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Abstract 
Energy harvesting technology has the ability to create autonomous, self-powered 

systems which do not rely on the conventional battery for their operation. The term 

energy harvesting is the process of converting the ambient energy surrounding a system 

into some useful electrical energy using certain materials. Among several energy 

conversion techniques, the conversion of ambient vibration energy to electrical energy 

using piezoelectric materials has great deal of importance which encompasses 

electromechanical coupling between mechanical and electrical domains. The energy 

harvesting systems are designed by incorporating the piezoelectric materials in the host 

structure located in vibration rich environment. The work presented in this dissertation 

focuses on upgrading the concept of energy harvesting in order to engender more power 

than conventional energy harvesting designs. 

 

The present work deals with first the finite element (FE) formulation for coupled thermo-

electro-mechanical analysis of vibration energy harvesting from an axially functionally 

graded (FG) non-prismatic piezolaminated cantilever beam. A two noded beam element 

with two degrees of freedom (DOF) at each node has been used in the FE formulation. 

The FG material (i.e. non-homogeneity) in the axial direction has been considered which 

varies (continuously decreasing from root to tip of such cantilever beam) using a 

proposed power law formula. The various cross section profiles (such as linear, parabolic 

and cubic) have been modelled using the Euler-Bernoulli beam theory and Hamilton‘s 

principle is used to solve the governing equation of motion. The simultaneous variation of 

tapers (both width and height in length directions) is incorporated in the mathematical 

formulation. The FE formulation developed in the present work has been compared with 

the analytical solutions subjected to mechanical, electrical, thermal and thermo-electro-

mechanical loading. Results obtained from the present work shows that the axially FG 

nonprismatic beam generates more output power than the conventional energy 

harvesting systems. Further, the work has been focussed towards the nonlinear vibration 

energy harvesting from an axially FG non-prismatic piezolaminated cantilever beam. 

Geometric nonlinear based FE formulation using Newmark method in conjunction with 

Newton-Raphson method has been formulated to solve the obtained governing equation. 

Moreover, a real code GA based constrained optimization technique has also been 

proposed to determine the best possible design variables for optimal power harvesting 

within the allowable limits of ultimate stress of the beam and voltage of the PZT sensor. It 

is observed that more output power can be obtained based on the present optimization 



 
 

formulation within the allowable limits of stress and voltage than that of selection of 

design variables by trial and error in FE modelling.  

 

 
Keywords: Finite element analysis; nonprismatic beam; axially functionally graded 

(FG) beam; electromechanical coupling; geometric nonlinearity; genetic 
algorithm; optimal energy harvesting. 
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  Chapter 1

Introduction 

  Background 1.1

In the present world, the human civilization is unmistakably moving towards the 

technological way of life. The portable products have touched their highest demands. 

These devices not only provide unbelievable power but also add versatility in 

communication and way of solving problems. However, the miniaturization of wireless 

devices are hindered by conventional batteries, which acts as the traditional power 

sources of many portable electronics and wireless sensors in current technology. 

Besides, the disadvantages of batteries also include the finite amount of energy or limited 

time span, large maintenance requirements, very high mass to electrical power ratio, and 

possibly hazardous chemicals and their environmental effects. The limited time span of a 

battery makes the device not so reliable because it may stop working at any time without 

warning. The dead battery has to be replaced which is a tedious and expensive task, 

especially when the device is located in a remote location. The very high mass to 

electrical power ratio of a battery impedes the development of light-weight wireless 

devices. Most batteries often involve hazardous chemicals, so inappropriate disposal or 

recycling may induce dangerous elements into the environment. More dangerously, a 

battery explosion is also caused by the misuse or malfunction of a battery. This may lead 

to vital property loss. Consequently, batteries have to be replaced for miniature wireless 

devices. In this context, if the ambient energy in the surrounding medium could be 

obtained, then it may be used to replace or charge the battery. 

  A potential solution—energy harvesting 1.2

Based on this, the concept of energy harvesting comes into an act which emphasizes 

on capturing the ambient waste energy and converting it into useable electricity. Since 

small autonomous wireless devices such as wireless sensors developed in MEMS 

technology demand a little power, small scale energy harvesting devices show the 

potential to replace the conventional batteries by converting ambient waste energy into 
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electricity and powering these low power consumption and small sized devices. Since last 

few decades, several research works have been conducted to achieve small volume and 

completely self-powered electronics devices. Some of the systems are 

microelectromechanical systems (MEMS) and remote sensing devices. 

 Mechanical vibration 1.2.1

For the last few decades, a variety of ambient sources such as solar, thermal, acoustic 

noise, acoustic energy, nuclear power, human, and mechanical vibration have been 

studied as an additional energy supplier. Among them, vibration driven power generators, 

thermoelectric generators, and solar cells are more widely studied because of their 

pervasiveness, high efficiency, and potentials for miniaturization. However, thermal 

energy is hard to control, cannot be used for a medical implant, and its conversion 

efficiency is found to be lower. The outdoor solar energy has the much higher power 

density than that of indoor solar energy. On the contrary, mechanical vibration has been 

demonstrated to offer great potential, limited lifespan and relatively high power density 

where there is an insufficient light source. Vibration sources can be readily found in 

accessible locations such as air ducts and building structures. 

 Mechanical structures  1.2.2

Among the several mechanical structures the cantilever beam is the simplest one and the 

most widely used configuration for energy harvesting. It allows for tuning the resonant 

frequency to match the frequency of the ambient vibrations. Therefore, causing larger 

structural deformations and large strain will produce electrical energy for a given input. 

1.2.2.1 Structural modifications 

For a piezoelectric energy harvester, the reasonable goal is to maximize the amount of 

energy produced for a given ambient vibration condition. Therefore, one of the objectives 

of the proposed research is to study the effect of energy harvester geometry on the 

corresponding voltage and output power. A modified model based on the earlier studies 

is proposed which may give better results than the previous models; however, it also has 

limitations when compared with finite element analysis (FEA). In the design of more 

complex piezoelectric energy harvesters (PEH) structures, FEA is preferred, as traditional 
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analytical modelling for such structures may be impractical. As a result, more design 

options can be considered to study the behavior of PEH electrical energy generation. 

1.2.2.2 Geometric nonlinearity 

The analysis of linear systems is much easier due to its limited application, but in 

reality, majority of natural systems are nonlinear. Unlike linear systems, the principle of 

superposition does not hold good for nonlinear systems. In fact, in any mechanical 

system, several types of nonlinearity may exist; the most common are material, 

geometrical, and inertial. Further, the presence of dynamic loadings in most of the beam 

structures lead to large oscillation amplitudes and therefore, involved in the geometrically 

nonlinear regime. Geometric nonlinearity is associated with large displacements that 

results in nonlinear strain-displacement relationship. If the large-amplitude vibrations are 

accompanied by large changes in the curvature, it is required to employ a nonlinear 

relationship between the curvature and the displacement. As the low mass and highly 

flexible structures are credentially essential for piezoelectric energy harvesting systems, 

the geometric nonlinear effects due to large deformations cannot be overlooked. Hence, 

for accurate estimation of voltage sensed by piezoelectric material along with output 

power of an energy harvester, the geometric nonlinear effect is essentially needed. 

 Functionally graded material 1.2.3

In present world, the requirement for optimum performance from every product while 

keeping the designs simple has given rise to special materials for customized 

applications. For this case the composite materials have been receiving a lot of attention. 

One of the benefits of the composite materials is that their properties could be functionally 

oriented to suit a specific application. Such composites are termed as Functionally 

Graded Materials (FGM). 

 

FGM are one of the most emerging materials nowadays which are used in various 

engineering applications. By varying the gradient composition of constituents, properties 

such as modulus of elasticity and mass density could vary continuously in the desired 

direction to maintain continuity in stress and strain fields. Functionally graded materials 

are combinations of two or more materials whose volume fractions change gradually 

along desired special directions, resulting in a smooth and continuous change in their 



Chapter 1   Introduction 
 

4 
 

effective properties. The flexibility of the resulting materials encompasses the structural 

design spaces by implementing the desired multi-functional response with a minimal 

weight increase. The FGMs are mainly manufactured by combining metals and ceramics. 

Since ceramics withstand the high temperatures and provide a thermal defending to the 

given system, and metals can give the structural support to the given system, such 

materials are useful for high-temperature applications with specified physical properties. 

The material properties of the FGMs change with volume fractions of its constituent 

phases along the spatial directions. It is therefore possible to modify properties like 

strength, toughness, and thermal capability of the material. Due to the variation in 

properties they are increasingly used in many engineering sectors like space vehicles, 

aerospace, automotive, biomedical, optics, electronics, and military applications, etc. 

According to the variation FGM are subdivided into two categories- axially and transverse 

based FGM. In the axially based FGM, all the material properties vary in different 

proportions along the longitudinal axis. But in the latter case all the material properties 

varies in transverse direction. Though the material can be graded in spatial direction, 

axially based FGM is treated as a good alternative to overcome the principal 

disadvantages of others such as residual stresses, locally plastic deformation, debonding 

between adjacent surfaces of different materials and so on.  

  Modes of transducers 1.3

To design and build vibration-based energy harvesting devices, three types of 

electromechanical transducers such as electrostatic, electromagnetic, and piezoelectric 

are utilized as shown in Figure 1.1 [1]. The approximate power density of the above three 

conversion mechanisms are compared and the piezoelectric energy harvesting devices 

were observed to possesses many advantages over other two mechanisms such as 

simple configuration, high converting efficiency, and precise control. Apart from this, the 

piezoelectric power generators present higher power output, simpler configuration, and 

potential of miniaturization. It is therefore chosen as objective of the study of this 

dissertation. 



Chapter 1   Introduction 
 

5 
 

 

Figure 1.1 Schematic diagrams of (a) electrostatic transducers (b) electromagnetic transducers (c) 
piezoelectric transducers 

1.3.1 Piezoelectricity 

Piezoelectricity is the phenomenon of coupling between the mechanical and electrical 

states of the material. The materials showing the piezoelectric effects are called as 

piezoelectric materials. The piezoelectric effect is categorized into two parts such as the 

direct and inverse piezoelectric effects. In the simplest terms, direct piezoelectric effect 

exhibit when an electric charge collects on the surface of the electrodes of the strained 

piezoelectric material. On the contrary, in inverse piezoelectric effect, the materials 

undergo deformation when a potential difference exhibit in the electrode. The inverse 

piezoelectric effect was mathematically derived from the fundamental principle of 

thermodynamics. These two effects usually coexist in a piezoelectric material. 

1.3.2 Piezoelectric materials 

With the fast growing field of smart materials systems in micro electro mechanical 

systems (MEMS) the analysis of piezoelectric materials has received a significant 

attention in the last decade. The piezoelectric materials belong to the class of materials 

called ferroelectrics in which the molecular structure is oriented in such a fashion that it 

exhibits a local charge separation called as an electric dipole. These electric dipoles are 

oriented randomly throughout the material composition. When the material is heated 

above the Curie temperature under a very strong electric field, the electric dipoles 

reorient themselves about the electric field. This process is termed as poling. After the 

material is cooled these dipoles continue to maintain their orientation and exhibit the 
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piezoelectric effect. The poled material undergoes expansion and contraction when an 

electric field is applied. However, the electric field can be applied to any surface of the 

material, each resulting a different stress and strain generation. 

 

The property of piezoelectric effect can be easily observed in several natural crystals 

such as Berlinite, sucrose, Topaz, Rochelle salt, quartz etc. However, in the field of 

engineering applications, the electromechanical coupling between mechanical and 

electrical states of the material has to be adequately strong. To satisfy these applications, 

manmade piezoelectric ceramics have been developed. The most prevalent engineering 

ceramic, PZT (Lead Zirconate Titanate) was developed in the 1950s at the Tokyo 

Institute of Technology, and several versions of it, such as PZT-5A and PZT-5H are most 

frequently used piezoceramic today in many engineering applications. As found from the 

literature, PZT-5A and PZT-5H are the most widely executed piezoceramic, as far as 

energy harvesting is concerned. The foremost important advantages of piezoelectric 

materials are large power densities and ease of its application in energy harvesting. The 

usable voltage output can be obtained directly from the piezoelectric material when 

vibration input is applied. For instance, an input voltage is required in electrostatic energy 

harvesting which can be altered between the capacitor elements due to vibration. The 

requirement of an external input voltage is eliminated in piezoelectric energy harvesting in 

which the voltage output arises from the constitutive law of the material. Further, unlike 

electromagnetic devices, piezoelectric devices can be fabricated both in micro and 

macro-scale owing to the well-known thin and thick film fabrication techniques. Later, 

macro fibre composites (MFC) were developed with the advantage of higher strain and 

sensing capabilities. However, it was observed that the MFC was less effective for power 

harvesting than the PZT due to its very low current generation. 

 

The piezoelectric properties must encompass a sign convention to facilitate this ability 

to apply electric potential in mutually three perpendicular directions. For simplicity, the 

piezoelectric material can be generalized for two modes as shown in Figure 1.2. The first 

is the 31 mode for bending configuration and the second is 33 mode for stack 

configuration. The two modes of operation can be understood by assuming that the 

poling direction is always in the ‗3‘ direction. In the 31 mode, the electric field is applied in 

the ‗3‘ direction, and the material is strained in perpendicular to the poling direction or in 



Chapter 1   Introduction 
 

7 
 

the ‗1‘ direction. In the 33 mode, the electric field is applied in the ‗3‘ direction, and the 

material is strained in the poling or ‗3‘ direction. 

 

Figure 1.2 Schematic diagrams of (a) 31 mode piezoelectric coupling (b) 33 mode piezoelectric 
coupling 

Vibration-based energy harvesting using piezoelectric materials has received an 

emergent attention over the last decade. The research motivation in this field is due to the 

condensed power requirement of small electronic components, such as the wireless 

sensor networks used in structural health monitoring applications. The vital aim in this 

research field is to power such small electronic devices using the vibration based energy 

available in the environment. If this can be achieved, the requirement of an external 

power source, as well as the periodic maintenance and replacement for battery can be 

minimized. 

 

As far as sensing is concerned, the piezo material is connected to a very high 

resistance which prevents the current, considering that the voltage is a direct measure of 

the strain of the material. By dropping this resistance, a current will flow, providing power 

to a load; which is the basis of power harvesting. In the mechanical domain, the material 

is attached to a surface which is strained in any fashion, be it harmonic, or random. The 

material undergoes strain as well, thereby generating the electrical current irrespective of 

the voltage. From basic electrical theory, power is the multiplication of voltage and current 

indicating that electrical power is being transferred out of the piezoelectric material. This 

power can then be used for a number of applications. The scope of this thesis is to 

maximize the output of the system dealing with the mechanical parts which of direct 

concern. 
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  Electrical circuit in energy harvesting  1.4

While using piezoelectric materials as a means of gathering energy from the 

surroundings, in most cases it is necessity that a means of storing the energy generated 

be used. Without accumulating a significant amount of energy, the power harvesting 

system will not be a feasible power source for most electronics. Hence an electric 

interface is necessary for the energy harvesting system to ensure the voltage 

compatibility with the electric load or energy storage element. In this context to get the 

output power a classic interface energy harvesting circuit has been considered in the 

present research. 

  Analysis of energy harvester 1.5

The electromechanical response of a piezoelectric energy harvester and the amount of 

power it generates are completely dependent on the nature of the ambient energy. The 

power density of an energy harvester is defined as the output power divided by the 

device volume for a given input. In vibration-based energy harvesting, the input 

(excitation) is often characterized by the acceleration and frequency level. Therefore, 

unless the input energy is provided, the power density is an insufficient parameter to 

compare different energy harvesters. The piezoelectric energy harvester can be modelled 

and analysed under various forms of dynamic loading such as periodic excitation, random 

excitation in different forms such as white noise, moving load excitation of long bridges, 

excitation due to strain fluctuations on huge structures, and transient base excitation. 

Apart from this, energy harvesting from aeroelastic vibrations of structures with 

piezoceramic layers under airflow excitation is an important subject. However, this 

research is limited to only transient impulse input to the structure for output voltage and 

power responses. 

 

Further, the effectiveness of the piezoelectric energy harvester has to be ensured in 

extremely hot or cold conditions. These conditions may rigorously affect the energy 

harvester in different ways. Hence, during design of such structures, the thermal effect 

which is an essential feature must be taken care of. Although mechanical and electrical 

coupling interaction affects the performance of the devices, the presence of variation of 

temperature can also influence the voltage/charge generation in the piezoelectric 
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sensor/actuators. The existence of such temperature gradient can introduce both 

pyroelectric and thermal strain effects to the distributed sensor and deflection in dynamic 

oscillations. 

1.5.1 Finite element modelling  

For problems involving complicated geometries, loadings and material properties, it is 

generally not possible to obtain the solutions of ordinary or partial differential equations 

by classical methods. Hence, the researchers rely upon numerical methods such as finite 

element (FE) method for acceptable solutions. The FE formulations of the problem result 

in a system of simultaneous algebraic equations for solutions, rather than solutions of 

partial differential equations. These numerical methods yield an approximate value of the 

unknowns of the problem at discrete numbers of points in the continuum. Hence, the 

process of modelling involves discretising equivalent smaller bodies interconnected to 

two or more elements called as nodal points or nodes. In FE process instead of solving 

the problem for the whole body, formulations are made for each finite element and are 

combined to obtain the solutions for the whole body. 

 

  Optimization algorithms 1.6

Optimisation is a process which finds the best or optimal solution for a given problem. 

The optimization problems involve the determination of variables so that an objective 

function reaches an optimum value (maximum or minimum) subjected to some 

constraints. Algorithms to solve these type problems are often classified into two groups: 

Classical methods and Heuristic methods. The classical methods are based on the 

gradient values computation (derivatives) which provides the search direction of the 

algorithm. In Heuristic methods, the optimisation parameter changes based on random 

decisions. Though classical methods are widely used, it is often impossible to ensure that 

the final solution found by these strategies is the global optimum. This depends on the 

level of complexity of optimization problem. In such cases, heuristic algorithms like 

simulated annealing, genetic algorithms, particle swarm are better options for the 

problem. 
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All optimisation problems are covered by three factors such as, an objective function, a 

set of unknowns or variables and a set of constraints. The objective function is the 

mathematical expressions for a given problem that needs to be minimized or maximized. 

In manufacturing processes, the profit or the cost is considered to be the objective 

function which has to be maximised or minimised. The objective function is greatly 

affected by the set of unknowns or variables, e.g., in manufacturing; the variables are the 

resources used or the total time period. The set of constraints allow the variables to take 

on certain values and exclude the others, e.g. in manufacturing one constraint is time, 

which should always be non-negative. The different types of search algorithm techniques 

are presented in Figure 1.3. 

 

Genetic Algorithm (GA) is an adaptive heuristic search algorithm based on evolutionary 

philosophies of natural choices and genetics. It represents an intelligent exploitation of a 

random search preferably to solve optimization problems.GA is completely based on 

Darwin‘s theory of evaluation ‗Survival of the fittest‘. Out of a number of optimisation 

techniques, GA is chosen due to the following reasons: 

 

 It does not require derivatives information or auxiliary knowledge. It requires only 

objective function and fitness value.  

 It searches population of points in parallel rather single point. 

 It uses probabilistic rules not deterministic. 

 

GAs are based on the evolution of biological systems. An objective function is identified 

to calculate the fitness of contender solutions and the contender solutions are encoded 

by binary strings or by finite real numbers with decimal representations. For a traditional 

GA, a population of N contender solutions is chosen from the space encoded solutions 

and fitness of each string is evaluated. A mating pool is selected from the population of 

contender solutions. The genetic operators like crossover and mutation act on the mating 

pool to give the next set of contender solutions for the next iteration. The algorithms 

(selection, crossover, and mutation) used in the simulation for both binary and real coding 

are described herewith. 
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Figure 1.3 Nomenclature of the optimization technique 

 

a. Selection 

This algorithm generates a new population of chromosomes from the current 

chromosomes by probabilistically selecting higher ranked contenders according to 

the fitness. The most commonly used methods of selecting chromosomes for parents 

to crossover are Roulette wheel, Rank, Steady state n, Boltzmann and tournament 

selections.  

 

b. Crossover 

Crossover is a genetic operator that combines two chromosomes to produce a new 

chromosome. The concept behind the crossover is that the new chromosome may 
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be better than both the parents if it takes the best characteristics from each of the 

parents. It selects genes from parent chromosomes and creates new offspring. The 

crossover operator is of many types such as one point, two-point, heuristic, uniform 

and Arithmetic crossovers.  

 

c. Mutation 

The mutation operator takes place after the crossover is performed. It is used to 

maintain the genetic diversity from one generation of chromosomes to the next. It 

alters one or more gene values in a chromosome from its initial state. This results 

an entirely new gene value added to the mating pool. With this new gene value, the 

GA may be able to reach a better solution than the previously possible. Various 

types of mutation operators are used, such as Flip bit, uniform, non-uniform and 

Gaussian.  

