2,351 research outputs found

    Predictive Performance Of Machine Learning Algorithms For Ore Reserve Estimation In Sparse And Imprecise Data

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2006Traditional geostatistical estimation techniques have been used predominantly in the mining industry for the purpose of ore reserve estimation. Determination of mineral reserve has always posed considerable challenge to mining engineers due to geological complexities that are generally associated with the phenomenon of ore body formation. Considerable research over the years has resulted in the development of a number of state-of-the-art methods for the task of predictive spatial mapping such as ore reserve estimation. Recent advances in the use of the machine learning algorithms (MLA) have provided a new approach to solve the age-old problem. Therefore, this thesis is focused on the use of two MLA, viz. the neural network (NN) and support vector machine (SVM), for the purpose of ore reserve estimation. Application of the MLA have been elaborated with two complex drill hole datasets. The first dataset is a placer gold drill hole data characterized by high degree of spatial variability, sparseness and noise while the second dataset is obtained from a continuous lode deposit. The application and success of the models developed using these MLA for the purpose of ore reserve estimation depends to a large extent on the data subsets on which they are trained and subsequently on the selection of the appropriate model parameters. The model data subsets obtained by random data division are not desirable in sparse data conditions as it usually results in statistically dissimilar subsets, thereby reducing their applicability. Therefore, an ideal technique for data subdivision has been suggested in the thesis. Additionally, issues pertaining to the optimum model development have also been discussed. To investigate the accuracy and the applicability of the MLA for ore reserve estimation, their generalization ability was compared with the geostatistical ordinary kriging (OK) method. The analysis of Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Error (ME) and the coefficient of determination (R2) as the indices of the model performance indicated that they may significantly improve the predictive ability and thereby reduce the inherent risk in ore reserve estimation

    An implementation of novel genetic based clustering algorithm for color image segmentation

    Get PDF
    The color image segmentation is one of most crucial application in image processing. It can apply to medical image segmentation for a brain tumor and skin cancer detection or color object detection on CCTV traffic video image segmentation and also for face recognition, fingerprint recognition etc. The color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper the, L*a*b color space conversion has been used to reduce the one dimensional and geometrically it converts in the array hence the further one dimension has been reduced. The a*b space is clustered using genetic algorithm process, which minimizes the overall distance of the cluster, which is randomly placed at the start of the segmentation process. The segmentation results of this method give clear segments based on the different color and it can be applied to any application

    Application of Spatiotemporal Fuzzy C-Means Clustering for Crime Spot Detection

    Get PDF
    The various sources generate large volume of spatiotemporal data of different types including crime events. In order to detect crime spot and predict future events, their analysis is important. Crime events are spatiotemporal in nature; therefore a distance function is defined for spatiotemporal events and is used in Fuzzy C-Means algorithm for crime analysis. This distance function takes care of both spatial and temporal components of spatiotemporal data. We adopt sum of squared error (SSE) approach and Dunn index to measure the quality of clusters. We also perform the experimentation on real world crime data to identify spatiotemporal crime clusters.

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Differential Evolution to Optimize Hidden Markov Models Training: Application to Facial Expression Recognition

    Get PDF
    The base system in this paper uses Hidden Markov Models (HMMs) to model dynamic relationships among facial features in facial behavior interpretation and understanding field. The input of HMMs is a new set of derived features from geometrical distances obtained from detected and automatically tracked facial points. Numerical data representation which is in the form of multi-time series is transformed to a symbolic representation in order to reduce dimensionality, extract the most pertinent information and give a meaningful representation to humans. The main problem of the use of HMMs is that the training is generally trapped in local minima, so we used the Differential Evolution (DE) algorithm to offer more diversity and so limit as much as possible the occurrence of stagnation. For this reason, this paper proposes to enhance HMM learning abilities by the use of DE as an optimization tool, instead of the classical Baum and Welch algorithm. Obtained results are compared against the traditional learning approach and significant improvements have been obtained.</p

    Machine learning methods for sign language recognition: a critical review and analysis.

    Get PDF
    Sign language is an essential tool to bridge the communication gap between normal and hearing-impaired people. However, the diversity of over 7000 present-day sign languages with variability in motion position, hand shape, and position of body parts making automatic sign language recognition (ASLR) a complex system. In order to overcome such complexity, researchers are investigating better ways of developing ASLR systems to seek intelligent solutions and have demonstrated remarkable success. This paper aims to analyse the research published on intelligent systems in sign language recognition over the past two decades. A total of 649 publications related to decision support and intelligent systems on sign language recognition (SLR) are extracted from the Scopus database and analysed. The extracted publications are analysed using bibliometric VOSViewer software to (1) obtain the publications temporal and regional distributions, (2) create the cooperation networks between affiliations and authors and identify productive institutions in this context. Moreover, reviews of techniques for vision-based sign language recognition are presented. Various features extraction and classification techniques used in SLR to achieve good results are discussed. The literature review presented in this paper shows the importance of incorporating intelligent solutions into the sign language recognition systems and reveals that perfect intelligent systems for sign language recognition are still an open problem. Overall, it is expected that this study will facilitate knowledge accumulation and creation of intelligent-based SLR and provide readers, researchers, and practitioners a roadmap to guide future direction
    corecore