficulty would have been about the same in 

both species.  

In addition, the stage of skeletal growth attained by the adolescent Neanderthal 

skeleton Le Moustier 1 by 10.5-13yrs of age would locate it in the lower part of the 

modern human bodily growth trajectory - although its height was only slightly less than 

that of modern humans, suggesting that Neanderthal adolescents probably underwent a 

similar growth spurt to modern humans (see e.g. Zollikofer & Ponce de Léon 2010, 448 

for refs). 

This admittedly brief survey of work on life history evolution in later Homo 

indicates a number of variable adaptations with no simple dichotomy between 

„fast‟/primate and „slow‟/human strategies (DeSilva and Lesnik 2008; Robson and 

Wood 2008, 417; Crews and Gerber 2003, 13), but nevertheless a gradual development 

of the characteristic modern human condition of expanded juvenile period of 

development,  , with Homo erectus (s.l.) perhaps pushing the boundaries of non-human 

primates strategies, and Homo heidelbergensis and neanderthalensis approaching, if 
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not quite matching, modern human developmental schedules (cf. Hodgson this 

volume).  

 The significance of this slower developmental scheduling lies in its association with 

extended periods of brain growth, and hence the greater degree of environmental 

influence the growing brain was subject to during the critical periods of synaptogenesis 

and synaptic competition.  

 

 

Conclusions 

 

Investigation into the evolution of modern human cognition has focused primarily on 

insights from phylogenetic comparison of gross brain size and structure of human brain 

and those of other primates. The role of ontogenetic and developmental factors has not 

been accorded the significance it deserves in studying the evolution of cognition, and 

particularly of technological and social behaviours.  

The implications for archaeology are significant. Two of the most significant 

elements of modern human cognition, the Mirror Neuron System and Theory of Mind, 

are both strongly reliant on social and kinaesthetic experience scaffolded by social 

interaction for full realization in human infants, and their elaboration in modern 

humans may be related to our much longer periods of development and particularly 

dependent childhood relative to other primates. During this time brains continue to 

develop and mature in the context of social and physical environments which impact on 

the processes of synaptic competition and pruning and myelination, as documented by 

changing patterns of gyrification and ratios of grey to white matter. These „slower‟ 

trajectories of growth (relative to those of other primates) are of course part and parcel 

of wider life-history strategies related to the re-structuring of energetic budgets across 

the whole lifespan necessitated by encephalization. At the same time, adaptations to the 

processing costs of larger brains - in particular, the phylogenetic patterns of gyrification 

and the ratio of white to grey matter – led to increasing interconnectivity of hominin 

and human neocortices, and these processes also had significant effects on cognition. It 

is the scale and complexity of those connections, and the structuring role of 

environmental input in their development - that both allows the elaborations of the 

MNS and ToM seen among modern humans, and their interaction, and that renders 
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humans more vulnerable to developmental and/or degenerative disruption of normal 

processing. 

It is possible that this role of ontogenetic experience in shaping the brain was a 

fortuitous by-product of encephalization adaptive for other reasons. However, the 

potential adaptiveness of the neural and cognitive plasticity that results may also have 

been adaptive in and of itself, and an alternative possibility may be that large brains are 

a by-product of selection for increasing neural plasticity achieved through delayed 

maturation of the brain. The modern human brain and cognition is likely to be the result 

of a complex constellation of selective pressures and releases linking encephalization, 

long,slower life histories and delayed maturation of the brain, larger and more complex 

social groups and subsistence practices etc. (see e.g. Coward & Grove submitted figure 

1), and there is no reason why selective pressures should have remained constant or 

equal throughout hominin evolution, but it does seem clear that ontogenetic processeses 

of neural development, and the structuring experience of and interaction with the social 

and physical world are likely to have been extremely significant throughout hominin 

evolution.   

Early developments in the hominin line, notably the habitual use of stone tools in 

the extraction of animal protein (only appearing themselves at 2.6mya (Semaw et al. 