 

d. Elitist selection 

The algorithm is sometimes functional to ensure that the new solutions generated 

by crossover and mutation are accepted for next iteration.  

 

The real coded GAs are getting more attention presently in solving continuous search 

problems after the success of binary coded GAs. The real coded GAs differs from the 

binary coded GAs in concern with coding variables. The real coded GAs work directly 

with the variables instead of coding of problem variables. The basic difference between 

real coded GA and binary coded GA is in their recombination operator. Though some real 

coded crossover operators were recommended, most of them are based on intuition and 

without proper analysis. Therefore, a real coded crossover operator has been developed 

and more emphasis is given to the development of such search characteristics. In this 

case, the simulated binary crossover (SBX) operator has been found to work satisfactorily 

in many practical problems when compared to existing real-coded crossover 

implementations. It is observed that the real-coded GAs with SBX operator performs 

better than binary coded GAs in solving some problems. One important advantage of the 

SBX operator is that it can prevent children solutions to any random closeness to the 

parent solutions; thereby implementing a separate mating scheme for which better 

enactment is not required. Eventually, real-coded GAs with SBX operator has been 

effectively used to find multiple Pareto optimal solutions in solving many design problems. 



Chapter 1   Introduction 
 

13 
 

These simulation results are worth promising and suggest the application of real coded 

GAs with SBX operator to real-world optimization problems. 

  Applications and scope of present work 1.7

Any energy harvesting solution must be adapted separately to the respective 

application. Consequently, energy converters, energy stores and electronics are adjusted 

as per the energy requirements of the user and excitation conditions. Some of the 

important applications are condition monitoring and structural health monitoring (SHM), 

data monitoring and data transmission, product monitoring during transport, etc. Apart 

from this, very interesting energy harvesting technologies are still in the laboratory that 

could change the face of the energy harvesting industry over the next few years such as 

medical and fitness devices, MEMS pyroelectric generator, Nantennas, etc. 

 

Energy harvesting is aimed towards producing energy from the waste vibration and 

makes it possible to use further in different applications. So to generate maximum 

possible energy it is important to focus on improvement in the direction of geometric 

profile, material properties, effective electromechanical coupling, etc. Moreover, it is very 

much indispensable that the harvester should work efficiently in different environmental 

conditions. An efficient finite element procedure for thermo-electro-mechanical analysis is 

essential for designing of such structures in energy harvesting. In view of this the present 

work aims at 

 To develop a mathematical model for nonprismatic beams (such as linear, parabolic 

and cubic crossection profiles) with tapers in both width and height directions. 

 To formulate a mathematical model for axially FG beam based on power law, with 

temperature varying mechanical properties towards the free end of the beam. 

 To formulate a two-noded finite beam element for detailed modelling and analysis of 

nonprismatic piezolaminated axially FG beams under combined mechanical and 

thermal loading. 

 To formulate a two-noded finite beam element for detailed modelling and analysis of 

nonlinear nonprismatic piezolaminated axially FG beams  

 To develop a real coded GA based constrained optimization technique (ultimate 

stress of beam, PZT and breakdown voltage of PZT) to get optimum design variables 

for maximizing the output power. 
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 To perform a comparative study between prismatic and nonprismatic homogeneous 

beams on the basis of tip displacement, frequency, output voltage and output power 

responses. 

 To study the effects of simultaneous variation of width and height tapers on 

homogeneous and axially FG nonprismatic beams on output responses. 

 To study the output (static and dynamic) responses of axially FG nonprismatic 

piezolaminated beam under combined mechanical and thermal loading.  

 To study the output responses of axially FG nonprismatic piezolaminated beam with 

temperature dependent material properties towards the free end of the beam. 

 To study output responses such as tip displacement, voltage and power of nonlinear 

nonprismatic axially FG beams.  

 To obtain optimal output power using a real coded GA based constrained 

optimisation technique along with design variables of axially FG nonprismatic beams 

under impulse and combined impulse-thermal loading. 

 To obtain optimal output power using a real coded GA based constrained 

optimisation technique along with design variables of nonlinear axially FG 

nonprismatic beams. 

  Outline of the thesis 1.8

This thesis has been organized as follows 

 

Chapter 1 briefly introduces energy harvesting and significance of structural design, 

improvement in material properties, importance of geometric nonlinear effects and 

optimal output power from such structures. 

Chapter 2 overviews a comprehensive study to understand the state of art of energy 

harvesting. The theoretical and research background, including the theory of 

piezoelectricity, geometric and material variations, and modelling in thermal environment 

are studied. 

Chapter 3 presents the FE based piezo-thermo-elastic analysis of nonprismatic 

piezolaminated axially FG beams for energy harvesting. 

Chapter 4 describes the FE based mathematical modelling of nonprismatic axially FG 

beam with geometric nonlinear effects on output voltage and power. 



Chapter 1   Introduction 
 

15 
 

Chapter 5 depicts the formulation of proposed real coded GA based constrained optimal 

output power from such structures. 

Chapter 6 provides the validation of developed FE code for structural, electromechanical, 

piezothermoelastic and experimental of present formulation. A detailed comparison 

among the modelled nonprismatic beams with temperature dependent material properties 

on frequency, output voltage and power have been carried out.  

Chapter 7 presents the nonlinear structural validation of the present FE code and 

comparison of results for the static and dynamic responses of the modelled structures. 

Chapter 8 depicts the results of real coded GA based constrained optimal output power 

without and with the effect of temperature varying material properties and the superiority 

of the present method over conventional trial and error method. 

Chapter 9 outlines the important conclusions drawn from the present work and the scope 

for further work. 
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  Chapter 2

Literature Review 

Due to the recent advancements in wireless sensor networks technology, the demand 

for portable electronics and wireless sensors are growing rapidly. These devices not only 

face the present challenges but also have wide applications in various remote areas as 

monitoring bridge vibration, gas monitors in a coal mine, and even wild animals as a 

global positioning system (GPS). In all these cases, the replacement of the battery is too 

costly, unfeasible and sometimes impossible. By scavenging energy from the surrounding 

environment, the time between battery replacements may be extended or even 

eliminated, depending on the power requirements of the applications.  

 

As far as energy harvesting is concerned, it is already used in the form of a windmill, 

watermill, geothermal and solar energy. These energy sources that are called as 

renewable energy sources emerge as future power sources. These energy sources can 

generate few KW to MW level of power also, known as macro energy harvesting 

technology. On the contrary micro energy harvesting technology is specifically considered 

as an alternate source for conventional battery. Micro energy harvesting technology is 

based on mechanical vibration, mechanical stress and strain, thermal energy from the 

furnace, sunlight or room light, the human body and chemical or biological sources, which 

can generate mW or µW level of power. 

2.1 Piezoelectric energy harvesting 

There are several methods existing which replace the use of batteries for power 

supply. Use of piezoelectric materials is one of the versatile methods, which can supply 

energy at the expense of energy lost due to vibration. This energy could be used to 

lengthen the life of the power supply or in the ideal case provides almost endless energy 

for the sensor‘s lifespan. In past few decades, substantial researches have been 

commenced related to power harvesting. Piezoelectric materials have a significant role in 

present era for scavenging energy from the ambient environment. As vibration is a major  
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concern in most of the structural machinery, it is possible to scavenge energy from these 

structures by incorporating the piezoelectric materials as sensors which transform the 

mechanical energy into electrical energy. In the following paragraphs, some progressive 

works are illustrated in this direction. 

 

The purpose of the piezoelectric material is to convert mechanical energy into electrical 

energy using a very simple structure. For most of the wireless sensor network system, 

piezoelectric energy harvesting is emphasized as self-power sources [2]. When pressure 

is applied certain crystalline materials such as quartz, Rochelle salt, tourmaline, and 

barium titanate develop electricity which is known as the direct effect of piezoelectricity 

[3]. On the contrary, these crystals undergo deformation when an electric field is applied, 

which is termed as the converse effect. Direct effect can be used as a sensor or energy 

transducer, and converse effect can be used as an actuator. Sensors are the most vital 

electronic devices which can be used almost everywhere due to the recent advancement 

in wireless and Micro Electro Mechanical System (MEMS) technology. These sensors are 

wireless and need their power supply. Conventional batteries are used to supply power to 

these sensors. However, problems may arise due to the limited lifespan and high mass to 

output ratio of conventional batteries. 

 

Several efforts have been laid in the field of energy conversion and discovered that 

piezoelectric materials are best suitable for conversion of mechanical to electrical energy 

and vice versa [4]. A comprehensive analysis of the piezoelectric energy harvesting using 

low-profile transducers and the results for various energy harvesting prototype devices 

were discussed [5]. A brief discussion on the selection of piezoelectric materials for on 

and off resonance applications was also carried out. From the discussion it was observed 

that the energy density of piezoelectric energy harvesting devices was 3to 5 times higher 

than electrostatic and electromagnetic energy harvesting devices. It was introduced that 

by using piezoelectric ceramics, the energy can be collected by walking [6]. The power 

harvesting from piezoelectric shoes using unimorph strip made from piezoceramic 

composite material from a multilayer laminate of PVDF was discussed [7]. It was further 

explored by harnessing the parasitic energy from piezoelectric shoes by using simple 

mechanical structures and flexible piezoelectric materials which results in a comfortable 

piezoelectric shoe design. 
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To improve the output power generation emphasis had been given to piezoelectric 

materials. Some of the works related to this are presented. A single crystal piezoelectric 

ceramic lead magnesium niobate–lead zirconate titanate (PMN-PZT) was analysed for 

shunt damping performance and power generation.The obtained results were validated 

with existing experiments and analytical results [8]. The comparison of performances 

between two piezoelectric compositions PZT with 1 % Mn and PMN–25PT were 

conducted. It was observed that the coupling coefficient of PMN–25PT had a higher value 

than PZT based model [9]. It was also shown that by using the composition more than 

twice energy could be scavenged as compared to PZT based model. Three types of 

piezoelectrics such as single crystal PMN-PZT, polycrystalline PZT-5A, and PZT-5H-type 

monolithic ceramics were examined in a unimorph cantilever beam for best design 

energy harvester for low-power applications. It was concluded that single crystal energy 

harvester produced more energy as compared to other two models [10]. The piezoelectric 

energy harvesting performances were presented using Zr-doped PbMg1/3Nb2/3O3-

PbTiO3 (PMN-PZT) single crystal beam. The obtained results were compared with the 

experimental results [11]. A resonance-based multilayer vibration energy harvester was 

presented using 0.71Pb (Mg1/3 Nb2/3) O3–0.29PbTiO3 (PMN-PT) single crystal. The 

output power (approximately 5 mW) with peak voltage (approximately 4 V) was measured 

which specify the proficiency of the material for energy harvesting [12].  

 

The piezoelectric ceramic was investigated subjected to external mechanical stresses. 

This ceramic was prepared experimentally by tape casting of slurries comprising SrTiO3 

(STO).From this investigation, it was observed that the specimen with STO produced 

more power than specimen without STO when subjected to high stresses [13]. A micro 

piezoelectric power generator was proposed comprising a composite fixed-free beam 

with nickel metal mass. About 0.89V AC and 2.16 mW power were generated from the 

proposed generator which replaced the germanium based rectifier as far as energy 

storage is concerned [14]. The piezo composite was analysed for energy harvesting 

which consists of layers of glass/epoxy, PZT ceramic and carbon/epoxy. The numerical 

and experimental validation were carried out and observed that the piezo composite had 

greater potential for harvesting energy subjected to vibration [15]. Similarly, another 

piezoelectric material named aluminium nitride (AlN) was analysed for energy harvester 

because of resulting high voltage output. It was observed that maximum of 60 μW output 

power can be scavenged at a resonant frequency of 575 Hz [16]. The analysis was also 
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carried out on fabrication and evaluation of energy harvesting device employing epitaxial 

PZT thin film. The experimental and analytical results were compared and observed that 

epitaxial PZT thin film had potential for improvement in energy harvesting device 

performance [17]. Apart from this, the piezoelectric flexural transducers were investigated 

experimentally. During this investigation the boundary conditions such as frequency and 

electrical load were employed for the development of the generator [18]. The comparison 

between analytical and experimental studies was conducted for a piezoelectric bimorph 

cantilever beam with one and two input base transverse and longitudinal excitations. The 

results obtained from polar base excitation for off-axis input motions were validated with 

experimental results which is relevant for practical implementation [19]. 

 

Several beam structures were analysed using piezo films especially suitable for shoe 

inserts and walking type excitation. The resulting strain obtained, were functions of 

material and geometric properties of the structure. The optimum configuration was 

determined by comparing the energy harvested from these structures[20].Various factors 

affecting the power harvesting were analysed such as excitation magnitude, energy, and 

voltage required, and the capacitor magnitude, type of piezoelectric used and appropriate 

storage capacitor [21]. An innovative energy harvesting backpack was developed using 

polyvinylidene fluoride (PVDF) in which electrical energy was generated from the 

differential forces between the wearer and backpack [22]. To examine the effectiveness 

of electro-mechanical conversion properties between PVDF and ionic conductive polymer 

energy, harvesting comparison was proposed. The obtained simulation results were 

compared with the existing analytical models using spring-mass-damper subjected to 

axial loading [23]. 

 

The energy harvesting from a cantilever beam and a plate were evaluated using Euler–

Bernoulli beam theory. Two different forcing functions such as harmonic oscillations and 

random noise were used to drive the system responses. The proposed models were 

validated by comparing it with the experimental data. A parametric study was also 

performed to optimize the cantilever beam‘s power generation capability [24]. The 

modelling and analysis of bimorph piezoelectric cantilever beam were developed using 

analytical approach for voltage and power generation. Euler–Bernoulli beam and 

Timoshenko beam theory were used in the approach. The results were compared with 

the existing results in the literature such as energy method and electrical equivalent 
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circuit method. The existing models and the proposed model then implemented in 

MATLAB environment and simulated with the power conversion circuit. The results 

obtained are well suited with the experimental values [25]. The electromechanical finite 

element modelling of a vibration power harvester and its validation with experimental 

studies were conducted with five major solution techniques [26].  

 

The compact size energy harvesters were built by considering space available for AA 

size batteries. Each harvester comprised of a rectifier circuit with four diodes and a 

capacitor. A series of piezoelectric energy harvesters with circular and square cross-

sections were made and tested at different frequency and amplitude. It was observed that 

the voltage reached about 16 V and 25 V for circular and square cross-sections, 

respectively at 50 Hz frequency. The maximum power scavenged was near about 625 

μW. Again it was concluded that square section provides better efficiency as compared to 

circular cross-section at higher amplitudes [27]. A theoretical model was proposed using 

beam element and experiments were performed to harvest power from PZT material. It 

was concluded that a simple beam bending can provide the self-power source of the 

strain energy sensor [28]. The conversion of mechanical impact energy into electrical 

energy from a lumped model consisting of mass, spring and damper were studied [29]. It 

was observed that the piezoelectric material can be used both as a sensor and a 

generator of power. The piezoelectric sensor performance along with viability of the self-

powered sensor was discussed [30, 31]. For low-frequency vibration energy harvesting 

application, a piezoelectric cantilever was proposed with a silicon proof mass [32]. The 

average power and power density were found to be 0.32 W and 416 W/cm3 respectively. 

To improve the frequency flexibility and power output, an array of power generator was 

developed based on thick film cantilever [33]. An improvement was observed in terms of 

electric power of 4 mW and around 4 V output voltages for a given resistive load. 

 

Theoretical modelling of the piezoelectric energy harvesting system puts emphasis on 

the structures and on the electrical behaviour of the piezoelectric patch. An improved 

mathematical model was proposed and discussed related to the issues generated by 

mathematical modelling such as piezoelectric coupling, base motion modelling, and 

physical modelling. The correction factor of single degree of freedom for base excitation 

model was also proposed which is further used by many researchers for energy 

harvesting. Apart from this, a closed form solution of piezoelectric bimorph with series 
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and parallel connections of piezoelectric ceramics were discussed [34-36]. The vibration-

based piezoelectric energy harvester was optimised by incorporating an inductor along 

with a resistive load. It was observed that the energy harvested can be enhanced by 

considering the inductor in the electrical circuit [37]. A comparison between the 

electromagnetic system and piezoelectric system with PZT ceramic embedded at one 

end and fixed at other end was made. From the results, a strong similarity in signal level 

between them was observed [38]. A FE based electromechanically coupled plate model 

was presented. The model was based on Kirchhoff plate assumptions for predicting the 

output power with the inclusion of the effect of electrodes used. The results obtained from 

the simulations were validated with experimentation and analytical solutions for an 

unimorph beam [39].  

 

The energy conversion efficiency was calculated under the steady-state condition for a 

coupled piezoelectric power harvester. It was observed that the optimised variables, 

strongly dependent on the electromechanical coupling parameters [40]. The modelling of 

a piezoelectric energy harvester was proposed incorporating the electro-mechanical 

system. The interaction between the host structure and the electrical circuit was 

characterized by a rectifier with nonlinear effect. It was also shown that maximum power 

density can be obtained by varying the nondimensional inductance of the circuit [41]. A 

Timoshenko piezoelectric beam model was anticipated to compare the results obtained in 

Euler–Bernoulli beam models. The exact behaviours of tip deflection, voltage, current and 

power of the piezolaminated structure were reported. Apart from that, the shape of the 

beam was optimised using the heuristic code and the obtained results were validated with 

the experimental results [42, 43]. The mechanical nonlinear strain stiffening effect was 

proposed in a passive adaptive system and experimentally observed that, the frequency 

adaptability of more than 40% for a fixed-fixed beam at 2g acceleration obtained. The 

proposed solution was perfectly applicable for industrial machinery where abundant 

availability of high amplitude vibrations are available [44]. 

 

A unimorph piezoelectric cantilever was analysed theoretically for energy harvesting 

with unequal piezoelectric and nonpiezoelectric lengths. It was observed that for a given 

frequency, maximum open circuit voltage can be obtained when the ratio of nonprismatic-

to-prismatic length is greater than unity. Similarly, the maximum output power can be 
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obtained when the ratio of nonprismatic-to-prismatic length is equal to unity [45]. The 

dynamic modelling of piezoelectric harvesting oscillator was prepared considering the 

nonlinear differential equation [46]. The concept of noise and nonlinearity was 

emphasized in that work. A guideline was presented for harvesting optimal energy using 

unimorph cantilever beams. It was perceived that the poling behaviours were prime 

factors to explore the losses in nonuniform poling. A parametric study was carried out to 

find the effects of electrode patterns, dimensions and layer dimensions on poling factor. 

The design guidelines were provided to confirm that optimum energy could be scavenged 

by developing piezoelectric MEMS devices [47]. A piezoelectric cantilever bending model 

was developed considering the assumptions of Euler–Bernoulli beam theory. Hamilton‘s 

principle was used for establishing the governing equation and solved by modal 

decomposition method. The mathematical model was prepared considering the direct 

piezoelectric effect to enhance the conversion efficiency from mechanical energy to 

electrical energy. It was shown that more voltage and bandwidth were generated in the 

second mode as compared to the first mode of resonant frequency [48]. A mathematical 

formula was developed to envisage the output power conversion efficiency of piezo 

generators and emphasis was given to improve such efficiency [49]. 

 

The energy harvesting from clamped-clamped axially loaded beam subjected to 

transverse excitation was examined [50]. A nonlinear Euler –Bernoulli theory was 

incorporated to model the electromechanical beam. The obtained theoretical results were 

validated through experimental data. The use of a unimorph cantilever beam as a new 

piezoelectric energy harvester undergoing bending–torsion vibrations was proposed [51]. 

The suggested design comprises a single piezoelectric layer and a pair of asymmetric tip 

masses. A parametric study of the dynamics of the system was conducted to determine 

the geometric properties that enhance the harvested electrical power. An increase in 30% 

of harvested power with this design was observed compared to the case of beams 

subjected to bending only. The energy harvesting from a bluff body subjected to 

transverse galloping oscillations with different cross-section geometries (such as square, 

D, and triangular) were investigated [52]. It was observed that electrical load resistance 

and the cross-section geometry affect the onset speed of galloping. The optimum 

harvested powers were attended with minimum transverse displacement amplitudes for 

all selected cross-section geometries. Again an energy harvester was studied  for a multi-

layered cantilever beam having a tip mass with geometric, inertia and piezoelectric 
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nonlinearities [53]. A parametric study was performed to investigate the effects of the 

nonlinear piezoelectric coefficients and the excitation amplitude of the system response. 

The nonlinear distributed parametric model was used for validation of the experimental 

setup and for the design of energy harvesting devices. The dynamic response of a 

piezoelectric material attached to a bistable laminate plate is inspected based on the 

experimentally generated voltage time series [54]. 

