511 research outputs found

    Laminated Injection Mould with Conformal Cooling Channels: Optimization, Fabrication and Testing

    Get PDF
    Conformal cooling channels follow the cavity shape and can provide a better cooling performance in injection moulds. Laminated tooling is one of the techniques for manufacturing injection moulds with conformal cooling systems. A laminated tool is made by stacking metal sheets of varying thicknesses from which pre–calculated profiles have been cut. The stacked sheets result in a jagged die surface that has to be finished before use. Although larger number of small thickness sheets result in small irregularities that can be finished easily, it increases the cost of profile cutting process. Therefore, one of the issues in laminated tooling is determination of sheet thicknesses so that the laminated die can be made optimally. In this paper, an optimization method is presented to find the best size of the various laminas based on CAD model surface geometry such that the surface jaggedness and the number of slice is reduced at the same time. The final mould is fabricated based on suggested optimization method. It is then tested to show the improvement in cooling performance as compared to the same die with conventional cooling channels.This work has been supported by the Natural Sciences and Engineering Research Council of Canad

    Design and fabrication of conformal cooling channels in molds:Review and progress updates

    Get PDF
    Conformal cooling (CC) channels are a series of cooling channels that are equidistant from the mold cavity surfaces. CC systems show great promise to substitute conventional straight-drilled cooling systems as the former can provide more uniform and efficient cooling effects and thus improve the production quality and efficiency significantly. Although the design and manufacturing of CC systems are getting increasing attention, a comprehensive and systematic classification, comparison, and evaluation are still missing. The design, manufacturing, and applications of CC channels are reviewed and evaluated systematically and comprehensively in this review paper. To achieve a uniform and rapid cooling, some key design parameters of CC channels related to shape, size, and location of the channel have to be calculated and chosen carefully taking into account the cooling performance, mechanical strength, and coolant pressure drop. CC layouts are classified into eight types. The basic type, more complex types, and hybrid straight-drilled-CC molds are suitable for simply-shaped parts, complex-shaped parts, and locally complex parts, respectively. By using CC channels, the cycle time can be reduced up to 70%, and the shape deviations can be improved significantly. Epoxy casting and L-PBF show the best applicability to Al-epoxy molds and metal molds, respectively, because of the high forming flexibility and fidelity. Meanwhile, LPD has an exclusive advantage to fabricate multi-materials molds although it cannot print overhang regions directly. Hybrid L-PBF/CNC milling pointed out the future direction for the fabrication of high dimensional-accuracy CC molds, although there is still a long way to reduce the cost and raise efficiency. CC molds are expected to substitute straight-drilled cooling molds in the future, as it can significantly improve part quality, raise production rate and reduce production cost. In addition to this, the use of CC channels can be expanded to some advanced products that require high-performance self-cooling, such as gas turbine engines, photoinjectors and gears, improving working conditions and extending lifetime

    Optimization of Laminated Dies Manufacturing

    Get PDF
    Due to the increasing competition from developing countries, companies are struggling to reduce their manufacturing costs. In the field of tool manufacturing, manufacturers are under pressure to produce new products as quickly as possible at minimum cost with high accuracy. Laminated tooling, where parts are manufactured layer by layer, is a promising technology to reduce production costs. Laminated tooling is based on taking sheets of metal and stacking them to produce the final product after cutting each layer profile using laser cutting or other techniques. It is also a powerful tool to make complex tools with conformal cooling channels. In conventional injection moulds and casting dies the cooling channels are drilled in straight paths whereas the cavity has a complex profile. In these cases the cooling system may not be sufficiently effective resulting in a longer cooling time and loss of productivity. Furthermore, conventional cooling channels are limited to circular cross sections, while conformal cooling channels could follow any curved path with variable and non circular cross sections. One of the issues in laminated tooling is the surface jaggedness. The surface jaggedness depends on the layers' thicknesses and surface geometry. If the sheets are thin, the surface quality is improved, but the cost of layer profile cutting is increased. On the other hand, increasing the layers' thicknesses reduces the lamination process cost, but it increases the post processing cost. One solution is having variable thicknesses for the layers and optimally finding the set of layer thicknesses to achieve the minimum surface jaggedness and the number of layers at the same time. In practice, the choice of layers thicknesses depends on the availability of commercial sheet metals. One solution to reduce the number of layers without compromising the surface jaggedness is to use a non-uniform lamination technique in which the layers' thicknesses are changed according to the surface geometry. Another factor in the final surface quality is the lamination direction which can be used to reduce the number of laminations. Optimization by considering lamination direction can be done assuming one or multiple directions. In this thesis, an optimization method to minimize the surface jaggedness and the number of layers in laminated tooling is presented. In this optimization, the layers' thicknesses are selected from a set of available sheet metals. Also, the lamination direction as one of the optimization parameters is studied. A modified version of genetic algorithm is created for the optimization purpose in this research. The proposed method is presented as an optimization package which is applicable to any injection mould, hydroforming or sheet metal forming tool to create an optimized laminated prototype based on the actual model