1997) but attested to by cutmarks on bones from 3.3mya (McPherron et al. 2010)), 

would seem to represent significant behavioural changes from panin lifeways. Not only 

are these stone tools used in rather different ways, but they also seem to demonstrate 

enhanced levels of motor skill relative to those known among even enculturated and 

trained chimpanzees (Delagnes & Roche 2005) – possibly related to the adoption of 

bipedalism and the release of locomotive selective pressures on wrist and hand anatomy 

(Ambrose 2001, 1750; Hodgson this volume). However, these early tools do not seem to 

be accompanied by any obvious fossil indicators of changed life histories (Robson & 

Wood 2008), and appear to be explicable in terms of more skilled forms of motor 

emulation, rather than goal-level (socially-scaffolded) imitation, and it is not until the 

appearance of Mode 2 and subsequent technologies that it is clear that at least 

precursors of the cognitive skills involved in fine-grained imitation and social 

interaction had become established at a level distinguishing hominins from other 

primates. However, these early changes in lifeway may represent the earliest 

elaborations on a basic primate theme, establishing the selective environments which 

made the later elements of the modern human cognitive suite adaptive. 
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Figures 

 

Figure 1. The trajectories of human and chimpanzee brain growth compared. The three 

human trajectories are from autopsy samples; the lines shown are the best-fit lines 

calculated by Kretschmann et al. (1979) from the raw data in each case. The chimpanzee 

line was calculated by fitting the growth equation of Kretschmann and colleagues, 

             
  

                
, to data published by Herndon et al. (1999). 
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Figure 2. The similarity between the growth curves of chimpanzees and humans; the 

„shifted chimpanzee‟ is born as altricial as a human, and follows a very similar trajectory. 

The curves show human data from the Hannover Medical School sample (Kretschmann 

et al. 1979) and chimpanzee data from the Herndon et al. (1999) database. Both curves 

show male growth trajectories. 
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Figure 3. Sequence of events in brain maturation (redrawn from Lenroot and Giedd 

2006 figure 1). Neurulation, the initial development of neurons, occurs first and is 

followed by multiple cycles of the production of new neurons (neurogenesis). New 

connections begin to be established between neurons (synaptogenesis), and the axons of 

different neurons „compete‟ for space to synapse on the dendrites of recipient neurons 

and thereby establish a connection between those neurons (synaptic competition). 

Programmed cell death (apoptosis) prunes under-utilized neurons throughout these 

processes. Axons connecting neurons are ensheathed in fatty myelin to insulate and 

speed up action potentials travelling between those neurons, while further development 

and multiple branching (arborisation) of dendrites and axons and denrities continues 

throughout life.  
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Figure 4. Chimpanzee, non-autistic, and autistic human growth rates over the first five 

years of life. Note all lines are scaled to proportion of adult brain weight; there is of 

course a vast difference between the sizes of chimpanzee and human brains, with ASD 

and non-ASD brains being virtually identical in size by adulthood. The human curve is 

calculated from Hannover Medical School data (Kretschmann et al. 1979), and the 

chimpanzee curve from the Herndon et al. (1999) database. The autistic overgrowth 

curve is calculated by multiplying the Hannover Medical School curve by age-specific 

values of the Redcay and Courchesne (2005) autistic overgrowth equation. 
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Figure 5. The phylogeny of the gyrification index in prosimians and anthropoids (data 

from Zilles et al. 1989). 
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Figure 6. The ontogeny of the gyrification index in humans (data from Zilles et al. 

1988; curve fit as per the Kretschmann et al. 1979 procedure - see caption to Figure 1). 
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Figure 7. The phylogeny of grey and white matter ratios (data from Frahm et al. 1982).  
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Figure 8. The white matter growth trajectory compared to the average growth 

trajectory for all brain elements in humans (equations from Klekamp et al. 1989). 
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