 

The piezo aeroelastic energy harvester under the combined effect of vibratory base 

excitations and aerodynamic loadings were investigated [55]. A series of experiments 

were conducted at various wind speeds and amplitudes of base excitation. It is revealed 

that the output power was significantly influenced by the base excitation. Further, an 

aero-electromechanical model in which nonlinear responses of a piezoelectric cantilever-

type energy harvester under combined effect of galloping and base excitations were 

determined [56]. The model was validated by performing a series of experiments at 

different wind speeds and base excitation amplitudes. The short circuit and open circuit 

resonant frequency were used to investigate the performance of the bimorph device. The 

piezoelectric energy harvester subjected to both base excitations and vortex-induced 

vibrations were examined [57]. The effects of wind speed, electrical load resistance and 

base acceleration on the coupled frequency, electromechanical damping and 

performance of the harvester were investigated by considering the linear and nonlinear 

analyses. The regular and chaotic responses of a vibrational energy harvester consisting 

of a vertical piezolaminated beam and a tip mass were examined by a harmonic force 

[58]. 

2.2 Justification for focusing on power enhancement 

The idea of carrying electronic devices and never bothering about the lifespan of 

batteries could be far closer than one would think. This thought has instigated the desire 

for self-powered electronics to grow rapidly, leaving only one constraint before these 

devices can become a reality. The one matter that still needs to be resolved is a way to 

produce sufficient energy to power the necessary electronics. The major drawback in the 

field of power harvesting depicts on the fact that the generated power is far too small to 

power most electronics by piezoelectric materials. Therefore, more attention needed to 

be put on methods of increasing the amount of energy generated by the power harvesting 
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device that will allow becoming a source of power for portable electronics and wireless 

sensors. In order to improve the output power emphasis has been given not only to the 

piezoelectric materials but also the geometric configuration of the energy harvester, the 

material used and the environment conditions in which the harvester works. Some of the 

works in these directions are presented in the subsequent paragraphs. 

2.2.1 Nonprismatic energy harvesters 

Non-prismatic beams are of great importance in different fields of engineering, whose 

cross-section profile changes gradually along their length. These beams not only meet 

the architectural and aesthetical needs but also optimize the weight and strength of the 

structure. Due to these advantages of non-prismatic members, it plays a significant role in 

the field of construction and aerospace structures. Some of the studies on energy 

harvesting from nonprismatic beams are discussed. A cantilever beam with a proof mass 

at its free end was modelled and the effects of geometrical and physical parameters on 

the performance of power generation was described [59]. It was specified that for the 

same volume of PZT, the trapezoidal beam could produce more than twice energy than 

prismatic beam [60]. However, uniform strain distribution along the beam could not be 

produced from the existing cantilever beams, and consequently, maximum energy from 

vibration could not be achieved. The effects of shape variations of a cantilever beam on 

the performance of energy harvester were examined [61]. In that work two types of shape 

variations (such as linear and quadratic) were considered to design the energy harvester 

for generating maximum energy at low frequencies. It was concluded that quadratic 

shape energy harvester can generate two times more energy as compared to rectangular 

shape harvester for a particular resistance value. An electromechanically coupled beam 

with varying cross-sectional area was modeled for energy harvesting, and the obtained 

results were experimentally verified [62]. Two types of beam conditions (trapezoidal taper 

and reversed trapezoidal taper) were considered to find out the effects of 

electromechanical behaviour on energy harvesters. The large deflections of nonlinearly 

elastic cantilever nonprismatic beams made from materials obeying the generalized 

Ludwick constitutive law were discussed [63]. 

 

Tapering of the beams has gained more popularity in recent years in the field of energy 

harvesting. The tapering increases the average strain in the beam and consequently the 
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charge generated by the piezoelectric material. From the literature survey, it was 

observed up to 30% of improvement in the generated output power. With the help of the 

numerical simulations, it was found that the tapering has an impact only for certain design 

configurations, namely for cantilevers with long slender beams. But for cantilevers with 

short wide beams, the tapering has no significant effect on the output power of the 

harvester [64]. The piezoelectric energy harvester with different beam shapes was 

analysed. The mathematical formulation of the compound piezoelectric structure was 

established using Rayleigh–Ritz method. The obtained results were validated with 

experiments considering triangular and rectangular-shaped beams. The results showed 

that triangular-shaped beams are more effective than rectangular-shaped ones regarding 

maximum output power [65]. The experiments on the response of a variable width beam 

were performed and concluded that reversed trapezoidal beam with large end free 

produces more energy than a trapezoidal shape with large end clamped and both are 

better than the rectangular shape [66]. 

2.2.2 Functionally graded beam 

The material properties of the functionally graded (FG) beams change with volume 

fraction of its constituent phase along the spatial directions. So it is possible to modify 

properties like strength, toughness, and thermal capability. So FG beams are increasingly 

used in many engineering sectors like space vehicles, aerospace, automotive, 

biomedical, optics, electronics and military applications. Some of the works in the field of 

FG beams are enlightened in the following sections.  

2.2.2.1. Transverse functionally graded beam 

The free vibration analysis of a simply supported FG beam with piezoelectric layers 

subjected to axial compressive loads was studied. The various effects of volume 

fractions, the effects of applied voltage and axial compressive loads on the vibration 

frequency were presented. It was concluded from the analysis that the piezoelectric 

actuators induce tensile piezoelectric force produced by applying negative voltages that 

significantly affect the free vibration of the FG beam. The vibration frequency increases 

when the applied voltage is negative [67]. The differential transformation method (DTM) 

was applied for investigating the free vibration analysis of FG beams with arbitrary 

boundary conditions, including various types of elastically end constraints. By using DTM, 
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the natural frequencies and mode shapes were presented. For free vibration of the beam, 

Al2O3/Al was considered for the study. It was seen that there was considerable variation 

of frequencies and mode shapes when the stiffness of spring becomes large [68]. 

 

The free vibration analysis of a functionally graded ordinary (FGO) twisted Timoshenko 

beam of cantilever type was investigated. The shape functions were derived from 

differential equations of static equilibrium. The mass and stiffness matrices were obtained 

from the energy equation. The various material properties along the thickness direction 

are assumed to vary according to a power law. It was observed from the analysis that 

increasing the pretwist angle, the first natural frequency increased whereas the second 

natural frequency decreased. The simultaneous effects of power law index and pretwist 

angle on first natural frequency were conducted and observed that it was marginal [69]. 

 

The bending analysis of a simply supported FG beam subjected to uniformly distributed 

load (UDL) was investigated. The material properties of the FG beam varied continuously 

in the thickness direction based on power law. The position of the natural surface of the 

FG beam was obtained, and its influence on the deflection of the beam under UDL was 

studied [70]. The numerical calculations for natural frequencies of FG simply supported 

beams were presented. The first order Timoshenko beam theory and third-order shear 

deformation theory were applied for the analysis of FG beam [71]. The nonlinear forced 

vibration analysis of a beam made of FG material was presented. The modelling of the 

beam was carried out using Euler-Bernoulli beam theory and von Karman geometric 

nonlinearity. The effects of material properties on the nonlinear dynamic behaviour of FG 

beam were discussed. The frequency response equation of the system was presented, 

and the effects of different parameters on the response of the system were investigated 

[72]. 

 

The static analysis of a simply supported FG beam subjected to UDL was investigated. 

The Ritz method along with Timoshenko beam and higher order shear deformation 

theories were implemented for modelling of the FG beam. The variation of material 

properties of the beam in the thickness direction according to the power-law formula was 

considered. The effect of various material distributions on the displacements and the 

stresses of the beam were examined. It was indicated from the analysis that stress 
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distributions in FG beams are very different from those in isotropic beams [73]. The 

effects of boundary conditions, volume fraction and shear deformation on natural 

frequencies and mode shapes of a FG beam were investigated. It was assumed that the 

beam properties vary along the thickness direction following a power law. It was found 

that the beam theory developed for laminated composite beam could be used for free 

vibration analysis of shear deformable FG beams [74]. The geometric nonlinear 

formulation of FG beam was analysed considering total Lagrangian method. Two 

examples were considered, in which the behavior of graded cross-section beams were 

compared with homogeneous material beams. The material gradation was incorporated 

in the formulation, and its corresponding effect on axial, shear and fractural deformation 

was considered. From the analysis, the beam with graded material showed a substantial 

difference as compared to a homogeneous beam having same cross sectional rigidity 

[75]. 

 

With the adaptive displacement interpolation functions, the structure was analysed 

using beam element. The static, dynamic and vibration problems have been solved using 

this approach. The important feature of this analysis was using adaptive displacement 

interpolation function which helped in solving problems with variable cross section, FG 

beams, and various coupled problems. It was realised from the analysis that the 

approach was well satisfied both with accuracy and convergence perspective with the 

existing available results [76]. The FG ordinary beam and FG sandwich beam using finite 

element method were analysed on Winkler‘s elastic foundation. It was observed that the 

fundamental frequencyand buckling load, increases with the modulus of the foundation. 

The obtained results were compared with both type of property distribution and also for 

both steel-rich bottom and Al-rich bottom beam. It was noticed that beam with steel-rich 

bottom becomes stronger when the properties followed the power law. It is also found 

that, the fundamental frequency of FG sandwich beam increases with the modulus of the 

foundation [77]. The static and dynamic analyses of FG Plates of rectangular cross 

section based on higher order shear deformation theory were presented. The various 

mechanical properties of the plate were assumed to vary continuously in the thickness 

direction by power law distribution regarding volume fraction of the constituents. The 

stresses and displacements of the plate were computed considering Metal–Ceramic 

mixture. It was observed that the response was in transitional position compared to both 
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metal and ceramic. It was concluded that the present model showed well approximations 

with generalized shear deformation theory [78].  

 

The dynamic behaviour of FG beam excited with random moving load was studied. The 

Euler-Bernoulli beam theory has been used for modelling the beam. The dynamic 

equation of motion has been solved in state space. The effects of structural damping on 

the result have been illustrated through various graphs and diagrams. The deflection of 

the beam at any arbitrary point has been calculated and expressed as an integral 

equation[79]. An attempt was made to design the material specimen whose behaviour 

shows similar result under mechanical loading of FG materials for the dynamic analysis. 

The numerical results were simulated to validate the existing results. The frequency 

analysis has shown the convergence of the proposed method with the increase in 

simulation steps [80]. 

 

The dynamic characteristics of FG beam with gradation in axially or transversally in 

thickness direction based on power law were presented. The Principle of virtual work has 

been used for deriving the equation of motion under Euler-Bernoulli theory assumptions. 

The analysis has been carried out for vibration characteristics and dynamic behaviour of 

the FG beam using FEM. It was concluded that the gradation in axial direction affects the 

frequencies and mode shapes of the beam whereas, no substantial variation is detected 

for gradation in thickness direction [81]. The dynamic stability of microbeams made up of 

FG material based on Timoshenko beam theory and modified coupled stress theory were 

investigated. The variation of material properties of the beam was assumed in the 

thickness direction and estimated through Mori-Tanaka homogenization technique. A 

simple power law based variation was taken for the analysis of the beam [82]. 

 

The analytical relationships between critical buckling load of a FG material beam based 

on Timoshenko beam theory and Euler-Bernoulli beam theory were derived, subjected to 

an axial compressive load. Various boundary conditions of the beam were taken into 

consideration such as simply supported, clamped –free and clamped-clamped. The 

material properties such as density, Poisson‘s ratio, and Young‘s modulus were assumed 

to vary in the thickness direction. The critical buckling load was derived using Eigenvalue 

problem and observed the same value for both Timoshenko beam and homogeneous 
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Euler-Bernoulli beam for the same boundary conditions. The obtained results were in well 

agreement with the numerically derived result using shooting method [83]. The FG beam 

was analysed using two separate FE formulations such as Euler-Bernoulli beam theory 

and Timoshenko beam theory. It was observed that the fundamental frequency and mode 

shapes were significantly affected by transverse shear for low length to thickness ratio. 

The significance of transverse shear on both frequency and mode shapes were 

demonstrated thoroughly for different boundary conditions. It was concluded that for 

structural members having low length to thickness ratio, the transverse shear effect 

should be taken into consideration for both homogeneous and FG beams [84]. The 

dynamic stability of FG beam with piezoelectric layer subjected to an axial compressive 

load for simply supported beam on an elastic foundation was studied. The material 

properties of the beam were graded in the thickness direction. It was concluded from the 

analysis that graded beams with smaller foundation coefficient showed more stability [85]. 

2.2.2.2. Axially functionally graded beam 

The dynamic analysis of an axially FG beam with simply supported edges was 

analysed using Euler-Bernoulli beam theory. The material properties such as Young‘s 

modulus and mass density vary continuously in the axial direction according to the power 

law formula. The Lagrange method was used for deriving the governing equation of 

motion of the FG beam. The effect of the velocity of moving load, excitation frequency 

and material distribution on dynamic behaviour were analysed [86]. The free vibration 

analysis of nonuniform beams which possess nonhomogeneity in mass density and 

Young‘s modulus under different boundary conditions were studied. The natural 

frequencies were derived in closed form expressions. Extensive numerical analyses were 

carried out using Monte-Carlo, Boobnov-Galerkin and finite element methods. From the 

analysis, it was observed that the static deflection of nonhomogeneous beam coincides 

with the uniform beam under uniformly distributed load [87].  

 

The vibration and buckling analysis of simply supported axially graded beams in which 

the inertial coefficients and stiffness vary in axial direction were discussed. The natural 

frequencies of the axially graded beam were derived in closed form expression. From the 

analysis, it was observed that the variation of material properties are preselected as 

polynomial functions that produce the exact mode shapes of inhomogeneous beam [88]. 
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To find the solutions for the dynamic equation of inhomogeneous FG simply supported 

beam a semi-inverse method was used. The material properties such as material density 

and Young‘s modulus vary in polynomial functions, and the closed form expressions were 

used for finding the natural frequencies. It was observed that the proposed method well 

suited for axially FG beam [89]. The FG beam subjected to transverse load was also 

studied. The Young‘s modulus of the beam was varying exponentially in the thickness 

direction, keeping the Poisson‘s ratio constant. The Euler–Bernoulli beam theory used in 

the analysis by the assumption that plane sections remain plane and normal to the beam 

axis. It was observed from the analysis that the stresses and displacements depend on a 

nondimensional parameter for a given variation of Young‘s modulus. Again as the stress 

concentration occurred in thick beams, showed less effective when loading took place on 

the softer side of the FG beam as compared to homogeneous one [90]. The free vibration 

analysis of an axially FG beam with non-uniform cross-section was studied. An innovative 

and modest approach was presented for the natural frequencies of the beam with 

variable mass density and flexural rigidity. Various support conditions such as simply 

supported, free ends and clamped for transforming the governing equation to Fredholm 

integral equations were considered. 

 

By considering the non-trivial solution of Fredholm integral equation, the natural 

frequencies of the system were determined. The effectiveness of the method was 

validated by comparing with the numerical results available for tapered beams of variable 

depth or width and graded beam with polynomial nonhomogeneity. Furthermore, the 

natural frequencies of the graded beam consist of aluminium and zirconia under typical 

end support conditions was determined. The effect of gradient and geometrical 

parameters were evaluated and proposed that the analysis would be highly beneficial for 

optimum design of non-homogeneous nonprismatic beam structures [91]. 

 

The structural analysis of an axially FG tapered beam using finite element method was 

studied. The modelling of the beam was carried out using Euler-Bernoulli beam theory. 

The shape functions for the proposed beam element derived the same procedure as that 

of the homogeneous uniform beam element. The simultaneous effects of material 

properties and varying cross-sectional areas were included in the assessment of the 

system matrices. The stability analysis, transverse vibration and longitudinal vibration of 
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the tapered beam with various boundary conditions were evaluated, considering the 

polynomial variation of material density and flexural rigidity. Moreover, the convergence 

results for all cases were also studied [92]. Further, the free vibration and stability 

analysis of an axially FG tapered Timoshenko beam was studied using finite element 

approach. The exactness of the proposed element enhanced by considering the precise 

variations of profile cross-section and material properties in the evaluation of the 

structural matrices. The convergence studies were carried out considering several 

numerical examples. The various effects such as taper attached proof mass and material 

nonhomogeneity on natural frequencies and buckling load were investigated [93]. The 

free vibration and stability analysis were studied for an axially FG tapered Euler–Bernoulli 

beam through the differential equation of motion. A new differential transform element 

method (DTEM) was proposed which improves the rate of convergence results. Apart 

from this, differential quadrature element method of lowest-order (DQEL) was used to 

solve the governing differential equation of motion. The free transverse, longitudinal 

frequencies, and critical buckling load were obtained using both the DTEM and DQEL 

methods considering several numerical examples of tapered Euler–Bernoulli beams 

made of axially FG materials [94]. 

 

The vibration and buckling analysis of an axially FG simply supported beam using 

semi-inverse method was studied. The classical beam theory was used to model the 

beam. By considering the predefined frequency and buckling load, the young‘s modulus 

variation was obtained in the axial direction concerning axial coordinates. From the 

analysis it was observed, an exponential variation of young‘s modulus in the axial 

direction for vibration and buckling problems [95].The theoretical analysis of a fourth 

order differential equation of the FG beam with material properties variation was studied. 

The variation of material density and young‘s modulus could be responsible for variation 

in volume fraction in one layer of the beam or different layers of a multi-layered sandwich 

beam. The classical beam theory has been used to establish the governing equation of 

the FG beam. Apart from this the shear deformation, mass inertia and mass distribution 

effect have been taken into account. The Eigen frequencies and corresponding Eigen 

modes were calculated by considering several numerical experiments for one layer beam 

and multi-layered sandwich beam. The obtained results were compared with the 

commercially available FE codes for two-dimensional solid elements [96]. 
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2.2.3 Thermal loading 

It is obvious to incorporate the thermal effects in the coupled electromechanical 

models. The temperature is treated as an additional state variable to account for thermal 

effects in addition to the piezoelectric effects. Thermal effects become a prime aspect 

when the piezoelectric structure has to work in extremely hot or cold situations. These 

conditions may rigorously affect the response of piezoelectric structures in different ways. 

Some of the substantial works in this direction are presented here: 

 

The fully coupled thermopiezomechanical field equations in weak form were discussed. 

The field equation includes the linearized constitutive equation, electrodynamics and the 

entropy production inequality. The objective was to provide an appraisal to these 

equations to found a concept for a numerical solution based on the finite element method. 

The temperature is coupled with the mechanical displacement and electric potential only 

through the one time derivatives. The equation can be solved separately in static case 

and a separate solution method proposed for dynamic case. The influence of temperature 

on the behaviour of the smart structure was discussed [97]. The generalized plane strain 

deformations of laminated plates subjected to thermal, electrical, and mechanical 

boundary conditions at the edges were studied. To determine the coefficients in the 

series the continuity equation at the interfaces, boundary conditions at the top and bottom 

surfaces and edges were used. The results were obtained for laminated plates with 

different geometric boundary conditions such as clamped, simply supported or clamped-

free. The results obtained should ascertain the accuracy of various plate theories and 

finite element formulations [98]. 

 

The thermopiezoelastic characteristics of the piezoelectric beam and its applications in 

sensing and optimal control were studied. The linear thermopiezoelastic theory with 

Timoshenko beam assumptions was used to derive the generic thermopiezoelastic theory 

for the piezolaminated composite beam. The Hamilton‘s principle was used to determine 

the governing equations using linear constitutive equations. The proposed structure was 

first modelled analytically and then numerical simulations were presented to visualize the 

dynamics and state-of-control. The effects of thermoelastic and pyroelectric couplings on 

the dynamics of the structure and the control procedure were considered and deliberated. 

From the observation, it was concluded that the control procedure cannot be disturbed by 
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applying a thermal gradient [99]. The general solution for dynamics of piezothermoelastic 

problems of an isotropic piezoelectric material was derived. When the inertia terms were 

ignored the general solution reduced to the quasistatic problems. The general solution 

was used to find the response of a rectangular plate subjected to axisymmetric heating. 

The numerical results were also presented. It was observed that the stresses at some 

point reached the maximum value at the beginning of heating rather than at the steady 

state [100]. 

 

The Hamilton‘s principle and finite element method were used for the response of 

piezothermoelastic plate. The linear shape functions and first order shear deformation 

theory were used in the formulation. The dynamic equations of motion were solved using 

Newmark method. The numerical results were presented for a given prescribed thermal 

and a sudden mechanical loading on the thermoelastic composite plate. The piezoelectric 

layers were attached to the surface of the plate which suppressed the amplitude of 

vibration through electric potential difference. The controlled and uncontrolled responses 

were presented graphically. From the analysis, it was found that the displacement due to 

the thermal effects plays a major role in the precision of piezo-control system [101]. The 

coupled electro-thermo-elastic equations were used for analysis of smart structures with 

piezoelectric patches. The coupled equations have been derived from the conservation 

principle of mass, energy and charge conversion. The related constitutive equation has 

been derived using the second law of thermodynamics. By incorporating the linear 

equations and using finite element method the induced electric potentialand deformation 

subjected to external mechanical, electrical and thermal loadings in the piezo and non 

piezo material, have been obtained. The theoretical formulation and the solution 

procedure have been validated by comparing the results with the existing results [102]. 