    Tool-Path Problem in Direct Energy Deposition Metal-Additive Manufacturing: Sequence Strategy Generation

    Get PDF
    The tool-path problem has been extensively studied in manufacturing technologies, as it has a considerable impact on production time. Additive manufacturing is one of these technologies; it takes time to fabricate parts, so the selection of optimal tool-paths is critical. This research analyzes the tool-path problem in the direct energy deposition technology; it introduces the main processes, and analyzes the characteristics of tool-path problem. It explains the approaches applied in the literature to solve the problem; as these are mainly geometric approximations, they are far from optimal. Based on this analysis, this paper introduces a mathematical framework for direct energy deposition and a novel problem called sequence strategy generation. Finally, it solves the problem using a benchmark for several different parts. The results reveal that the approach can be applied to parts with different characteristics, and the solution to the sequence strategy problem can be used to generate tool-paths.This work was supported in part by the Project HARITIVE under Grant HAZITEK 2017 and in part by the Project ADDISEND under Grant ELKARTEK 2018 through Basque Government, and in part by the European Union Horizon 2020 Research and Innovation Programme under Grant 822064. The work of Roberto Santana was supported in part by IT-1244-19, in part by the ELKARTEK Programmes through Basque Government, and in part by the Spanish Ministry of Economy, Industry and Competitiveness under Grant TIN2016-78365-R

    Design Optimization of Plastic Injection Tooling for Additive Manufacturing

    Get PDF
    This work presents a systematic and practical finite element based design optimization approach for the injection tooling adaptive to additive manufacturing (AM) technology using stereo-lithography (SLA) and powder bed fusion (PBF). First a thermomechanical optimization of conformal cooling is implemented to obtain the optimal parameters associated with conformal cooling design. Then, a multiscale thermomechanical topology optimization is implemented to obtain a lightweight lattice injection tooling without compromising the thermal and mechanical performance. The design approach is implemented to optimize a real design mold and the final optimal design is prototyped in SLA and the manufacturability in PBF has been discussed

    Adaptiver Suchansatz zur multidisziplinären Optimierung von Leichtbaustrukturen unter Verwendung hybrider Metaheuristik

