62,180 research outputs found

    Robust fuzzy PSS design using ABC

    Get PDF
    This paper presents an Artificial Bee Colony (ABC) algorithm to tune optimal rule-base of a Fuzzy Power System Stabilizer (FPSS) which leads to damp low frequency oscillation following disturbances in power systems. Thus, extraction of an appropriate set of rules or selection of an optimal set of rules from the set of possible rules is an important and essential step toward the design of any successful fuzzy logic controller. Consequently, in this paper, an ABC based rule generation method is proposed for automated fuzzy PSS design to improve power system stability and reduce the design effort. The effectiveness of the proposed method is demonstrated on a 3-machine 9-bus standard power system in comparison with the Genetic Algorithm based tuned FPSS under different loading condition through ITAE performance indices

    Gray Image extraction using Fuzzy Logic

    Full text link
    Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).Comment: 8 pages, 5 figures, Fuzzy Rule Base, Image Extraction, Fuzzy Inference System (FIS), Membership Functions, Membership values,Image coding and Processing, Soft Computing, Computer Vision Accepted and published in IEEE. arXiv admin note: text overlap with arXiv:1206.363

    Self learning neuro-fuzzy modeling using hybrid genetic probabilistic approach for engine air/fuel ratio prediction

    Get PDF
    Machine Learning is concerned in constructing models which can learn and make predictions based on data. Rule extraction from real world data that are usually tainted with noise, ambiguity, and uncertainty, automatically requires feature selection. Neuro-Fuzzy system (NFS) which is known with its prediction performance has the difficulty in determining the proper number of rules and the number of membership functions for each rule. An enhanced hybrid Genetic Algorithm based Fuzzy Bayesian classifier (GA-FBC) was proposed to help the NFS in the rule extraction. Feature selection was performed in the rule level overcoming the problems of the FBC which depends on the frequency of the features leading to ignore the patterns of small classes. As dealing with a real world problem such as the Air/Fuel Ratio (AFR) prediction, a multi-objective problem is adopted. The GA-FBC uses mutual information entropy, which considers the relevance between feature attributes and class attributes. A fitness function is proposed to deal with multi-objective problem without weight using a new composition method. The model was compared to other learning algorithms for NFS such as Fuzzy c-means (FCM) and grid partition algorithm. Predictive accuracy and the complexity of the Fuzzy Rule Base System (FRBS) including number of rules and number of terms in each rule were taken as terms of evaluation. It was also compared to the original GA-FBC depending on the frequency not on Mutual Information (MI). Experimental results using Air/Fuel Ratio (AFR) data sets show that the new model participates in decreasing the average number of attributes in the rule and sometimes in increasing the average performance compared to other models. This work facilitates in achieving a self-generating FRBS from real data. The GA-FBC can be used as a new direction in machine learning research. This research contributes in controlling automobile emissions in helping the reduction of one of the most causes of pollution to produce greener environment

    Alphabet Sign Language Recognition Using Leap Motion Technology and Rule Based Backpropagation-genetic Algorithm Neural Network (Rbbpgann)

    Full text link
    Sign Language recognition was used to help people with normal hearing communicate effectively with the deaf and hearing-impaired. Based on survey that conducted by Multi-Center Study in Southeast Asia, Indonesia was on the top four position in number of patients with hearing disability (4.6%). Therefore, the existence of Sign Language recognition is important. Some research has been conducted on this field. Many neural network types had been used for recognizing many kinds of sign languages. However, their performance are need to be improved. This work focuses on the ASL (Alphabet Sign Language) in SIBI (Sign System of Indonesian Language) which uses one hand and 26 gestures. Here, thirty four features were extracted by using Leap Motion. Further, a new method, Rule Based-Backpropagation Genetic Al-gorithm Neural Network (RB-BPGANN), was used to recognize these Sign Languages. This method is combination of Rule and Back Propagation Neural Network (BPGANN). Based on experiment this pro-posed application can recognize Sign Language up to 93.8% accuracy. It was very good to recognize large multiclass instance and can be solution of overfitting problem in Neural Network algorithm

    Towards a Comprehensible and Accurate Credit Management Model: Application of four Computational Intelligence Methodologies

    Get PDF
    The paper presents methods for classification of applicants into different categories of credit risk using four different computational intelligence techniques. The selected methodologies involved in the rule-based categorization task are (1) feedforward neural networks trained with second order methods (2) inductive machine learning, (3) hierarchical decision trees produced by grammar-guided genetic programming and (4) fuzzy rule based systems produced by grammar-guided genetic programming. The data used are both numerical and linguistic in nature and they represent a real-world problem, that of deciding whether a loan should be granted or not, in respect to financial details of customers applying for that loan, to a specific private EU bank. We examine the proposed classification models with a sample of enterprises that applied for a loan, each of which is described by financial decision variables (ratios), and classified to one of the four predetermined classes. Attention is given to the comprehensibility and the ease of use for the acquired decision models. Results show that the application of the proposed methods can make the classification task easier and - in some cases - may minimize significantly the amount of required credit data. We consider that these methodologies may also give the chance for the extraction of a comprehensible credit management model or even the incorporation of a related decision support system in bankin
    corecore