 

The finite element model for the active control of thermally induced vibration of 

laminated composite shells with piezoelectric sensors and actuators were studied. Nine-

noded shell element was implemented to model the structure. The mass, stiffness and 

thermal expansion of the piezoelectric patch were considered in the mathematical 

formulation. An active control of the dynamic response of the structure in a closed loop 

was studied by considering the coupling between sensor and actuator with the host 

structure. The cylindrical shell was taken into consideration and observed from the 
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analysis that thermally induced vibration can be suppressed using actuator and sensor. 

The effects of control gain and piezoelectric layer area coverage have been studied. It 

was observed that damping can be enhanced by increasing the control gain and 

piezoelectric layer area coverage [103]. 

 

An enhanced lower-order shear deformation theory (ELSDT) for the analysis of smart 

structure under combined loads (including thermal, electrical  and mechanical loads) was 

proposed. The proposed theory was to minimise the error between the first-order shear 

deformation theory and the higher-order shear deformation theory. The C0 shape 

functions were used for coupling between mechanical, electrical, and thermal problems. 

The accuracy and robustness of the theory were verified through a number of numerical 

examples [104]. 

 

The piezothermoelastic behaviour of a smart fiber reinforced polymer (FRP) composite 

shell structure with bonded piezoelectric sensor and actuator was developed. Eight 

noded finite shell element was used for the FE analysis. To make the strain equations 

complete Koiter‘s shell theory, as well as twist curvature component, has been 

incorporated. The transverse shear effect has also been incorporated according to 

Mindlin‘s hypothesis. The pyroelectric effect has been amalgamated in the mathematical 

formulation along with the mechanical and electrical loading. It was observed from the 

analysis that pyroelectric effect has a significant role in the response of the structure. 

Various smart shell panels such as ellipsoidal, doubly curved cylindrical and spherical 

have been considered, and the responses of coupled thermo-electro-mechanical have 

been presented [105]. The FE modelling of piezothermoelastic composite beam with 

distributed piezoelectric sensor and actuator layers were discussed. The mathematical 

modelling of the composite beam is based on the higher order displacement, electric and 

linear temperature fields. Two noded Hermitian beam element with virtual work principle 

was considered for the analysis. For active vibration control of the composite beam 

subjected to impulse and thermal loading, a constant-gain velocity feedback control 

approach has been used. The pyroelectric effect on the vibration control is thoroughly 

investigated. From the analysis, it was observed that the proposed model show good 

result compared to the existing models. Apart from this, the thermal deformation of the 

composite beam was predicted using piezoelectric structures [106]. 
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2.3 Geometric nonlinearity 

The effect of large deformation or geometric nonlinear effects in slender beams for 

energy harvesting can‘t be overlooked. As nonlinearity is a natural phenomenon that 

exists in almost every structure, its effect on various output responses is needed to be 

studied. Some of the works in this direction are presented here.  

 

The detailed investigation of the 3-D stress field of multi-layered plates based on the 

von Karman strain displacement relations was presented. A third-order zigzag plate 

theory was developed for multi-layered, anisotropic plates with a surface-bonded 

piezoelectric actuator layer. The numerical results were presented for simply supported 

plates with surface bonded top and bottom actuators under transverse loading. Various 

comparisons were made between available solutions and approximate analyses. For all 

cases, it was found that the effectiveness of active control of displacement increased with 

decreasing length to thickness ratio [107]. The effects of large deformations on the 

surface bonded piezoelectric material as well as in the structure were demonstrated. 

Electromechanical, piezoelectric constitutive equations were adopted for the analysis 

based on energy method. The first order shear deformation theory was adopted for the 

displacement fields. The nonlinear equilibrium equation was solved by an incremental, 

iterative technique based on Newton–Raphson method and examined considering the 

electromechanical coupling effects. The effects of nonlinearity on the structural responses 

due to axial and transverse loading for both cantilever and simply supported beams have 

been investigated [108]. The nonlinear dynamic responses of piezolaminated structures 

were studied. The Lagrangian formulation and the principle of virtual work were used for 

the finite element formulations. Twenty noded solid elements was taken into account for 

analysis of the piezolaminated structure. To verify the accuracy of the present 

formulation, numerical examples were studied. The convergence of the formulation and 

the practicality for the solutions of the large deformation dynamic responses of the 

piezolaminated structure, were investigated. [109]. It was observed from the analysis that 

the amplitude of deflection, frequency and output voltage are significantly influenced by 

the large deformation of structures The transient large amplitude vibration response of 

thin composite structures and its control by piezoelectric layers were discussed. The first 

order shear deformation (Reissner-Mindlin) theory was employed considering a nonlinear 

finite shell element with coupled piezoelectric layers. The proposed model could be used 
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in smart structures integrated with piezoelectric sensors and actuators at the top and 

bottom surfaces. From the analysis it was observed that for prediction of sensor output 

voltage, numerical analyses were very much sensitive towards geometric nonlinearities 

[110]. 

The nonlinear vibration control of space structures was presented. The members of the 

structures were modeled as a beam-column element. The structural member was 

subjected to an axial force, transverse shear forces and moments. The shear stresses 

transmitted to the structural members by the piezoelectric actuators bonded to the 

surface were derived. The feasibility of active control of nonlinear dynamic response of 

space structures with the piezoelectric patch was studied considering the weak form of 

the governing equation and assumed stress field. The viability of the approach was 

demonstrated by considering several numerical examples [111]. The vibration control of 

beam-type plates using piezoelectric sensors and actuators with geometrically nonlinear 

deflection and wavelet based deformation identification was presented. The identification 

was performed by transferring the nonlinear equation into a set of nonlinear algebraic 

equations composed of electric charges and currents on piezoelectric sensors. The 

signals of deflection and velocity were identified by employing a control law with negative 

feedback. The control voltage applied to the actuator was determined by the weighted 

residual method. Several numerical simulations were carried out to demonstrate the 

proposed approach [112]. For nonlinear harvester, the experimental measurements of 

harvested power under different motion speeds and resistances were found which were 

in good agreement with the numerical analysis. The obtained results established the 

effectiveness of the proposed resistance optimization method for nonlinear energy 

harvesting from human motions [113]. 

 

The electromechanical coupling, control and dynamics of the piezoelectric laminated 

circular plate with large initial deformation were investigated. The piezoelectric layers 

were uniformly distributed over the top and bottom surface of the circular plate. The von 

Karman type of geometric nonlinearity was used. The control effect was introduced 

through a control moment on the circumference of the circular plate. The solutions were 

derived from the dynamic equations. The nonlinear deflections and natural frequencies of 

the plate subjected to high voltage were studied [114]. Similarly, the electromechanical 

coupling, control and dynamics of thermal buckling of a nonlinear piezoelectric laminated 

circular plate with large initial deformation were investigated. The active control of 
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nonlinear deflections, thermal buckling and natural frequencies of the plate were studied, 

and nonlinear effects are calculated [115].  

 

The nonlinear active control of a piezoelectric laminated spherical shallow shell was 

investigated. The piezoelectric layers were uniformly distributed over the top and bottom 

surface of the shell. The governing equations were formulated and a semi-analytical 

method was adopted for solving it. From the numerical result, it was observed that the 

nonlinear deformation and natural frequency could be controlled by a control high voltage 

across the piezoelectric layers. In addition, the large amplitude effect on natural 

frequency was discussed by Galerkin method and KBM perturbation method [116]. The 

effect of large deformations on the piezoelectric materials and the structures under time 

varying loads were investigated. The piezoelectric constitutive relations derived by 

Tiersten were adopted. The first order shear deformation theory was adopted for the 

displacement field. The von Karman plate equation was used for large deformation 

analysis of the beam. An iterative technique was implemented for analysis of nonlinear 

equilibrium equations. The active control of PVDF bimorph beam with nonlinear effect 

was investigated [117]. 

 

The nonlinear vibrations of piezoelectric layered beams using FE reduced order model 

were presented. The geometric nonlinearity was taken into account in the model based 

on Von Karman nonlinear strain-displacement relationships. A parametric excitation term 

was introduced in the governing equation due to geometric nonlinearity. The analysis of 

reduced order model was done using harmonic-based continuation method. The 

proposed model was validated with the existing model in the literature. The model was 

suggested to be used in nanoelectromechanical systems [118]. The dynamic analysis of 

beams for large deformation was analysed in the frequency domain. A quantitative 

comparison was made between models formed by p-FEM and isogeometric analysis 

method. The principle of virtual work was used for the derivation of governing equation, 

considering Timoshenko beam theory. Harmonic balance method was used for the 

periodic responses of the structure. In the frequency domain, the nonlinear equations of 

motion were solved by arc-length continuation method. From the study, it was observed 

that isogeometric analysis method showed a better result than p-FEM when same 

numbers of degrees of freedom were used [119]. The forced vibration of cross-beam 
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incorporating the effect of geometric non-linearity under harmonic excitation was studied. 

The vibration analysis was carried out by reducing the dynamic system into an equivalent 

static system. The response of the structure was found under harmonic excitation by 

solving the individual beams using multi-dimensional secant method, otherwise known as 

Broyden‘s method. The proposed method was validated through the results generated in 

ANSYS 11.0. In addition to this, the response was studied for various loading and contact 

location of the beams [120]. 

2.4 GA based optimisation  

Over the last few decades, GA has been extensively used as search and optimization 

tools in various practical problem fields, including sciences, commerce, engineering, 

artificial intelligence and robotics. The principal reasons for their attainment are ease of 

use, broad applicability and global perspective. As real coded GA takes a little advantage 

over binary coded GA, some of the works related to real coded GA are presented. 

 

The binary coded GA in which the string length depends on the precision was 

presented. The computational complexity is more for higher precision due to greater 

requirements in string length and population size. Again, for coding the decision 

variables, a fixed coding system is used. The boundary of decision variables must be 

used such that the optimum value can be achieved. But in many practical problems, such 

information is unknown previously. Hence, a real-coded genetic algorithm is implemented 

in which real parameters are directly used as decision variables. The real coded GA is 

much easier than binary coded GAs. However, the main problem arises for creating new 

offspring by using a pair of real parameters [121]. In binary coded GA, good properties 

could not be attained from the use of the binary alphabets. However to overcome this 

issue, real coded GAs are implemented which seem particularly natural, tackling with 

various optimisation problems. An upright summary for crossover and mutation operators 

of real parameters and the behaviour of such real coded GA were provided [122].  

 

An improved GA-based optimal vibration control of composite shell structures was 

presented. A linear quadratic regulator control scheme was used for maximising the 

damping ratio based on real-coded GA. The actuator voltage was kept within the limit to 
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maximize the damping ratio. From the result, it was observed that combined GA-based 

optimal actuators placement and GA-based linear quadratic regulator (LQR) control 

scheme showed superior result than conventional active vibration control using LQR 

schemes. In addition to this, the improved GA-based optimal placement and LQR control 

scheme not only leads to increased closed-loop damping ratio but also shows a drastic 

reduction in input/actuation voltage compared to the already published results [123]. The 

finite element and GA based vibration energy harvesting from a tapered piezolaminated 

cantilever beam was discussed. Euler–Bernoulli beam theory was used for modelling 

various cross sections of the beam. The governing equation of motion was derived by 

using Hamilton's principle. The effect of structural damping has also been incorporated in 

the FE model. The effects of taper (both in the width and height directions) on output 

power for three cases of shape variation (such as linear, parabolic and cubic) along with 

frequency and voltage were analysed. A real-coded genetic algorithm-based constrained 

(using ultimate stress and breakdown voltage) optimization technique has been 

formulated to determine the best possible design variables for optimal harvesting power. 

A comparative study is also carried out for output power by varying the cross section of 

the beam, and GA based optimization scheme shows better results than the available 

conventional trial and error methods [124]. 

 

A parallel-structured real-coded GA (RCGA), named the RGA-RDD, for numerical 

optimization was developed. The proposed RGA-RDD assimilates three specially 

designed evolutionary operators namely ranking selection (RS), direction based 

crossover (DBX) and the dynamic random mutation (DRM) to specify the evolutionary 

process. Unlike the conventional RCGAs, the RGA-RDD incorporates a coordinator in the 

inner parallel loop to establish the operations like DBX and DRM so that a global optimum 

is obtained. Besides, this parameter selection guideline was provided for the settings of 

the proposed RGA-RDD. The efficiency and applicability of the proposed RGA-RDD are 

validated through a variety of benchmarked problems, followed by comprehensive 

comparisons with some existing evolutionary algorithms. Extensive simulation results 

revealed that the performance of the proposed RGA-RDD is far better than the 

comparative methods in finding the global optimum for real-parameter optimization 

problems [125]. Further, a real-coded GA (RCGA) for constrained optimization problem 

was presented. The effectiveness and applicability of proposed GA were demonstrated 

with various benchmarked constrained optimization problems. The extensive comparison 
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with the existing algorithms shows that, the proposed GA  gives faster convergence and 

better solution accuracy for constrained problems. As a specific application, the proposed 

RCGA was applied to optimize the film growth of a vapour deposition reactor. The 

simulation results showed a better coefficient of performance using the proposed GA 

[126]. 

 

The global optimal solution of complex problems using extended version of real coded 

GA (RCGA) was presented. As GA consists of several genetic operators such as 

selection, crossover and mutation operators, which offers the choice to be modified to 

improve the performance of particular operation. The new crossover techniques 

incorporating Boltzmann‘s distribution (BD) and Metropolis algorithm (MPA) were 

discussed, which will improve the quality of solution as well as the rate of convergence to 

the optimum solution [127]. An improved real-coded GA (IRGA) was used for unit 

commitment (UC) of a typical optimization problem in electric power system. The model 

was proposed to optimise the emission control and energy savings. The swap window 

and hill-climbing operators were used in real number coding method and compared with 

the other algorithmic approaches. From the solution analysis, it was concluded that the 

proposed algorithm  provide better improvement in computational time and effectiveness 

[128]. 

 

The implementation of a new selection method and crossover operation in a real-coded 

GA was presented. The new selection method comprised an elitist subpopulation, an off-

spring subpopulation and a mutated subpopulation. The crossover operation was carried 

out considering a probabilistic approach in which the distance between the individuals 

was measured. The level of variance in crossover operation was deliberated considering 

the concept of allowance. The proposed approach was validated and verified by several 

engineering optimization problems [129]. A new crossover operator called the double 

distribution crossover (DDX) was proposed in real coded GA. The performance of DDX 

was compared with available real-coded crossover operator namely Laplace crossover 

(LX). The DDX was followed by a mutation operator named power mutation (PM) to get a 

new real coded GA called DDX-PM. The performance of both algorithms such as DDX-

PM and LX-PM were compared by function evaluation. [130]. 
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2.5 Summary 

Even though several research works have been carried out for energy harvesting from 

piezolaminated beams but still there is a gap in the modelling and analysis of arbitrarily 

varying cross sections such as linear, parabolic and cubic (considering tapers in both 

directions) with material non-homogeneity along the longitudinal axis of the beam. Apart 

from this the piezothermoelastic behaviour along with energy harvesting from the 

structure under combined thermo-mechanical loading with temperature dependent 

material properties yet not analysed. Furthermore, FE based geometric nonlinear 

formulation of piezolaminated FG beam for vibration energy harvesting has not been yet 

exposed. Therefore, the main objective of the present research work is to model and 

analyse an axially piezolaminated FG beam with geometric nonlinear effects in thermal 

environment  for optimal vibration energy harvesting within the allowable limits of stress 

of the beam and PZT as well as the breakdown voltage of PZT patch. A real coded GA 

based constrained optimization technique has also been developed to avoid the 

underestimation or overestimation of power and premature failure of the beam, and also 

to determine the best possible set of design variables which mostly influence the vibration 

energy harvesting. 
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  Chapter 3

Mathematical Modelling and Analysis of 

Nonprismatic Axially FG Beams under 

Combined Mechanical and Thermal 

Loading 

3.1 Introduction 

As per the justification provide in Section 2.2 of Chapter 2 for focussing on 

enhancement of power density of piezoelectric energy harvester, this chapter deals with 

the FE based mathematical modelling of the nonprismatic axially FG piezolaminated 

beam under combined mechanical and thermal loading. Attention has been given 

towards different cross sectional profiles for generating a uniform strain profile along the 

beam length resulting in significant increase in output power density. Further, FG beam is 

used in the formulation by varying the properties (such as mass density, modulus of 

elasticity, Poisson‘s ratio and shear modulus) axially to maintain the continuity in stress 

and strain fields. Moreover the mathematical formulation consists of the simultaneous 

effects of mechanical and thermal loading. Although mechanical and electrical coupling 

interaction affects the performance of the piezoelectric devices, the presence of variation 

of temperature can also influence the voltage generation in the piezoelectric sensor. The 

temperature term can introduce both pyroelectric and thermal strain effects to the 

distributed sensor and deflection in dynamic oscillations. 

3.2 Mathematical formulation for vibration Energy 

harvesting 

 The mathematical formulations involve the modelling of the axially FG (i.e.  
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material non-homogeneity) beam, the cross sectional profiles, and the static and dynamic 

equations of a piezolaminated beam in both thermal and mechanical environment for 

output power. The Hamilton‘s principle has been used for solving the governing equation 

of motion with FEA. The details of the above formulations are presented in the following 

subsections. 

3.2.1 Assumptions made for the present formulation 

The following assumptions have been made for the detailed mathematical formulations 

of the beam. 

3.2.1.1 Assumptions in structural analysis 

 The cross sections which are plane and normal to the longitudinal axis remain 

plane and normal to it after deformation. 

 The shear deformations are neglected. 

3.2.1.2 Assumptions in electromechanical analysis 

In addition to the assumptions in the structural analysis, the following assumptions 

have been made for electric field and electric potential. 

 The variation of electric potential is linear in thickness direction and the electric 

potential is constant over the piezoelectric layer. 

 Linear constitutive equations of the piezoelectric material have been considered. 

 No shear strain is induced by the electric field in poling direction.  

3.2.1.3 Assumptions in piezothermoelastic analysis 

The following assumptions have been made in conjunction with structural and 

electromechanical analysis: 

 The variation of thermal load is linear in the thickness direction.  

 The temperature is taken as constant on top and bottom surface of each element 

of the beam structure. 
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3.2.2 Modelling of axially FG beam 

The beam is modelled as FG, i.e., non-homogeneity of material properties (such as 

density, Young‘s modulus, and Poisson‘s ratio) in the axial direction. The following 

mathematical expression has been proposed to determine such FG properties of the 

beam in the axial direction (which is continuously decreasing towards the tip of the 

cantilever beam). 
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(3.1) 

Here, Y(x, θ) denotes the material property such as density, Young‘s modulus, Poisson‘s 

ratio, shear modulus and coefficient of linear expansion respectively, which is both 

position and temperature dependent. The terms Y0, Y-1, Y1, Y2, and Y3 are constants in the 

cubic fit of the material property. θ is the average temperature between top and bottom 

surface of the modelled beam. The terms k and np are positive integer parameter (to 

avoid the material properties to be zero at the tip of cantilever beam) and the power 

gradient index. Lb is the length of the beam. 

3.2.3 Mathematical modelling of cross section profiles of the beam 

Three different cross-sectional profiles are considered to study the responses of the 

piezo laminated beam. They are: 
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The geometric profiles of the modelled beams are shown in Figure 3.1 (a)-(c). The width 

and height tapers of the beam are denoted as cb and ch respectively, which could vary in 

the range of 0≤ cb ≤ 1 and 0≤ ch ≤ 1. When cb = ch =0, the beam will become a uniform 

one and when cb = ch = 1 the beam will be taper to a point at x=Lb. The transverse cross-
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sectional area of the beam near the clamped end is A0, which gradually decreases 

towards the free end. 

 

Figure 3.1 Geometric profiles of (a) Linear (Case-A) (b) Parabolic (Case-B) and (c) Cubic (Case-C) 
beam. 

3.2.4 FE modelling and analysis of non-prismatic piezolaminated 

beam 

 

Figure 3.2 Cantilever non-prismatic beam with piezoelectric patch 

 

A cantilever non-prismatic beam with the piezoelectric patch is shown in Figure 3.2. 