    Get PDF
    Within the last few years environmental regulations, safety requirements and market competitions forced the automotive industry to open up a wide range of new technologies. Lightweight design is considered as one of the most innovative concepts to fulfil environmental, safety and many other objectives at competitive prices. Choosing the best design and production process in the development period is the most significant link in the automobile production chain. A wide range of design and process parameters needs to be evaluated to achieve numerous goals of production. These goals often stand in conflict with each other. In addition to the variation of the concepts and following the objectives, some limitations such as manufacturing restrictions, financial limits, and deadlines influence the choice of the best combination of variables. This study introduces a structural optimization tool for assemblies made of sheet metal, e.g. the automobile body, based on parametrization and evaluation of concepts in CAD and CAE. This methodology focuses on those concepts, which leads to the use of the right amount of light and strong material in the right place, instead of substituting the whole structure with the new material. An adaptive hybrid metaheuristic algorithm is designed to eliminate all factors that would lead to a local minimum instead of global optimum. Finding the global optimum is granted by using some explorative and exploitative search heuristics, which are intelligently organized by a central controller. Reliability, accuracy and the speed of the proposed algorithm are validated via a comparative study with similar algorithms for an academic optimization problem, which shows valuable results. Since structures might be subject to a wide range of load cases, e.g. static, cyclic, dynamic, temperature-dependent etc., these requirements need to be addressed by a multidisciplinary optimization algorithm. To handle the nonlinear response of objectives and to tackle the time-consuming FEM analyses in crash situations, a surrogate model is implemented in the optimization tool. The ability of such tool to present the optimum results in multi-objective problems is improved by using some user-selected fitness functions. Finally, an exemplary sub-assembly made of sheet metal parts from a car body is optimized to enhance both, static load case and crashworthiness.Die Automobilindustrie hat in den letzten Jahren unter dem Druck von Umweltvorschriften, Sicherheitsanforderungen und wettbewerbsfähigem Markt neue Wege auf dem Gebiet der Technologien eröffnet. Leichtbau gilt als eine der innovativsten und offenkundigsten Lösungen, um Umwelt- und Sicherheitsziele zu wettbewerbsfähigen Preisen zu erreichen. Die Wahl des besten Designs und Verfahrens für Produktionen in der Entwicklungsphase ist der wichtigste Ring der Automobilproduktionskette. Um unzählige Produktionsziele zu erreichen, müssen zahlreiche Design- und Prozessparameter bewertet werden. Die Anzahl und Variation der Lösungen und Ziele sowie einige Einschränkungen wie Fertigungsbeschränkungen, finanzielle Grenzen und Fristen beeinflussen die Auswahl einer guten Kombination von Variablen. In dieser Studie werden strukturelle Optimierungswerkzeuge für aus Blech gefertigte Baugruppen, z. Karosserie, basierend auf Parametrisierung und Bewertung von Lösungen in CAD bzw. CAE. Diese Methodik konzentriert sich auf die Lösungen, die dazu führen, dass die richtige Menge an leichtem / festem Material an der richtigen Stelle der Struktur verwendet wird, anstatt vollständig ersetzt zu werden. Eine adaptive Hybrid-Metaheuristik soll verhindern, dass alle Faktoren, die Bedrohungsoptimierungstools in einem lokalen Minimum konvergieren, anstelle eines globalen Optimums. Das Auffinden des globalen Optimums wird durch einige explorative und ausbeuterische Such Heuristiken gewährleistet. Die Zuverlässigkeit, Genauigkeit und Geschwindigkeit des vorgeschlagenen Algorithmus wird mit ähnlichen Algorithmen in akademischen Optimierungsproblemen validiert und führt zu respektablen Ergebnissen. Da Strukturen möglicherweise einem weiten Bereich von Lastfällen unterliegen, z. statische, zyklische, dynamische, Temperatur usw. Möglichkeit der multidisziplinären Optimierung wurde in Optimierungswerkzeugen bereitgestellt. Um die nichtlineare Reaktion von Zielen zu überwinden und um den hohen Zeitverbrauch von FEM-Analysen in Absturzereignissen zu bewältigen, könnte ein Ersatzmodell vom Benutzer verwendet werden. Die Fähigkeit von Optimierungswerkzeugen, optimale Ergebnisse bei Problemen mit mehreren Zielsetzungen zu präsentieren, wird durch die Verwendung einiger vom Benutzer ausgewählten Fitnessfunktionen verbessert. Eine Unterbaugruppe aus Blechteilen, die zur Automobilkarosserie gehören, ist optimiert, um beide zu verbessern; statischer Lastfall und Crashsicherheit

    Active thermography for the investigation of corrosion in steel surfaces

    Get PDF
    The present work aims at developing an experimental methodology for the analysis of corrosion phenomena of steel surfaces by means of Active Thermography (AT), in reflexion configuration (RC). The peculiarity of this AT approach consists in exciting by means of a laser source the sound surface of the specimens and acquiring the thermal signal on the same surface, instead of the corroded one: the thermal signal is then composed by the reflection of the thermal wave reflected by the corroded surface. This procedure aims at investigating internal corroded surfaces like in vessels, piping, carters etc. Thermal tests were performed in Step Heating and Lock-In conditions, by varying excitation parameters (power, time, number of pulse, ….) to improve the experimental set up. Surface thermal profiles were acquired by an IR thermocamera and means of salt spray testing; at set time intervals the specimens were investigated by means of AT. Each duration corresponded to a surface damage entity and to a variation in the thermal response. Thermal responses of corroded specimens were related to the corresponding corrosion level, referring to a reference specimen without corrosion. The entity of corrosion was also verified by a metallographic optical microscope to measure the thickness variation of the specimens