The piezoelectric patch is mounted as a sensor on the surface of the beam. The bonding 

agent‘s stiffness and mass are neglected. The piezolaminated cantilever beam is 
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modelled as a piezoelectric patch, which includes the sensor dynamics and the remaining 

beam elements based on classical beam theory.  

3.2.5 Displacement field 

The displacement field of the beam in x, y and z-direction can be written as 
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(3.5) 

where, u, v and w denote the time-dependent axial, lateral and transverse displacements 

along x, y and z-axes, respectively. The terms w0(x, t) is the transverse displacement of 

any point in the midplane (z = 0). The term ψ is the rotation of the midplane about z-axis. 

The axial displacement at any point in the midplane (z = 0) is neglected as its effect is 

negligible as compared to transverse displacement. Moreover, as output power is greatly 

influenced by bending strain, the membrane strain is neglected for the above 

expressions. 

3.2.6 Shape function 

The nonprismatic beam element with two degrees of freedom at each node is shown in 

Figure 3.3  In FE modelling, each nodal point is assumed to experience two degrees of 

freedom, i.e., transverse displacement (v) and rotation (ψ), which are supposed to act 

due to the shear force and bending moment. 

 

 

Figure 3.3 Nodal degrees of freedom of a nonprismatic beam element 
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Assuming the transverse displacement variation through the element length to be cubic 

polynomial, 

   43
2

2
3

10 axaxaxaxw   (3.6) 

where, the terms a1, a2, a3 and a4 are unknown constants which can be obtained using 

the boundary conditions. The displacement field could be interpolated in terms of degrees 

of freedom of nodes and shape functions based on the concept of FEM as 

     ww qNxw ][0   (3.7) 

Here, qw and Nw signifies the nodal degrees of freedom and the bending shape functions, 

respectively. The shape function is interpolated in matrix form as 
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where, Le is the length of the beam element. 

3.2.7 Strain displacement relationship 

Using equations (3.5) and (3.7)the axial strain-displacement relationship for the beam 

element can be written as  
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(3.9) 

where, Bw is the strain-displacement matrix of the beam element. 

3.2.8 Piezothermoelastic constitutive equation 

It is assumed that the proposed piezolaminated structure is exposed to three different 

fields such as elastic, electric and thermal fields. The three dimensional constitutive 

equations of piezothermoelasticity expressing the coupling between elastic, electric and 

thermal fields can be expressed as  
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where, stress and strain tensors are represented as ζ and ɛ respectively. C represents 

the elastic matrix coefficients and a vector of applied electric field is represented by E. 

The term λ represents the thermal stress coefficient, Δθ represents the temperature rise 

from stress free temperature T0, and D represents a vector of electric displacement. The 

term e represents the piezoelectric coupling coefficient, ξ represents the permittivity and p 

represents the pyroelectric tensor. The exponent E and ζ indicates the parameters at 

constant electric field and stress respectively. The term s denotes the entropy and αT 

represents expansion coefficient which can be given as 
0T

Cρ
α v

T   where, Cv is the 

specific heat at constant volume and ρ is the mass density. 

Assuming that the piezoceramic material is poled along the axis 3 and viewing it as 

transversely isotropic, many parameters in the above expression becomes either zero or 

can be expressed in terms of other parameters. Subsequently, the equations, (3.10) 

(3.11) and (3.12) are simplified to 
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Further, as the structure is modelled based on the Euler–Bernoulli beam assumptions, 

the stress components other than the one-dimensional bending stress (ζ1) becomes 

negligible for which, 

 065432  ζζζζζ  (3.16) 

Hence, the equations (3.13), (3.14) and (3.15) become 

 θλEeεCζ E Δ13311111   (3.17) 

 θpEξεeD S Δ33331313   (3.18) 

 θαEpελs T
TT Δ 33111

 (3.19) 

 

From equations (3.17) and (3.18) the direct and inverse piezoelectric equations can be 

obtained by neglecting the thermal field terms as 

 
3311111 EeεCζ E   (3.20) 

 
3331313   and EξεeD S  (3.21) 

The strain (ε1) in the piezoelectric material induces a polarization (e31ε1) by the direct 

piezoelectric effect which marks the beginning of formulation for piezoelectric sensor. 
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3.2.9 Electrical potential in the piezoelectric patch 

The component of electric field in the thickness direction (E3) is dominant for a thin 

piezoelectric patch. Hence, a non-zero component of electric field can be accurately 

approximated in the thickness direction. Therefore, it is assumed that the electric 

potential varies only in thickness direction and remains constant for the other two 

directions (i.e. 1 and 2 directions). Since the electric potential is assumed constant, the 

negative gradient of the electric potential other than thickness direction is zero. In the 

present work, it is assumed that the electric potential varies linearly in thickness direction 

and only one electrical degree of freedom is considered for the piezoelectric patch. With 

this approximation, the electric field strength in terms of the electric potential for the 

piezoelectric patch can be expressed as 
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where, tp is the thickness of the piezoelectric layer and v is the electric potential of the 

piezoelectric patch. Since the electric field is non-zero only in the thickness direction, the 

field strength in other two directions is removed. Therefore, the electric field vector for an 

element can be expressed as  

 }]{[3 vBE v  (3.23) 

Where, Bv is the electric field gradient matrix of the piezoelectric patch. Due to the 

presence of piezoelectric patch, an additional degree of freedom is introduced at the 

elemental level. 

3.2.10 Temperature field 

The temperature field is considered as a linear function in the thickness direction. Each 

element has two temperature degrees of freedom (for bottom surface and top surface) 

are considered. The expression of temperature field for the element can be written as  
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(3.24) 

where, θt, θb are the top and bottom surface temperatures. Nθ is the linear interpolation 

vector for the temperature variation through the depth. The term θ is the vector of surface 

temperatures. 

3.2.11 Governing equation using Finite element procedure 

The governing equation has been derived using the conventional FE procedure. It 

involves the derivation of FE equations for both static and dynamic analysis of a modelled 

piezothermoelastic beam.  

 

Figure 3.4 Axially FG non-prismatic piezolaminated cantilever beam with the classic electric 
interface 

 

For the analysis, an axially FG non-prismatic cantilever beam with a piezoelectric patch 

of length Lp near the clamped end is considered (shown in Figure 3.4). An electric 

interface is connected to both surfaces of the piezoelectric patch for obtaining the 
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voltage. Due to the external load resistance a current will flow through the circuit which 

consequently generate power. The detailed static and dynamic formulations for the model 

are presented in the following sections.  

3.2.11.1 Static finite element equation 

The variation of total potential energy of the element is given by using Hamilton‘s 

principle as 

 
0  )( [

2

1

  dtWTδΠδ

t

t

p
 (3.25) 

where, Tp is the internal potential energy consisting of elastic strain energy of the 

structure (Tes), electric potential energy of the piezoelectric patch (Tep) and the internal 

energy due to thermal fields (Tet) as 

 
etepesp TTTT   (3.26) 

The external work done W consists of work done due to applied mechanical forces and 

the applied electrical charges. The terms used in equation (3.26) can be deduced as 

follows: 

a. Elastic strain energy of the structure 
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b. Electric potential energy of the piezoelectric patch 
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c. Internal energy due to thermal field 
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(3.29) 

where, dV is the volume element given by 

 
pb dVdVdV   (3.30) 

The subscripts b and p represents the beam and the piezoelectric material, respectively, 

and dVb and dVp are given by 
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Hence, the internal energy of the structure can be written as, 
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Now, the work done by the external forces and electric charges can be obtained as  
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Now substituting the first variation of equation (3.33) and equation (3.34) in equation 

(3.25)  
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From the equation (3.35), the system of equations for an element can be obtained as  
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After assembling the elemental stiffness matrices of piezothermoelastic beam the global 

set of equations become 
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By taking the thermal strain effect and pyroelectric effect as force vectors on the right 

hand side, the equation (3.46) can further be written as  
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The modelled beam in electrical domain is assumed to be open-circuited for the analysis. 

For open circuit, the differences in the electrical potentials between the electrodes are 

unknown considering charge equal to zero (G =0) which is deduced to the following 

equation as  
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3.2.11.2 Dynamic finite element equation 

The dynamic equations of motion of the modelled system can be represented using 

Hamilton‘s principle as 
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where, Tk is the kinetic energy, Tp is the total electromechanical enthalpy and W is the 

work done, respectively. The terms t1 and t2 represents the time constants at which all 

first variations vanishes. The equation (3.49) can further be represented as  
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The terms used in equation (3.50) can be obtained as follows. 

Part 1.The kinetic energy of the system is 
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Part 2.The total electromechanical enthalpy of the system is 
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Part 3.The work done by the external force is 
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(3.53) 

Now, substituting equations (3.51)-(3.53) into equation (3.50)  
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From equation (3.54), it is observed that the partial differentiation of qw and v can be any 

arbitrary value and cannot be equal to zero. Therefore the equation (3.50) is valid only if 

            ][][][][ ee
θb

e
pbw

e
w

e QθKvKqKqM   (3.55) 

        ee
θp

e
ppw

e
bp GθKvKqK  ][][][  (3.56) 

where, 

 

][][][  and

   ][][][       

e
p

e
b

e

e
p

e
b

e

KKK

MMM





 
 (3.57) 

The equations (3.55) and (3.56) represent the dynamic equation of one element. These 

equations can be represented in matrix form as  
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After assembling the elemental matrices the global set of equations can be obtained and 

written as  
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For open circuit condition, the differences in electrical potential between the electrodes 

are unknown considering charge equal to zero (G=0). Hence, equation (3.59) can be 

rewritten to the following equation  
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Equation (3.60) can further be written by taking the thermal strain effect and pyroelectric 

effect as force vectors on the right hand side as 
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3.2.11.3 Output voltage  

The output voltage from the thermoelectromechanical finite element equation can be 

obtained using the second part of equation (3.48) as  
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From equation (3.62) the voltage can be obtained as  

        globalθpppglobalwbpppglobal θKKqKKv ][][][][ 11    (3.63) 

Further, the output voltage for static electromechanical finite element equation can be 

obtained by putting the temperature vector, θ =0 in equation (3.63) as 

    
globalwbpppglobal qKKv ][][ 1  (3.64) 

3.2.11.4 Output power  

The equation (3.64) represents the piezo system and can be used to determine the 

motion of the system; however the equation doesn‘t contain any energy dissipation. As 

the model is intended for energy harvesting system which must be removing energy, this 

form will not hold good for the present need. Hence, to incorporate the energy dissipation 

term into the equation, Ohm‘s law is used, and a resistive element is added between the 

top and bottom surface of the piezoelectric patch. By incorporating the resistive element, 

the electrical boundary condition becomes 

    globalglobal tqRv )(  (3.65) 

where, the term  ̇(t) is the current output from the piezoelectric element and R is the 

external load resistance. Apart from this, the system should have some supplementary 

structural damping which needs to be taken into account. By using proportional damping 

method the damping ratio is predicted from the computed fundamental frequency as 

    ][ ][ ][ KβMαC   (3.66) 

where, α and β are found out from the following equation  

 …n, , i=
βω

ω

α
ζ i

i

i 321     ,
22

  (3.67) 

Where, ζi is the damping ratio of the structure. Hence, incorporating equation (3.65) and 

equation (3.66) into equation (3.61), the resulting equation becomes  
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 Equation (3.68) shows the model of energy harvesting system. The term  ̇    provides 

the current output of the piezoelectric patch and can be used directly for output power 

through external load resistance R. Further, the global dynamic eletromechanical finite 

element equations are obtained by putting the temperature vector, θ =0 in equation (3.68) 

as 
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3.2.11.5 Electro-thermo-mechanical sensing of output power 

It is assumed that the deformed shape of the beam remains unaffected and there is an 

increase in bending stiffness due to the presence of a thin layer of the piezoelectric patch. 

For measuring the output power, the linear constitutive equations of the piezoelectric 

material have been employed across the thickness of the piezoelectric layer. Hence, the 

total charge on the electrode surface can be obtained as 

  dA θpEξεedADQ

A A

S
r    Δ33331313  (3.70) 

It should be emphasised that the produced charge, current and voltage are all functions 

of the time. The produced current, flowing out to the external impedance can be found 

using the charge developed on the piezoelectric patch. Again as the current is influenced 

by vibration frequency, its magnitude through the external impedance can be expressed 

as 

 rr QI ω  (3.71) 

where ω is the excitation frequency. For a pure load resistance, a linear relationship 

exists between voltage and current which can be written as 

 RIV r  (3.72) 

Combining equations (3.70), (3.71) and (3.72), the amplitude of current flowing through 

the electric circuit becomes 
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where, b and h represents the width and thickness of the beam respectively, Ψ is the 

slope of deflection of the beam, ω is the first natural frequency, R is the external load 

resistance and ΔT is the temperature difference. Hence, the output power from the 

piezolaminated system can be written as 
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3.2.11.6 Stress on the piezoelectric patch 

The piezoelectric patch is strained due to mechanical loading in the structure. Hence, a 

stress is induced in the patch which is an essential parameter for the design and analysis 

of the piezolaminated structure for preventing failure. For a beam of uniform cross 

section, the curvature (c) which was given as [132]  

 
}{

][
2

2

2

2

w
w q

dx

Nd

dx

wd
c   (3.75) 

The average curvature of the piezoelectric patch can be written as 
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The average strain which is a function of average curvature can be obtained as 

 ))((),( cyyxλyxS   (3.77) 

where, yc is the distance from the neutral axis of the PZT patch. By using the relation 

between the stress and strain, stress over the piezoelectric patch can be computed as 
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3.2.12 State-space representation 

This method is used to develop the uncoupled governing equations of motion of the 

system in terms of principal coordinates. It can be achieved by introducing a linear 

transformation between the generalized coordinates qw(t) and the principal coordinates 

g(t) [133]. By using the transformation matrix, the displacement vector qw(t) can be 

approximated as 

    globalglobalw tgnxtq )()]([)(   (3.79) 

Where, x(n) is represented as the modal matrix containing the eigen vectors representing 

the vibratory modes. The equation (3.61) can further be written as 

          QθKvKqKqM globalθbglobalpbglobalwglobalw  ][][][][   (3.80) 

        0][][][                    globalθpglobalppglobalwbp θKvKqK  (3.81) 

From the equation (3.81)  
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Now putting equation (3.82) into equation (3.80)  
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Now incorporating structural damping of equation (3.66) into equation (3.83)  

       

    globalθppppb

globalwbppppbglobalwglobalw

θKKKQ

qKKKKqCqM

][][ ][                                                    

][][ ][][][][

1

1







 
 (3.84) 

The equation (3.84) can further be written as  

        FqKqCqM
globalwglobalwglobalw  ][][][ 1

  (3.85) 

where 

 ])[][ ]([][][ 1
1 bppppb KKKKK   (3.86) 

      globalθppppb θKKKQF ])[][ ][( 1  (3.87) 

Now incorporating equation (3.79) into equation (3.85), we get  

        FnxtgKtgCtgM T
globalglobalglobal )()(][)(][)(][ 1    (3.88) 

Using state-space form, equation (3.88) can be expressed as 

      uBXAX ][][   (3.89) 

where, 
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The terms A, B, X and u are the system matrix, input matrix, state vector and input vector, 

respectively. The output equation for sensor can be written as  

 }]{[}{ XCy output  (3.94) 

Here, Coutput is represented as the output matrix. The output matrix solely depends on the 

terms x(n) and Kbp. 

 

 

 

 

 



 

63 
 

  Chapter 4

Nonlinear Formulation of Non-prismatic 

Axially FG Beams  

4.1 Introduction 

The use of non-prismatic beams shows an effective improvement of output power due 

to the uniform strain profiles compared to prismatic beams. These non-prismatic beams 

are not only selected to optimize the strength to weight ratio of the structure but also to 

meet the architectural and aesthetical needs. However, the geometric nonlinear effects 

due to the large deformation of such structures cannot be overlooked. In reality, no 

physical system is strictly linear and hence, linear models of physical systems have 

limitations of their own. In general, linear models are applicable only in a very restrictive 

domain like when the vibration amplitude is very small. Thus, to accurately identify and 

understand the dynamic behavior of a structural system under general loading conditions, 

it is essential that the nonlinearities present in the system should also be modeled and 

studied. Because nonlinearities have an influence on the vibrations of most of the 

mechanical structures, it is relevant to study their effects on the evolution of the 

oscillations with respect to certain parameters such as frequency of external excitation. 

With the inclusion of geometric nonlinear effects, an accurate estimation of voltage 

sensed by piezoelectric materials along with output power can be determined. This 

chapter is the extension of chapter 3 that includes the geometric nonlinear effects 

concerned with energy harvesting. 

4.2 Mathematical Formulation for Vibration Energy 

Harvesting 

The mathematical formulations involve the strain-displacement relationships of the  
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modelled beam, governing equation for output power and the solutions for the system of 

nonlinear equations. The details of the formulations have been presented in the following 

subsections.  

4.2.1 Displacement field of the beam 

The general form of assumed displacement field is expressed as 
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(4.1) 

where, u, v and w are the displacements along coordinate directions, longitudinal (x), 

lateral (y) and transverse (z), respectively. The terms u0(x) and, w0(x) denotes the 

displacement of a point on the midplane of an undeformed beam along axial (x) and 

transverse (z) directions, respectively. The terms ϕx(x) and Ψx(x) are functions of x and h 

is the beam thickness. As our concern in this study is geometric nonlinearity based on 

Euler-Bernoulli beam assumptions, Poisson‘s effect and transverse shear strain are 

neglected. By substituting C0 = -1, C1 = C2= C3= 0, the general form of displacement has 

been modified to 
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(4.2) 

4.2.2 Shape functions 

A beam element with three degrees of freedom per node with varying cross-sectional 

dimensions along the element axis is shown in Figure 4.1. 
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Figure 4.1 Nodal degrees of freedom of nonprismatic beam element. 

Here, u1, w1 and ψ1 are the axial, transverse and rotation degrees of freedom at node 

1, respectively. Similarly u2, w2 and ψ2 are the corresponding degrees of freedom at node 

2. The axial and transverse displacement variation through the element length assumed 

be 
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where, the terms b1, b2, a1, a2, a3 and a4 are unknown constants which can be obtained 

using the boundary conditions. After applying the boundary conditions the displacement 

field could be interpolated in terms of degrees of freedom of nodes and shape functions 

based on the concept of FEM as 
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where, Nu and Nw are the Lagrange and the Hermite cubic interpolation or shape 

functions, and qu, qw are the elemental nodal degrees of freedoms respectively. The 

accuracy of the result depends on how well these shape functions are selected. These 

interpolation functions for a beam element can be written as 
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Here Le represents length of the beam element. The elemental nodal displacement vector 

can be represented in matrix form as 
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4.2.3 Strain-Displacement relationships 

The general form of strain-displacement relations can be represented as  
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where, the deformation u1, u2, u3 are u0, v0, w0, respectively, the directions x1, x2, x3 are x, 

y, z, respectively and the strain components ε11, ε22, ε33, ε13, ε23, ε12 are ε1, ε2, ε3, ε4, ε5, ε6, 

respectively. Since the modelled beam length is too high compared to the cross-sectional 

dimensions of the beam, the shear strains are assumed to be zero. Moreover, according 

to Von-Karman hypothesis, omitting the large strain components but retaining the square 

of the rotation of normal transverse line in the beam, the modified strain becomes 
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Equation (4.8) can be written in matrix form as 
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(4.9) 

In equation (4.9), 1ε  is divided into linear )( lε  and geometrically nonlinear )( nlε strains. 

The linear strain is further subdivided into linear membrane strain p
lε and bending strain

b
lε . Using equation (4.4), the terms of strain can be expressed as  
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And, the geometric nonlinear membrane strain 
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(4.12) 

Here, [Anw] depends on the displacement vector of the deformed configuration structure 

and [Gnw] purely based on the derivatives of shape functions. 

4.2.4 Governing equation 

The non-prismatic piezolaminated axially FG cantilever beam is shown in Figure 3.4 of 

Chapter 3. The piezoelastic constitutive equation and the electric potential of the 

piezoelectric patch has been discussed in Chapter 3 (sections 3.2.8 and 3.2.9).The 

detailed static and dynamic formulations considering geometric nonlinearity for the model 

are presented in the following sections. 

4.2.4.1  Static nonlinear finite element equation 

The variation of total potential energy of the element is given by 

 0 )( [
2

1

  dtWTδδ

t

t

pΠ  (4.13) 

where, Tp is the total internal potential energy consisting of elastic strain energy of the 

structure (Tes), electric potential energy of the piezoelectric patch (Tep) and the internal 

energy due to thermal fields (Tet). 

 
epesp TTT   (4.14) 

The external work done W consists of work done due to applied mechanical force and 

the applied electrical charges. The terms used in equation (4.13) can be deduced as 

follows. 



Chapter 4   Nonlinear Formulation… 
 

68 
 

a. Elastic strain energy of the structure 
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b. Electric potential energy of the piezoelectric patch 
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(4.16) 

Hence, the total internal potential energy is given by 
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Now, the work done by the external forces and electric charges can be obtained as  
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where, A11, B11 and D11 are the extension, coupling and bending coefficients given by 
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In the present formulations the terms used are given by  
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Hence, equation (4.19) becomes 
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Now, substituting the first variation of equations (4.17) and (4.18) in equation (4.13)  
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From equation (4.22), the system of equations for an element can be obtained as  
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where,  
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Similarly, 
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After assembling the elemental stiffness matrices of piezoelastic beam the global set of 

equations become 
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The modelled beam in electrical domain is assumed to be open-circuited for the analysis. 

For open circuit, the differences in electrical potential between the electrodes are 

unknown considering charge equal to zero (G =0) which leads to the following equation 

as  
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4.2.4.2  Dynamic nonlinear finite element equation 

The dynamic equations of motion of the modelled system can be represented using 

Hamilton‘s principle as 
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The equation (4.41) can further be represented as 
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The terms used in equation (4.42) can be obtained as follows: 

Part 1.The kinetic energy of the system is 
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Part 2.The total electromechanical enthalpy of the system is 

 

 

           

           

           

       

   

dt

vKvδ

qKvδqKvδ

qKvδvKqδvKqδ

vKqδqKqδqKqδ

qKqδqKqδqKqδ

dtTTδdtTδ

t

t

e
pp

T

w
e
bp

T

w
e
bp

T

u
e
bp

Te
pb

T

w
e
pb

T

w

e
pb

T

uw
eT

wu
eT

w

w
eT

uw
e
b

T

wu
e
p

T

u

t

t

epes

t

t

p

 

][  

][ ][ 

][ ][][ 

 ][][ ][ 

][][][

           
2

1

2

1

2

1

32

132

143

211













































 (4.44) 

Part 3.The work done by the external force is 
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Now substituting equations (4.43)-(4.45) in equation (4.42) , the resulting equation 

becomes 
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From equation (4.46), it is observed that the partial differentiation of qu, qw and v can be of 

any arbitrary value rather than zero. Therefore, the equation (4.46) is valid only if 
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The equations (4.47)-(4.49) represent the dynamic equation of motion of one element. 

Further, the equations (4.47)-(4.49) can be represented in matrix form as  
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After assembling the elemental matrices the global set of equations can be obtained and 

can be written as  
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For open circuit condition, the differences in electrical potential between the electrodes 

are unknown considering charge equal to zero (G=0). Hence, the equation (4.51) can be 

deduced to the following equation: 
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4.2.4.3  Output voltage  

Equation (4.40) represents the static piezo electro-mechanical system with geometric 

nonlinear parameters, which can be represented as  
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From the second part of the equation (4.53), the output voltage can be obtained as  

 
   

 
  











 

globalw

globalu

bpbpbpppglobal q

q
KKKKv ][][][][ 321

1
 (4.54) 

4.2.4.4  Output power 

The equation (4.52) represents the piezo electro-mechanical system which can be 

used to determine the motion of the beam; however the equation doesn‘t contain any 

energy dissipation. Since the model is intended for energy harvesting system which must 

focus on scavenging energy, this form will not hold good for the present need. Hence, to 

incorporate the energy dissipation term into the equation, Ohm‘s law is used, and a 

resistive element is added between the top and bottom surface of the piezoelectric patch. 

By incorporating equation (3.65) into equation (4.52), the equation becomes 
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(4.55) 

Equation (4.55) shows the model of energy harvesting system. The term  ̇    provides 

the current output of the piezoelectric patch and can be used directly for output power 

through external load resistance R. 

4.2.4.5  Electro-mechanical sensing of output power 

For measuring the output power, the linear constitutive equations of the piezoelectric 

material have been employed across the thickness of the piezoelectric layer. Hence, the 

total charge on the electrode surface can be obtained as 
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It should be emphasised that the produced charge, current and voltage are all functions 

of time. The produced current, flowing out to the external impedance can be found using 

the charge developed on the piezoelectric patch. Again as the current is influenced by 

vibration frequency, its magnitude through the external impedance can be expressed as 
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where ω is the vibration frequency. For a pure load resistance, a linear relationship exists 

between voltage and current which can be written as 

 RIV r  (4.58) 

Combining equations (4.56), (4.57) and (4.58), the amplitude of current flowing through 

the electric circuit becomes 
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where, b and h represents the width and thickness of the beam. Ψ is the slope of 

deflection of the beam, ω is the first natural frequency and R is the external load 

resistance. Hence, the output power from the piezolaminated system can be written as 
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4.2.5 Nonlinear system of equations 

The non-linear equation (4.55) in the time domain can be solved using Newmark 

method in conjunction with an iteration method, i.e. Newton-Raphson method. By using 

such method, the nonlinear differential equations of motion can be reduced to a set of 

non-linear algebraic equations [134]. The nonlinear equation (4.55)  can be written in the 

form of  

     tt

effglobal

tt

eff QqK
ΔΔ 

][  (4.61) 

where, Keff and Qeff are the effective global stiffness matrix consisting of nonlinear terms 

and effective global load vector, respectively which can be written as 
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The terms a0 , a1 , and a2 are represented as [135] 
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Since the effective stiffness matrix is nonlinear, an iterative solution procedure, i.e. 

Newton-Raphson method has been adopted for any fixed time having sth iteration. In 

Newton-Raphson method, the linearized element equation is of the form 
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where, the terms R and T denote the residual and tangent stiffness matrix and can be 

written as 
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In Newton-Raphson method, the first iteration can be calculated using linear stiffness 

matrix, by assuming  01 s
globalq and 

s
globalq is calculated using equation (4.64). The 

residual is then calculated and the iteration process is repeated till a sufficient residual is 

reached. The exact solution can be obtained when the residual becomes zero. 
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  Chapter 5

Genetic Algorithm for Optimal Power 

Harvesting 

This chapter describes a constrained real coded genetic algorithm (GA) based 

optimization technique to determine the best set of design variables for obtaining 

maximum output power from non-prismatic axially FG beam with temperature gradient 

and nonlinear non-prismatic axially FG beam. 

5.1  Genetic algorithm 

The conventional optimization techniques possess many drawbacks for which it cannot 

be implemented in regular basis in many practical problems. Some of the drawbacks are 

as follows:  

 

(i) Convergence depends on the initial solution.  

(ii) A separate algorithm is required for each problem.  

(iii) Inefficient for problems with discrete search spaces.  

(iv) Inefficient for simultaneous used for parallel machines.  

 

In order to overcome these limitations genetic algorithms (GAs) shows a significant 

alternative for conventional techniques in real optimization problems. Further the 

computational time spent in evaluating solutions with multiple processors can be reduced 

substantially.  

 

The GA is an optimization technique established on the concepts of natural evolution. It 

operates on population-based techniques considering the principle of survival of the fittest 

to yield the best approximated result. At each generation of GA, a new set of the 

chromosome is formed according to their appropriateness in the problem domain 
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 reproducing them using operators like crossover, mutation, lent from natural genetics.  

 

Figure 5.1 A frame work of genetic algorithm used for the parametric optimization 

 

This process leads to the progression of the population of individuals that is best 

appropriate to their environment than the individuals created by natural adaption. The 

framework of the basic genetic procedure is shown in Figure 5.1. A simple genetic 

algorithm contains three operators namely reproduction, crossover and mutation. 

Individuals are generated randomly from the initial population which are evaluated 

according to a fitness function or objective function. Then, the reproduction operation is 

carried out by selecting individuals based on their relative fitness. The individuals with 

higher fitness values are selected for a greater number of times, in proportion to their 

relative fitness. Reproduction alone cannot introduce any different individuals into a 

population. Therefore, the crossover and mutation operations are performed to generate 

new individuals. 

 

The crossover operator is supposed to be the main search operator and behaves in 

twofold operation. Primarily, random strings signifying the design variables are searched 

thoroughly. The favourable portions of these strings are then combined to form potentially 

better strings. Thus, the crossover operation is performed between two strings that are 
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called as parents. Two new strings are formed by the exchange of substrings between 

the parents and are called as children. The produced children might or might not be fit 

than the parents, depending on whether the crossing site falls in an appropriate place. 

Hence, every crossover might not create better solutions. If low-fitness children are 

created, they will be eliminated in the next reproduction operation and hence, will have a 

short life. On the other hand, if high fitness children are produced, they are likely to 

increase in number in the next reproduction operation. Thus, this operation tends to 

enable the evolutionary process to move toward promising regions of the search space. 

 

In a binary coded genetic algorithm, the string length influences the precision. For 

higher precision, greater requirements of the string length and population size is needed, 

thereby increasing the computational complexity. Moreover, a fixed coding scheme is 

used to code the design variables and their corresponding limits. These variable bounds 

must be used such that they bracket the optimum variables. In many problems, such 

information is not known previously. Hence, a real coded genetic algorithm has been 

developed where the real parameters are used directly and optimization is easier than for 

binary coded GAs. In the present study to find the design variables for optimal harvesting 

of power, a real coded GA based constrained technique has been implemented. 

5.2  Real-coded genetic algorithm 

Real-coded genetic algorithm (GA) possesses a lot of advantages than its binary coded 

counterpart while dealing with continuous search spaces with large dimensions. It can 

deal with large domains without sacrificing precision as the binary implementation did. 

Moreover, the computational complexity is less in real coded GA compared to binary 

coded GA. In a real coded GA, the number of parents used in perturbation is the main 

criteria to distinguish between the crossover and mutation operations. The operator is 

mutation if only one parent is used and crossover if more than one parent is used. Hence, 

real-coded GA has been used in the present work to find the optimum parameters that 

give a maximum harvested power. In the present study, a real-coded GA along with 

simulated binary crossover (SBX) and parameter based mutation [136] has been involved 

to maximize the output power. 
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5.3  Mathematical formulation  

The mathematical formulation involves the real coded GA based optimization scheme 

to maximize the output power for non-prismatic axially FG beam with temperature 

gradient and another non-prismatic axially FG beam with geometric nonlinear effects. The 

following section depict the detailed formulation for optimising the output power. 

5.3.1 Genetic algorithm approach for optimal output power of 

nonprismatic axially FG beam under thermo-mechanical loading 

As far as the present mathematical formulation is concerned, the output power 

depends on geometric, mechanical properties, boundary conditions, nature of the applied 

force of the beam and the piezolaminated patch. From the formulation, it is perceived that 

the output power is primarily a function of slope of the piezolaminated patch, which is 

further influenced by cb and ch. The output power depends on the thickness of the 

piezoelectric patch (tp) and the load resistance (R) as well. Apart from this, the first 

natural frequency also depends on the positive integer constant (k) and power gradient 

index (np) of axially FG beam. Set of these parameters has different values, to generate 

more power. To obtain the best combination of the above parameters, a search algorithm 

is required within the safe design of the piezolaminated beam. In the present study, a 

constrained optimization problem has been proposed to maximize the output power 

within the allowable stresses of the beam, PZT material and the voltage of the PZT 

material. The objective function (i.e. obtained power) can be written as 
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The term ζinduced and Vinduced are the stress and open circuit voltage of PZT material, 

respectively. The allowable stress for beam material and PZT material are considered as 

550 MPa and 14 MPa, respectively [137]. The allowable voltage of piezo-ceramic 

material is around 500-1000 V per 1 mm piezo thickness [138]. For the present analysis, 

six parameters are selected for the optimization process which mostly influence the 

harvested power such as: width taper (cb), height taper (ch), electrical resistance (R), 

thickness of piezoelectric patch (tp), positive integer constant (k) and power gradient 

index (np). The fitness function for this problem can be written as 
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where, H is the fitness function, u is the optimization parameters vector and P1 is the 

power harvested from the non-prismatic axially FG beam under thermo-mechanical 

loading. The term α represents as the penalty for this algorithm and is taken as 10-8 which 

is used in the case of constrained violation. The algorithm is sustained for some 

generations until the fitness reaches the optimum value and there is also no change in 

fitness for a large number of generations. In the present work, the real coded genetic 

algorithm consists of the Roulette wheel selection, simulated binary crossover (SBX) and 

parameter based mutation operators. The following section give the brief description of 

these parameters. 

Simulated binary crossover 

A probability distribution function has been considered for the parent solution to create 

two child solutions as  
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The terms c(1), c(2) are the child solutions and p(1), p(2) are the parent solutions. The term 

Ψ is the parameter that controls the spread of child solutions. A self-adaptive method for 

updating the Ψ parameter has been considered [139]. The general procedure adopted for 

the parent solution and child solution are as follows: 
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(a) A random number m is generated between 0 and 1. 

(b) The polynomial probability distribution is used for parameter  ̅ which can be 

written as  
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where 

  12  ψzβ  (5.6) 

and z is calculated as  

  
          21 ,  min

2
1 pppp

pp
z ul

lu



  (5.7) 

Here, p(u) and p(l) are the upper and lower bound of a variable, respectively. The child 

solutions are calculated as follows: 
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Parameter based mutation operator 

In the vicinity of parent solution, a polynomial probability distribution has been used to 

create the child solution. The procedure adopted has been presented below: 

(a) A random number m is generated between 0 and 1. 

(b) The parameter δ is calculated as follows 
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The term λ is the mutation distribution index and has positive value. 

(c) The mutated child is calculated as  

 maxΔδpc   (5.11) 
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where, Δmax is the maximum perturbation allowed in the parent solution. By using 

Δmax=p
(u)- p(l), the normalised perturbation can be calculated as  
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 (5.12) 

Thus, to obtain the mutation effect of 1%, perturbation λ has been taken as 100. 

5.3.2 Genetic algorithm approach for optimal output power of 

nonlinear nonprismatic axially FG beam under mechanical loading  

For a nonprismatic nonlinear axially FG beam under mechanical loading the objective 

function can be written similar to equation (5.1).Therefore the objective function can be 

written as  
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The used symbols have their usual meanings. The fitness function for this problem is 

derived as: 
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where, G is the fitness function, u is the optimization parameters vector and P2 is the 

power harvested from the nonlinear nonprismatic axially FG beam. The term α represents 

the penalty for this algorithm taken as 10-8 and which is used in case of constrained 

violation. The algorithm is sustained for some generations until the fitness reaches the 

optimum value and there is also no change in fitness for a large number of generations. 

In the present work, the real coded genetic algorithm consists of the Roulette wheel 
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selection, simulated binary crossover (SBX) and parameter based mutation operators, 

are similarly used. 
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  Chapter 6

Thermo-Electro-Mechanical Responses 

of Non-prismatic Axially FG Beam 

Structures  

This chapter initially presents the validation of the developed computer code in 

MATLAB platform which is capable of finite element analysis of non-prismatic axially FG 

beam subjected to thermo-electro-mechanical loading. After validation of the developed 

MATLAB code various coupled thermo-electro-mechanical responses of the modelled 

structures have been analysed under thermal loading. 

6.1 Validation of the present formulation  

Based on the finite element formulations discussed in chapter 3, a finite element code 

has been developed for thermo-electro-mechanical analysis of non-prismatic axially FG 

piezolaminated beam for three different profile cross-sections (linear, parabolic and cubic 

profiles). Further, a code has been developed for optimal harvesting of power from the 

mathematical formulations described in chapter 5 for the said profile cross-sections. 

These two codes integration leads to design and analysis of non-prismatic axially FG 

piezolaminated beam for optimal harvesting of power. 

6.1.1 Structural validation 

To verify the present developed code, the static and free vibration analyses have been 

carried out for both prismatic and non-prismatic homogeneous beams. The results have 

been presented in the following subsections. 

6.1.1.1  Prismatic homogeneous beam 

The present developed code is validated by considering a homogeneous cantilever  
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Figure 6.1 Schematic view of a rectangular homogeneous beam 

beam rectangular cross section as shown in Figure 6.1. The dimensions of the beam are 

(500×50×4) mm. Material properties are taken as: Modulus of elasticity (E) = 210 GPA, 

material density (ρ) = 7850 kg/m3 and Poisson‘s ratio (µ) = 0.3. The beam is divided into 

several numbers of equal finite elements. The convergence results of the beam are 

presented in Table 6.1.  

Table 6.1 Convergence result of natural frequencies of cantilever beam 

Natural frequency 

(rad/sec) 

Present code 

(n=6) 

Present code 

(n=8) 

Present code 

(n=10) 

Present code 

(n=12) 

ω1 85.10 84.76 84.26 84.26 

ω2 528.95 528.58 528.07 528.07 

ω3 1479.12 1478.89 1478.62 1478.62 

ω4 2898.76 2898.22 2897.51 2897.51 

where, n is the number of finite elements. Table 6.1 reveals that for 10 finite numbers of 

elements the natural frequencies are converged. Hence, for further analysis the number 

of beam elements has been taken as 10. Further, the exact solution for first four natural 

frequencies with Euler-Bernoulli beam assumptions has been found out as [140] 
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where, EI=Flexural rigidity, ρA=Mass per unit length, Lb=length of the beam and the 

values of ‗βLb‘ for first four natural frequencies are 1.875, 4.694, 7.854 and 10.995 
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respectively. The first four natural frequencies are calculated by using the developed 

code and compared with the results obtained using equation (6.1) shown in Table 6.2. 

Table 6.2 Comparison of first four natural frequencies of homogeneous cantilever beam 

Natural 

frequency(rad/sec) 
Present code Exact [140] % of error 

ω1 84.26 84.3 0.047 

ω2 528.07 528.36 0.054 

ω3 1478.62 1479.21 0.039 

ω4 2897.51 2896.3 0.041 

From the above table a comparable result can be seen using the developed code. 

6.1.1.2  Non-prismatic homogeneous beam 

In this section a non-prismatic (taper (c) =0.0, 0.2) homogeneous cantilever beam of 

rectangular cross section is considered for structural validation of present formulation as 

shown in Figure 6.2.  

 

Figure 6.2 A homogeneous nonprismatic (c=0.0, 0.2) cantilever beam. 

The first four non-dimensional fundamental frequencies are calculated by using the 

current developed computer code and compared with the existing results as listed in 

Table 6.3. The present results are corroborated with the existing one as obtained [93]. In 

order to facilitate the presentation of results, the nondimensional fundamental frequency 

can be introduced as  
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The subscript 0 designates the value of parameters at the fixed end of the beam. 
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Table 6.3 Nondimensional natural frequencies of a nonprismatic homogeneous cantilever beam 

Mode Shahba, et al. [93] present code 

  No of elements No of elements 

  20 25 30 20 25 30 

c=0.0        

ϖ1 3.22 3.22 3.22 3.17 3.18 3.19 

ϖ2 14.47 14.47 14.47 14.34 14.34 14.35 

ϖ3 31.56 31.54 31.5 31.44 31.38 31.34 

ϖ4 48.09 48.03 47.91 48.13 47.92 47.8 

c=0.2 

ϖ1 3.33 3.33 3.33 3.18 3.19 3.19 

ϖ2 14.29 14.29 14.29 14.37 14.36 14.36 

ϖ3 30.79 30.76 30.74 31.49 31.41 31.37 

ϖ4 48.05 47.94 47.88 48.17 47.94 47.82 

Table 6.3, shows that the present results are in good agreement with the available 

existing results. 

6.1.2 Electromechanical validation 

 

Figure 6.3 Schematic view of a bimorph beam 

To verify the accuracy of present coupled electro-mechanical code, the results 

obtained have been validated with the existing published results [141]. For this case a 

bimorph cantilever beam (shown in Figure 6.3) made up of two PVDF layers has been 

considered. The material properties used has been shown in Table 6.4.  
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Table 6.4 Material properties of the bimorph beam 

Properties PZT 

ρ (kg/m
3
) 1800 

E (Gpa) 2 

e31 (C/m
2
) 0.0462 

ε33 (nF) 0.1062 

The bimorph beam is exposed to an external voltage. The internal stresses induced 

causes a bending moment which powers the bimorph beam to bend. The dimensions of 

the beam are (100×5×1) mm. The bimorph beam is discretized into five finite elements. 

Table 6.5 shows that the results obtained using the present code are in good agreement 

with those available in published literature [141]. 

Table 6.5 Transverse deflection of piezoelectric bimorph actuator 

Distance(mm)from fixed 

end 

Deflection(µm) 

Hwang and Park [141] 

Deflection(µm) present 

code 
% of error 

20 0.0131 0.0139 5.75 

40 0.0545 0.0554 1.62 

60 0.1200 0.1247 3.76 

80 0.2180 0.2218 1.71 

100 0.3400 0.3465 2.74 

The percentage of errors between the present and existing results is less. 