    Geometric Nonlinear Finite Element and Genetic Algorithm Based Vibration Energy Harvesting from Functionally Graded Nonprismatic Piezolaminated Beams

    Get PDF
    Energy harvesting technology has the ability to create autonomous, self-powered systems which do not rely on the conventional battery for their operation. The term energy harvesting is the process of converting the ambient energy surrounding a system into some useful electrical energy using certain materials. Among several energy conversion techniques, the conversion of ambient vibration energy to electrical energy using piezoelectric materials has great deal of importance which encompasses electromechanical coupling between mechanical and electrical domains. The energy harvesting systems are designed by incorporating the piezoelectric materials in the host structure located in vibration rich environment. The work presented in this dissertation focuses on upgrading the concept of energy harvesting in order to engender more power than conventional energy harvesting designs. The present work deals with first the finite element (FE) formulation for coupled thermo-electro-mechanical analysis of vibration energy harvesting from an axially functionally graded (FG) non-prismatic piezolaminated cantilever beam. A two noded beam element with two degrees of freedom (DOF) at each node has been used in the FE formulation. The FG material (i.e. non-homogeneity) in the axial direction has been considered which varies (continuously decreasing from root to tip of such cantilever beam) using a proposed power law formula. The various cross section profiles (such as linear, parabolic and cubic) have been modelled using the Euler-Bernoulli beam theory and Hamilton‘s principle is used to solve the governing equation of motion. The simultaneous variation of tapers (both width and height in length directions) is incorporated in the mathematical formulation. The FE formulation developed in the present work has been compared with the analytical solutions subjected to mechanical, electrical, thermal and thermo-electro-mechanical loading. Results obtained from the present work shows that the axially FG nonprismatic beam generates more output power than the conventional energy harvesting systems. Further, the work has been focussed towards the nonlinear vibration energy harvesting from an axially FG non-prismatic piezolaminated cantilever beam. Geometric nonlinear based FE formulation using Newmark method in conjunction with Newton-Raphson method has been formulated to solve the obtained governing equation. Moreover, a real code GA based constrained optimization technique has also been proposed to determine the best possible design variables for optimal power harvesting within the allowable limits of ultimate stress of the beam and voltage of the PZT sensor. It is observed that more output power can be obtained based on the present optimization formulation within the allowable limits of stress and voltage than that of selection of design variables by trial and error in FE modelling

    STACKiNG SEQUENCE OPTiMiZATiON OF COMPOSiTE BEAMS WiTH DiFFERENT LAYER THiCKNESSES

    Full text link

    Integrating the finite element method and genetic algorithms to solve structural damage detection and design optimisation problems

    Get PDF
    This thesis documents fundamental new research in to a specific application of structural box-section beams, for which weight reduction is highly desirable. It is proposed and demonstrated that the weight of these beams can be significantly reduced by using advanced, laminated fibre-reinforced composites in place of steel. Of the many issues raised during this investigation two, of particular importance, are considered in detail; (a) the detection and quantification of damage in composite structures and (b) the optimisation of laminate design to maximise the performance of loaded composite structuress ubject to given constraints. It is demonstrated that both these issues can be formulated and solved as optimisation problems using the finite element method, in which an appropriate objective function is minimised (or maximised). In case (a) the difference in static response obtained from a loaded structure containing damage and an equivalent mathematical model of the structure is minimised by iteratively updating the model. This reveals the damage within the model and subsequently allows the residual properties of the damaged structure to be quantified. Within the scope of this work is the ability to resolve damage, that consists of either penny-shaped sub-surface flaws or tearing damage of box-section beams from surface experimental data. In case (b) an objective function is formulated in terms of a given structural response, or combination of responses that is optimised in order to return an optimal structure, rather than just a satisfactory structure. For the solution of these optimisation problems a novel software tool, based on the integration of genetic algorithms and a commercially available finite element (FE) package, has been developed. A particular advantage of the described method is its applicability to a wide range of engineering problems. The tool is described and its effectiveness demonstrated with reference to two inverse damage detection and quantification problems and one laminate design optimisation problem. The tool allows the full suite of functions within the FE software to be used to solve non-convex optimisation problems, formulated in terms of both discrete and continuous variables, without explicitly stating the form of the stiffness matrix. Furthermore, a priori knowledge about the problem may be readily incorporated in to the method
    corecore