6.1.3 Validation of Piezothermoelastic behavior of a piezolaminated 

beam 

The piezothermoelastic behavior of a cantilever piezolaminated graphite/epoxy beam is 

studied and compared with presently developed code. The piezolaminated model 

considered (Figure 6.4, L=0.5 m, tb=0.01 m, b=0.01 m, and tp=0.001 m) is a 

graphite/epoxy beam sandwiched between two PZT layers is shown in Figure 6.4. The 

material properties of the structure have been listed in Table 6.6 [106].  
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Figure 6.4 Piezolaminated cantilever composite beam 

 

Table 6.6 Material Properties of Graphite-epoxy and PZT 

Properties PZT Graphite-epoxy 

E (GPa)  60 180 

υ 0.33 0.33 

G(GPa) 22.5 8 

α 0.012x10
-4

 2.4x10
-8

 

ε33 (nFm
-1

) 15 - 

d31(CN
-1

) -17.5x10
-11

 - 

 p3 (CK
-1

m
-2

) -2.5x10
-5

 - 

ρ (Kg/m
3
) 7750 1600 

 

For analysis and validation, the piezothermoelastic effect of the sensor due to thermal 

excitation and the deflection due to the thermal gradient is taken into account. First of all 

the beam with PZT patch is placed in a temperature field, and then the beam temperature 

reaches quickly to a steady state. The PZT layer is assumed with a single electrode at its 

surface. By using equation (3.63), it can be observed that the variation of temperature 

can induce a voltage in the PZT sensor which is termed as the pyroelectric effect. Apart 



Chapter 6   Thermo-Electro-Mechanical… 
 

93 
 

from this, the thermally induced deformation can also induce a signal. This 

piezothermoelastic effect (i.e. both pyroelectric and thermal strain effect) has been 

studied and the validated results are shown in Figure 6.5 and Figure 6.6. 

 

Figure 6.5 Sensor voltage generated due to pyroelectric effect 

 

 

Figure 6.6 Sensor voltage generated due to thermal strain effect. 

Next, thermally induced deflection of the piezolaminated beam has been studied. A 

temperature gradient has been applied such that the temperature of the bottom surface is 

higher than the top surface of the piezolaminated beam. Owing to the temperature 

gradient the centre line of the beam deflects upward. Figure 6.7 shows the validated 

results for deflection of centre line of the beam subjected to 5, 10, 20 and 500C 

temperature gradient [106]. 
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Figure 6.7 Comparison of deflection due to thermal gradient for 5, 10, 20,50
0
C 

In the case of thermal loading, the temperature at the top surface has been taken as 

1000C and the bottom surface temperature as 00C.  

6.1.4 Experimental validation of the present formulation 

 

Figure 6.8 Bimorph cantilever configuration(a) with piezoceramic layers (b) cross sectional view 

The present formulation of the harvester is validated with the available experimental 

results [36]. For this type of validation, a rectangular cantilever bimorph energy harvester 
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with a tip mass under base excitation is considered as shown in Figure 6.8. Figure 6.9 (a-

b) show the computed results of the voltage and current frequency response function 

(FRF) using the present formulation. Figure 6.9 (a-b) show that the present results are in 

close agreement with the previously published experimental results [36]. 

 

Figure 6.9 Comparison of voltage FRF for load resistances 1, 11.8 and 33 kΩ. 

 

6.2 Responses of prismatic and nonprismatic 

homogeneous beam  

Three cases of piezolaminated cantilever beam under the simultaneous action of an 

impulse load at the free end and thermal load has been analysed to study the output 

responses such as displacement, voltage, and power 

 

The cross-sectional dimensions of the beam near the clamped end has been taken as 

b0 = 0.05 m and t0 = 0.004 m. The piezoelectric patch with a length (Lp) 0.05 m and 

thickness (tp) 0.0005 mm has been attached near the clamped end of the beam of length 

0.5m as shown in Figure 6.10. The piezolaminated beam has been subjected to an 

impulse load of 1N at the free end for duration of 4 s. In the case of thermal loading, the 

temperature at the top surface has been taken as 1000C and the bottom surface 
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temperature as 00C. Based on the methodology discussed in chapter 4, various 

responses for all the proposed modelled beams have been illustrated in the subsequent 

sections.  

 

 

Figure 6.10 Modelled profile beams (a) Linear (b) parabolic (c) Cubic with piezoelectric patch. 

 

The mechanical, electrical and thermal properties used in the present study for all 

cases have been listed in Table 6.7. 
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Table 6.7 Material properties of beam and PZT 

Properties Steel beam PZT 

E0(GPa) 210 0.0606 

μ0 0.3 0.3 

G0(Gpa) 80.7 0.0234 

ρ0(Kg m
-3

) 7850 7500 

e31(C m
-2

) - 16.6 

ε33(nFm
-1

) - 25.55 

α(
0
C

-1
) 2.4x10

-8
 3x10

-6
 

p3(CK
-1

m
-2

) - -23x10
-4

 

 

This section depicts the frequency and time domain analysis of tip displacement, 

frequency, output voltage and output power responses of homogeneous prismatic and 

three cases of modelled non-prismatic beams (Case (A), Case (B) and Case (C)). This 

comparison helps in predicting for enhancement of output power of the proposed 

modelled beams. 

6.2.1 Frequency domain analysis 

In frequency domain analysis the frequency, output voltage and power responses of 

the homogeneous prismatic and modelled non-prismatic beams (such as Case (A), Case 

(B) and Case (C)) are compared in the subsequent sections. 

6.2.1.1  Frequency responses 

The amplitude of motion is the most important parameter for energy harvesting from 

vibration analysis. From the mathematical formulation for energy harvesting described in 

equation (3.73), it is observed that the output power of a piezolaminated beam is directly 

related to the slope of the beam. Beams undergoing large deflection could produce more 

slopes, and hence, more power will be generated. A comparison has been carried out for 

frequency responses for homogeneous prismatic and homogeneous non-prismatic 

modelled beams for three different cross section profiles (Cases (A), (B) and (C)) shown 

in Figure 6.11 (a-d) with arbitrary taper values 0.1 and 0.3. 
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Figure 6.11 Frequency responses of homogeneous prismatic beam (cb=0.0, ch=0.0) and 
nonprismatic beam for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, 

ch=0.3 

The modelled beam is subjected to a sinusoidal excitation at the free end. From Figure 

6.11 (a-d), it can be observed that the amplitude ratios for homogeneous non-prismatic 

beams are more compared to homogeneous prismatic beam for all value of tapers. 

Further, the amplitude ratio of homogeneous Case (C) is more compared to 

homogeneous Case (A) and (B) for all cases of tapers.  
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6.2.1.2  Voltage responses 

 

Figure 6.12 Voltage responses of homogeneous prismatic beam (cb=0.0, ch=0.0) and nonprismatic 
beam for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

Voltage is generated in the piezoelectric patch due to vibration of the beam. This 

generated voltage is responsible for current flow through the electric circuit power 

generation. Again the amplitude of generated voltage depends on cross section profile of 

the beam. This section provides a comparative study of voltage responses of 

homogeneous prismatic beam and homogeneous nonprismatic modelled beams (Cases 

(A), (B) and (C)). The piezoelectric patch is attached at the clamped end of the beam 

where it experiences a maximum value of strain. As the beam vibrates due to the external 

sinusoidal excitation at the free end, the charge gets accumulated over the surface of the 

piezoelectric patch from which the voltage can be calculated. Figure 6.12 (a-d) represent 

the voltage responses for vibration of the beam excited in first vibration mode with 

arbitrary taper values of 0.1 and 0.3 respectively. From the Figure 6.12 (a-d), it has been 

observed from the results that more voltage can be obtained for homogeneous 

nonprismatic beams (Cases (A), (B) and (C)) compared to homogeneous prismatic beam 
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for different values of taper. Further, the voltage amplitude of homogeneous Case (C) 

beam is more compared to homogeneous Case (A) and (B) for all values of tapers.  

6.2.1.3  Output power responses 

 

Figure 6.13 Variation of specific output power with driving frequency of homogeneous prismatic 
beam (cb=0.0, ch=0.0) and nonprismatic beam for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, 

ch=0.1 and (d) cb=0.3, ch=0.3 

 

The specific output power frequency response function (FRF) of Cases (A), (B) and (C) 

subjected to a sinusoidal excitation at the free end are shown in Figure 6.13 (a-d) with 

different values of cb and ch (0.1 and 0.3). From Figure 6.13 (a -b), it is observed that 

homogeneous non-prismatic beam (Cases (A), (B) and (C)) generates more than 20%, 

60% and 90% of specific output power for taper values of cb = 0.1 and ch = 0.1 compared 

to the homogeneous prismatic beam, respectively. Further, Case (B) and Case (C) 

generate 30% and 50% more specific output power compared to Case (A), whereas 

Case (C) generates more than 15% of output power compared to Case (B) for the same 
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values of tapers. However, the increase in percentage is 100%, 400% and 800% more in 

Cases (A), (B) and (C) with increase in ch to 0.3 compared to homogeneous prismatic 

beam. Further, no commendable variation in specific output power is ascertained in 

Cases (A), (B) and (C) for further variation of cb and ch as shown in Figure 6.13 (c-d). It is 

also observed that with increase in ch in all cases of non-prismatic beams 90% more 

specific output power can be generated compared to increase in cb. Further, for a given 

variation in ch, Case (C) generates 80% and 60% more specific output power compared 

to Cases (A) and (B), respectively. 

 

Figure 6.14 Variation of output power with external load resistance of homogeneous prismatic 
beam (cb=0.0, ch=0.0) and homogeneous nonprismatic beam for (a) cb=0.1, ch=0.1 (a) cb=0.1, 

ch=0.3 (a) cb=0.3, ch=0.1 and (a) cb=0.3, ch=0.3 

 

Further, the output power from the piezolaminated beam has been found by assuming 

the beam to be excited at the first fundamental frequency. The electrical circuit which is 

connected to the top and bottom surface of the piezoelectric patch is modelled by an 

equivalent resistance R. As the beam vibrates, voltage is generated across the 



Chapter 6   Thermo-Electro-Mechanical… 
 

102 
 

piezoelectric material which is responsible for the flow of current in the circuit. This 

current when flows through the load resistance power is generated. Apart from the 

frequency and amplitude of vibration, the output power generated also depends on load 

resistance. The effect of load resistance on output power is discussed by comparing 

homogeneous prismatic beam and homogeneous non-prismatic beams (Cases (A), (B) 

and (C)). The variables of the system are functions of external resistance which gives 

maximum output power. According to the application, the requirement of resistance is 

determined, and the variables of the system can be designed to reach maximum power. 

Figure 6.14 (a-d) show the variation of output power with external load resistance for 

homogeneous prismatic beam and homogeneous non-prismatic beams (such as Cases 

(A), (B) and (C)). From Figure 6.14 (a) and (b), it is observed that the output power for 

Case (C) is 0.087 mW, and that of Case (B) and (A) the values are 0.07 mW and 0.056 

mW for taper values of cb = 0.1 and ch = 0.1. The optimum resistance for Case (C) is 

96.767 kΩ, for Case (B) and Case (A) the optimum resistances are 99.038 kΩ and 

97.060 kΩ respectively. When the height taper increases to 0.3 the power increases to 

0.312 mW with optimum resistance of 117.275 kΩ in Case (C). For Case (B) the output 

power is 0.188 mW with optimum resistance of 123.056 kΩ and for Case (A) the output 

power is 0.107 mW with optimum resistance of 110.178 kΩ. It indicates with an increase 

in height taper the output power increases near about 258% in Case (C), whereas in 

Case (B) and Case (A) the output power increases near about 168% and 90%, 

respectively. Similarly, there is an increase in optimum resistance as the height taper 

increases. Again from Figure 6.14 (c) and (d) for taper values of cb = 0.3 and ch = 0.1, the 

output power for Case (C) is 0.198 mW with optimum resistance of 101.881 kΩ. For Case 

(B) the output power is 0.119 mW with optimum resistance 101.078 kΩ. Again for Case 

(A) the output power is 0.072 mW with optimum resistance of 97.190 kΩ. As the height 

taper increases to 0.3, the output power increases to 0.769 mW in Case(C) whereas in 

Case (B) and Case (A) the values are 0.343 mW and 0.141 mW, respectively. The 

optimum resistance for Case (C) is (131.097 kΩ) more than Case (B) (129.948 kΩ) and 

Case (A) (111.462 kΩ), respectively. The output power attains a maximum value for 

particular value of resistance. The output power attains a maximum value for particular 

value of resistance and beyond that the output power decreases with increase in 

resistance. Again the results of the analysis reveals that increase in ch produces 40% 

more power as compared to increase in cb.  
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6.2.2 Time domain analysis 

In time domain analysis the tip displacement, output voltage and power responses of the 

homogeneous prismatic and modelled non-prismatic beams (such as Case (A), Case (B) 

and Case (C)) are compared for different taper values in the subsequent sections. 

6.2.2.1  Tip displacement response 

 

Figure 6.15 Tip displacement responses of homogeneous prismatic beam (cb=0.0, ch=0.0) and 
nonprismatic beam for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, 

ch=0.3 

The tip displacement response in time domain of homogeneous prismatic (cb=0.0, 

ch=0.0) and non-prismatic beams (Case (A), Case (B) and Case (C)) with tapers 0.1 and 

0.3 are presented in Figure 6.15 (a-d). The tip displacement has been simulated for a 

time period of 2 sec. In Figure 6.15(a-d), at t=0.05 sec the peak amplitude of 

homogeneous prismatic beam is around 0.453e-3 mm. As time progresses the tip 

displacement dies out substantially. For same time period it appears that peak amplitude 
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of homogeneous Case (A), (B) and (C) beams are 0.539e-3 mm, 0.644e-3 mm and 

0.769e-3 mm for cb=0.1 and ch=0.1, respectively. When ch increased to 0.3, the peak 

amplitude of Case (C) is 2.1 mm whereas for Case (A) and (B) the values are 0.71e-3 

mm and 1.2e-3 mm. Similarly, the peak amplitude for Case (C) is 1.1e-3 mm, whereas 

the values for Case (A) and Case (B) are 0.608e-3 mm and 0.825e-3 mm, respectively. 

When cb increases to 0.3, the peak amplitudes for Case (A), (B) and (C) are shifted to 

0.805e-3 mm, 1.6e-3 mm and 3.2e-3 mm, respectively. From this analysis, it is observed 

that tip displacement shows a decreasing trend for all cases of tapers with increase in 

time. The peak amplitude of Case (C) is more compared to Case (A) and (B) for a given 

taper. Further, increase in ch has predominant effect in the response than increase in cb 

for the proposed nonprismatic beams. 

6.2.2.2  Output voltage response 

 

Figure 6.16 Output voltage responses of homogeneous prismatic beam (cb=0.0, ch=0.0) and 
nonprismatic beam for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, 

ch=0.3 
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The output voltage responses in time domain of homogeneous prismatic (cb=0.0, ch=0.0) 

and the proposed non-prismatic beams (Case (A), Case (B) and Case (C)) with arbitrarily 

taken tapers (0.1 and 0.3) are shown in Figure 6.16 (a-d).  The output voltage has been 

simulated for a time period of 2 sec. As time progresses the amplitude of voltage dies out 

substantially. This might be due to the presence of internal damping along with the 

electrical circuit with external load resistance attached to the system. In Figure 6.16 (a), 

at t = 0.05 sec the peak amplitude of voltage for homogeneous prismatic beam is around 

20.0067 V/m. For same time period it appears that peak voltage amplitude of 

homogeneous Case (A), (B) and (C) beams are 0.0215 V/mm, 0.0229 V/mm and 0.0281 

V/mm for cb=0.1 and ch=0.1, respectively. When ch increased to 0.3, the peak voltage 

amplitude of Case (C) is also increased to 0.0384 V/mm whereas for Case (A) and (B) 

the values are 0.0244 V/mm and 0.0288 V/mm as shown in Figure 6.16 (b). Similarly, 

when cb increases to 0.3 the peak amplitude of Case (C) is 0.0228 V/mm, whereas the 

values for Case (A) and Case (B) are 0.0215 V/mm and 0.0225 V/mm, shown in Figure 

6.16 (c). From Figure 6.16 (d) when cb=0.3 and ch=0.3, the peak amplitudes for Case (A), 

(B) and (C) are shifted to 0.0246 V/mm, 0.0297 V/mm and 0.394 V/mm, respectively. 

From this analysis, it is observed that peak voltage shows a decreasing trend for all 

cases of tapers with increase in time. For a given tapers, the peak voltage of Case (C) is 

more compared to Case (A) and (B) beams. 
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6.2.2.3  Output power response 

 

Figure 6.17 Output power responses of homogeneous prismatic beam (cb=0.0, ch=0.0) and 
nonprismatic beam for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, 

ch=0.3 

 

The output power responses in time domain of homogeneous prismatic (cb=0.0, ch=0.0) 

and non-prismatic beams (Case (A), Case (B) and Case (C)) with tapers 0.1 and 0.3 are 

shown in Figure 6.17 (a-d). The output power has been simulated for a time period of 2 

sec. As time progresses the output power dies out substantially. In Figure 6.17 (a), at t= 

0.03 sec the peak output power for homogeneous prismatic beam is around 4 mW. For 

same time period it appears that peak output power of homogeneous Case (A), (B) and 

(C) beams are 4.6e-9 W/mm2, 5.3 e-9 W/mm2 and 5.8 e-9 W/mm2 for cb=0.1 and ch=0.1, 

respectively. When ch increased to 0.3, the peak output power of Case (C) is increased to 

15.2 e-9 W/mm2 whereas for Case (A) and (B) the values are 5.6 e-9 W/mm2and 8.3 e-9 

W/mm2, shown in Figure 6.17 (b). Similarly, when cb increases to 0.3 the peak power for 
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Case (C) is 5.2 e-9 W/mm2, whereas the values for Case (A) and Case (B) are 4.2 e-9 

W/mm2 and 5.1e-9 W/mm2, shown in Figure 6.17 (c). From Figure 6.17 (d) when cb=0.3 

and ch=0.3, the peak values for Case (A), (B) and (C) are shifted to 5.9 e-9 W/mm2, 8.9 e-

9 W/mm2 and 14.9 e-9 W/mm2, respectively. It reveals that peak output power shows a 

decreasing trend for all cases of tapers with increase in time. The peak output power of 

Case (C) is more compared to Case (A) and (B) for a given taper values. Further 

increase in ch has predominant effect on output power over increase in cb for all cases of 

proposed beams. 

6.3 Variation of material properties 

The variations of FG properties (such as density (ρ), Young‘s modulus (E), Poisson‘s 

ratio (υ) and coefficient of thermal expansion (α)) with temperature have been presented 

in Figure 6.18 (a-d) by using the equation (3.1). The various material properties used in 

the analysis are presented in the Table 6.8 [131]. 

Table 6.8 Material properties of the beam 

Properties Y0 Y-1 Y1 Y2 Y3 

ρ (Kg/m3) 7850 0 0 0 0 

E (N/m2) 210e9 0 3.079e-4 -6.534e-7 0 

Υ 0.3 0 -2.002e-4 3.797e-7 0 

α (/0c) 12e-6 0 8.086e-4 0 0 
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Figure 6.18 Variation of (a)Young‘s modulus (b) density (c) Poisson‘s ratio and (d) coefficient of 
thermal expansion with temperature. 

 

From the Figure 6.18 (a-d), it is observed that with increase in temperature the density 

remains constant; Young‘s modulus of the beam decreases, Poisson‘s ratio increases 

and coefficient of thermal expansion also increases, respectively. The variations of FG 

properties in the axial direction are presented in Figure 6.19 (a-d) by using equation (3.1). 

The values of np have been arbitarily taken as 0, 0.5, 1, 5 and 10, and the values of T 

and k has been arbitrarily taken as 500C and 2, respectively. From Figure 6.19 (a-d), it is 

observed that the FG properties of the beam continuously decrease towards the tip of the 

cantilever beam with an increase in np. 
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Figure 6.19 Variation of density, Young‘s modulus, Poisson‘s ratio and coefficient of thermal 
expansion of an axially FG beam with different power gradient index. 

 

Again, it is obvious from the Figure 6.19 (a-d) that as the power gradient index 

increases (> 10); the material properties approach to zero. Therefore, for further analysis, 

the power gradient index is assumed to be less than or equal to 10. 

6.4 Effect of tapers and axially FG properties on the 

harvested energy 

In order to study the superimposing effects due to simultaneous variation of axially FG 

properties and axially varying cross-section of the beam, the prevailing effect has been 

analysed and presented in this section. For this case, arbitrarily varying parameters 

(cb=0.1, ch=0.1, np=2 and k=1) have been used to find the individual dominant effect of 
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axially FG properties and changes of cross section of the beam. Figure 6.20 (a-d) show 

the comparison of various responses (such as static deflection, frequency response, and 

output voltage and power responses) of axially FG and nonprismatic (Case (A), (B) and 

(C)) beam.  

 

Figure 6.20 Effect of axially FG and nonprismatic beams on (a) static deflection (b) frequency (c) 
output voltage and (d) output power responses. 

 

From Figure 6.20 (a-d), it is observed that the static deflection of axially FG beam is 

30% more compared to the nonprismatic beam. It is also observed that the absolute 

amplitude, output voltage amplitude and specific output power of axially FG beam are 

30%, 50% and 150% more than nonprismatic beam. Therefore it is perceived that, axially 

FG beam has more prevailing effect than that of nonprismatic piezolaminated beam. 
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Figure 6.21 Effect of material properties on (a) static deflection (b) frequency (c) output voltage 
and (d) output power responses of nonprismatic beams with np=2, k=1, cb=0.1 and ch=0.1. 

 

Furthermore, a comparison has been carried out to study the prevailing effect of 

material properties (such as E and ρ) on output responses i.e., static deflection, 

frequency, output voltage and output power. For this purpose two conditions have been 

considered in the analysis. Firstly, keeping E constant and varying ρ in axial direction and 

keeping ρ constant and varying E in axial direction for a given average temperature with 

power law using equation (3.1). Figure 6.21 (a-d) show the comparison of various 

responses for the above two cases, of proposed cross-section profile beams using 

arbitrarily varying parameters. From Figure 6.21 (a-d) it is observed that variation of E in 

axial direction has more prevailing effect than that of variation of ρ in same direction. 
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6.5 Responses of homogeneous and axially functionally 

graded non-prismatic beam 

This section presents the dynamic analysis in both frequency and time domain 

responses i.e., frequency, output voltage and output power of homogeneous and axially 

functionally graded (FG) modelled nonprismatic beams (Case (A), Case (B) and Case 

(C)) for different tapers. 

6.5.1 Frequency domain analysis 

In frequency domain analysis, the frequency, output voltage and power responses of 

the homogeneous and modelled axially FG non-prismatic beams (such as Case (A), 

Case (B) and Case (C)) are compared in the subsequent sections. 

6.5.1.1  Frequency response 

 

Figure 6.22 Frequency responses of homogeneous and axially FG nonprismatic (Case (A),Case 
(B) and Case (C)) beams for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, 

ch=0.3 
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This section provides a comparative study of frequency responses between 

homogeneous and proposed axially FG piezolaminated beam subjected to sinusoidal 

excitation at the free end. Figure 6.22 (a-d) depict the comparison for different values of 

cb and ch (such as 0.1, 0.3). From Figure 6.22 (a-d), it is evident that the amplitude ratio of 

axially FG (np= 2, k= 2) beam for a given range of driving frequencies is substantially 

more compared to homogeneous beam of same dimensions in all cases of cross-

sections of beam. It is also observed that axially FG Case (C) piezolaminated beam 

produce more amplitude ratio compared to axially FG Case (A) and Case (B) 

piezolaminated beams for all cases of taper. 

6.5.1.2  Voltage response 

 

Figure 6.23 Voltage responses of homogeneous and axially FG nonprismatic (Case (A),Case (B) 
and Case (C)) beams for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, 

ch=0.3 
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This section provides a comparative study of output voltage between homogeneous 

and proposed axially FG piezolaminated beam subjected to sinusoidal excitation 

(magnitude 1 N) at the free end. Figure 6.23 (a-d) depict the comparison for different 

values of cb and ch (such as 0.1, 0.3). From Figure 6.23 (a-d), it is evident that the voltage 

amplitude of axially FG (np= 4, k= 1) beam for a given range of driving frequencies is 

90% more compared to homogeneous beam of same dimensions in all cases of cross-

sections of beam. It is also observed that axially FG Case (C) piezolaminated beam 

generates 5% and 10% more voltage compared to axially FG Case (A) and Case (B) 

piezolaminated beam for all cases of tapers. 

6.5.1.3  Output power responses 

 

Figure 6.24 Variation of specific output power with driving frequency of homogeneous and axially 
FG nonprismatic (Case (A),Case (B) and Case (C)) beams for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 

(c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

The specific output power FRF of Cases (A), (B) and (C) piezolaminated beams 

subjected to a sinusoidal excitation at the free end are shown in Figure 6.24 (a-d) with 
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different values of cb and ch (0.1 and 0.3). From Figure 6.24 (a-d), it is observed that non-

prismatic axially FG beam generates 300% more specific output power for all taper 

values of cb and ch compared to the homogeneous non-prismatic beam in all cases of 

cross section profiles respectively. Further, it is observed that axially FG Case (C) 

piezolaminated beam generates more than 35% and 15% specific output power 

compared to axially FG Case (A) and Case (B) piezolaminated beam for all cases of 

tapers. 

 

Figure 6.25 Variation of output power with external load resistance of homogeneous and axially 
FG nonprismatic (Case (A),Case (B) and Case (C)) beams for (a) cb=0.1, ch=0.1 (a) cb=0.1, ch=0.3 

(a) cb=0.3, ch=0.1 and (a) cb=0.3, ch=0.3 

 

Figure 6.25 (a-d) shows the variation of output power with external load resistance for 

homogeneous and axially FG non-prismatic (such as Cases (A), (B) and (C)) 

piezolaminated beams. From Figure 6.25 (a) and (b), it is observed that the output power 

of homogeneous Case (C) is 0.127 mW, whereas the output power of axially FG Case 
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(C) is 0.523 mW for taper values of cb = 0.1 and ch = 0.1, respectively. However, for the 

same values of cb and ch, the output power of homogeneous and axially FG Case (A) and 

Case (B) are 0.056 mW, 0.211 mW and 0.082 mW, 0.322 mW, respectively. The 

optimum resistance for homogeneous and axially FG Case (C) is 109.346 kΩ and 

123.816 kΩ, respectively, whereas the optimum resistance for homogeneous and axially 

FG Case (A) and Case (B) are 97.062 kΩ, 103.022 kΩ and 104.315 kΩ, 114.400 kΩ, 

respectively. When ch increases to 0.3 the output power of homogeneous and axially FG 

Case (C) increases to 1.2 mW and 5.7 mW, respectively, with the optimum resistance of 

233.629 kΩ and 185.291 kΩ, respectively. Similarly ,the output power of homogeneous 

and axially FG Case (A) and (B) increases to 0.107 mW, 0.438 mW and 0.32 mW, 1.4 

mW with optimum resistance of 110.18 kΩ, 122.973 kΩ and 147.231 kΩ, 175.581 kΩ, 

respectively. This indicates axially FG beams generate more power compared to the 

homogenous beam for a given values of cb and ch. Further, with an increase in ch, the 

output power of axially FG Case (C) increases 80% more, whereas in Case (A) and Case 

(B), the output power increases 15% and 50% more, respectively. The Figure 6.25 (c) 

represents the variation of power when cb changes to 0.3. From Figure 6.25 (c), it can be 

observed that, the output power of homogeneous and axially FG Case (C) changes to 

0.292 mW and 1.3 mW with the optimum resistance of 115.741 kΩ and 140.511 kΩ, 

respectively. Similarly, the output power of homogeneous and axially FG Case (A) and 

(B) increases to 0.073 mW, 0.281 mW and 0.140 mW, 0.583 mW with optimum 

resistance of 97.192 kΩ ,106.008 kΩ and 106.499 kΩ, 122.916 kΩ, respectively. Further 

from Figure 6.25 (d), when ch increases to 0.3, the output power of homogeneous and 

axially FG Case (C) changes to 3.2 mW and 15.3 mW with the optimum resistance of 

209.841 kΩ and 277.219 kΩ, respectively. Similarly, the output power of homogeneous 

and axially FG Case (A) and (B) changes to 0.141 mW ,0.594 mW and 0.587 mW, 2.7 

mW with optimum resistance of 111.464 kΩ ,127.598 kΩ and 155.839 kΩ, 193.694 kΩ, 

respectively. From the analysis, it is observed that with increase in ch more power can be 

achieved compared to increase in cb in axially FG beam. It is also observed that with 

simultaneous increase in cb and ch more output power can be scavenged in axially FG 

beams compared to homogeneous beams. Nevertheless, axially FG Case (C) generates 

90% more power compared to case (A) and Case (B). 
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6.5.2 Time domain analysis 

In time domain analysis, the tip displacement, output voltage and power responses of 

the homogeneous and modelled axially FG non-prismatic piezolaminated beams (Case 

(A), Case (B) and Case (C)) are compared for different taper values in the subsequent 

sections. 

6.5.2.1  Tip displacement response 

 

Figure 6.26 Tip displacement responses of homogeneous and axially FG Case(A) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 
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Figure 6.27 Tip displacement responses of homogeneous and axially FG Case(B) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

Figure 6.28 Tip displacement responses of homogeneous and axially FG Case(C) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 
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The tip displacement responses of homogeneous and axially FG (Case (A), Case (B) 

and Case (C)) piezolaminated beam in time domain with tapers (0.1 and 0.3) are 

presented in Figure 6.26 (a-d)-Figure 6.28 (a-d). The displacement response has been 

simulated for a time period of 2 sec. In Figure 6.28 (a) at time t=0.07 sec, the peak 

amplitude of homogeneous and axially FG Case (C) beams are 0.7e-3 mm and 1.5e-3 

mm respectively for cb=0.1 and ch=0.1. As the time progresses the peak amplitude 

decreases substantially. Similarly, the values of homogeneous and axially FG Case (A) 

and (B) are 0.5e-3 mm, 1e-3 mm and 0.6e-3 mm, 1.2e-3 mm, shown in Figure 6.26 and 

Figure 6.27 (a), respectively. It is seen that the peak displacements for all cases of axially 

FG beam increases than corresponding homogeneous cases. When ch increases to 0.3, 

the peak displacements of axially FG Case (A), (B) and (C) beams are found as 1.4e-3 

mm, 2.4e-3 mm and 4.4e-3 mm as shown in Figure 6.26- Figure 6.28 (b). Further, 

increase in cb to 0.3, the peak displacements of axially FG Case (A), (B) and (C) are 

found as 1.2e-3 mm, 1.6e-3 mm and 2.3e-3 mm presented in Figure 6.26- Figure 6.28 

(c). From Figure 6.26- Figure 6.28 (d), when cb=0.3 and ch=0.3, the peak displacements 

of axially FG Case (A), (B) and (C) are shifted to 1.6e-3 mm, 3.3e-3 mm and 6.7e-3 mm. 

This shows an increase in 97%, 100% and 102% of peak displacements of axially FG 

nonprismatic beams compared to corresponding homogeneous cases. 
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6.5.2.2   Output voltage response 

 

Figure 6.29 Output voltage responses of homogeneous and axially FG Case(A) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

 

Figure 6.30 Output voltage responses of homogeneous and axially FG Case(B) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 
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Figure 6.31 Output voltage responses of homogeneous and axially FG Case(C) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

The output voltage responses in time domain of homogeneous and axially FG non-

prismatic (Case (A), Case (B) and Case (C)) piezolaminated beams with tapers (0.1 and 

0.3) are presented in Figure 6.29- Figure 6.31 (a-d). The output voltage responses have 

been simulated for a time period of 2 sec. In Figure 6.29 (a) at time t=0.05 Sec, the peak 

output voltage of homogeneous and axially FG Case (C) beam are 0.0242 V/mm and 

0.0438 V/mm respectively for cb=0.1 and ch=0.1. With increase in time period the 

maximum value of output voltage decreases gradually. Similarly, the values of 

homogeneous and axially FG Case (A) and (B) are 0.0215 V/mm, 0.0404 V/mm and 

0.0229 V/mm, 0.0423 V/mm, shown in Figure 6.30 and Figure 6.31 (a), respectively. It is 

observed that the peak output voltages for all cases of axially FG beam increases than 

homogeneous one. When ch increases to 0.3, the peak voltages of axially FG Case (A), 

(B) and (C) beam are found as 0.0454 V/mm, 0.0614 V/mm and 0.0756 V/mm shown in 

Figure 6.29- Figure 6.31 (b). When cb increases to 0.3, the peak voltages of axially FG 

Case (A), (B) and (C) are found as 0.0394 V/mm, 0.0393 V/mm and 0.0404 V/mm shown 

in Figure 6.29- Figure 6.31 (c). Further, from Figure 6.29- Figure 6.31 (d), when cb=0.3 

and ch=0.3, the peak voltages of axially FG Case (A), (B) and (C) are changed to 0.0456 

V/mm, 0.0614 V/mm and 0.0782 V/mm. This shows an increase in 90%, 102% and 106% 
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of peak output voltages of axially FG nonprismatic beams compared to corresponding 

homogeneous ones. 

6.5.2.3  Output Power responses 

 

Figure 6.32 Output power responses of homogeneous and axially FG Case(A) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 
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Figure 6.33 Output power responses of homogeneous and axially FG Case(B) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

 

Figure 6.34 Output power responses of homogeneous and axially FG Case(C) beam for (a) 
cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 
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The time history of output power of homogeneous and axially FG nonprismatic beam 

(Case (A), Case (B) and Case (C)) with arbitrarily taken tapers (0.1 and 0.3) are 

presented in Figure 6.32- Figure 6.34 (a-d). The output power responses have been 

simulated for a time period of 2 sec. In Figure 6.32 (a) at time t=0.08 Sec, the peak output 

power of homogeneous and axially FG Case (C) beam are 5.8e-9 W/mm2 and 19.2e-9 

W/mm2 for cb=0.1 and ch=0.1. With increase in time the peak values of output power 

decreases substantially. Similarly, the values of homogeneous and axially FG Case (A) 

and (B) are 4.6e-9 W/mm2, 16.3e-9 W/mm2 and 5.3e-9 W/mm2, 17.9e-9 W/mm2, shown in 

Figure 6.33 and Figure 6.34 (a), respectively. It is observed that the peak output power 

for all cases of axially FG beam increases than homogeneous beam. When ch increases 

to 0.3, the peak output power of axially FG Case (A), (B) and (C) beams are found as 

20.6e-9 W/mm2, 37.7e-9 W/mm2 and 70.3e-9 W/mm2 shown in Figure 6.32- Figure 6.34 

(b). Further, with increase in cb to 0.3, the peak output power of axially FG Case (A), (B) 

and (C) are found as 15.6e-9 W/mm2, 15.5e-9W/mm2 and 16.4e-9 W/mm2 as shown in 

Figure 6.32- Figure 6.34 (c). Figure 6.32- Figure 6.34 (d) demonstrate that when cb=0.3 

and ch=0.3, the peak output power of axially FG Case (A), (B) and (C) are changes to 

20.6e-9 W/mm2, 41.5e-9 W/mm2 and 59.3e-9 W/mm2. This indicates axially FG 

nonprismatic beams generate more output power compared to homogeneous 

nonprismatic beams. Further, with increase in ch more output power can be obtained in 

Case (C) than Case (A) and Case (B) beams. 

6.6  Responses of axially functionally graded non-

prismatic beam without and with thermo-mechanical 

loading. 

In this section, the proposed axially FG non-prismatic (Case (A), Case (B) and Case 

(C)) piezolaminated beam is subjected to mechanical loading of magnitude 1N along with 

thermal loading (θt= 1000C and θb= 00C). The analysis is carried out without and with 

pyroelectric effect. 
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6.6.1 Static analysis 

 

Figure 6.35 Deflection of axially FG nonprismatic (Case (A),Case (B) and Case (C)) beams under 
mechanical and thermo-mechanical loading without pyroelectric effect for (a) cb=0.1, ch=0.1 (b) 

cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

 

Figure 6.36 Deflection of axially FG nonprismatic (Case (A),Case (B) and Case (C)) beams under 
mechanical and thermo-mechanical loading with pyroelectric effect for (a) cb=0.1, ch=0.1 (b) 

cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 
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Figure 6.35 (a-d) and Figure 6.36 (a-d) show the beam deflection for all cases of axially 

FG nonprismatic piezolaminated beams under mechanical loading and thermo-

mechanical loading without and with pyroelectric effect for tapers 0.1 and 0.3. The values 

of np and k are arbitrarily taken as 4 and 1, respectively. From Figure 6.35 (a-d) and 

Figure 6.36 (a-d), it is observed that under thermo-mechanical loading, the deflection of 

beam in each case of axially FG non-prismatic beams increased by 70% more than that 

for only mechanical loading. Further it has been observed that in Case (C), the deflection 

is more under thermo-mechanical loading than Case (A) and Case (B) for all cases of 

tapers. This is due to the fact that as the beam is kept under thermo-mechanical loading, 

the stiffness reduces. Hence more deflection of the beam can be obtained. From Figure 

6.35 (a-d) and Figure 6.36 (a-d), it has also been observed that no significant variation 

has been found in the responses with and without pyroelectric effect. 

6.6.2 Frequency domain analysis 

In section 6.6.1, as it is observed that no significant variation exists without and with 

pyroelectric effect, hence further analyses have been carried out under thermo-

mechanical loading with pyroelectric effect. In frequency domain analysis the frequency, 

output voltage and power responses of the axially FG modelled non-prismatic (Case (A), 

Case (B) and Case (C)) beams subjected to with and without thermal loading are 

discussed in the subsequent sections. 
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6.6.2.1  Frequency responses 

 

Figure 6.37 Frequency responses of axially FG nonprismatic (Case (A),Case (B) and Case (C)) 
beams under mechanical and thermo-mechanical loading considering pyroelectric effect for (a) 

cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3. 

 

This section provides a comparative study of frequency responses of proposed axially 

FG non-prismatic (Case (A), Case (B) and Case (C)) piezolaminated beams under 

mechanical loading and thermo-mechanical loading with pyroelectric effect. Figure 6.37 

(a-d) depict the comparison of frequency responses for arbitrarily chosen values of cb and 

ch (such as 0.1, 0.3). From Figure 6.37 (a-d), it is evident that the amplitude ratio of axially 

FG (np= 2, k= 1) beam under thermo-mechanical loading, for a given range of driving 

frequencies is 60% more compared to only mechanical loading for all cases of cross-

sections of beam. It is also observed that axially FG Case (C) under thermo-mechanical 

loading produce more amplitude ratio compared to axially FG Case (A) and Case (B) for 

all cases of tapers. 
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6.6.2.2  Voltage response 

 

Figure 6.38 Voltage responses of axially FG nonprismatic (Case (A),Case (B) and Case (C)) 
beams under mechanical and thermo-mechanical loading considering pyroelectric effect for (a) 

cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3. 

 

Figure 6.38 (a-d) depict the comparative study of output voltage responses of proposed 

axially FG non-prismatic (Case (A), Case (B) and Case (C)) piezolaminated beams under 

mechanical and thermo-mechanical loading with pyroelectric effect. The analyses are 

carried out for different values of cb and ch (such as 0.1, 0.3). From Figure 6.38 (a-d), it is 

evident that the voltage amplitude of axially FG (np= 2, k= 1) beam under thermo-

mechanical loading with pyroelectric effect for a given range of driving frequencies is 65% 

more compared to only mechanical loading in all cases of cross-sections of beam. It is 

also observed that axially FG Case (C) under thermo-mechanical loading generates more 

voltage compared to axially FG Case (A) and Case (B) for all cases of tapers. 
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6.6.2.3  Output Power responses 

 

Figure 6.39 Variation of specific output power of axially FG nonprismatic (Case (A),Case (B) and 
Case (C)) beams under mechanical and thermo-mechanical loading considering pyroelectric effect 

for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3. 

 

The specific output power FRFs of all cases under mechanical and thermo-mechanical 

loading have been shown in Figure 6.39 (a-d) with different values of cb and ch (0.1 and 

0.3), respectively. From Figure 6.39 (a-d), it has been observed that non-prismatic axially 

FG beam under thermo-mechanical loading generates 70% more specific output power 

for all taper values of cb and ch than mechanical loading only in all cases of cross section 

profiles. This is due to the fact that under thermo-mechanical loading, the beam is 

thermally poled, which produces more deflection than mechanical loading only. 

Consequently, more voltage and power can be obtained from the modelled beams.  
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Figure 6.40 Variation of output power with external load resistance of axially FG nonprismatic 
(Case (A),Case (B) and Case (C)) beams under mechanical and thermo-mechanical loading 

considering pyroelectric effect for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) 
cb=0.3, ch=0.3. 

 

Figure 6.40 (a-d) show the variation of output power with external load resistance for 

axially FG non-prismatic (Cases (A), (B) and (C)) piezolaminated beams under 

mechanical and thermo-mechanical loading with pyroelectric effect. From Figure 6.40 (a) 

and (b), it is observed that the output power of axially FG Case (C) under thermo-

mechanical loading is 31.4566 mW, whereas with mechanical loading is 2.1650 mW for 

taper values of cb = 0.1 and ch = 0.1. However, for the same values of cb and ch the output 

power of axially FG Case (A) and Case (B) for mechanical and thermo-mechanical 

loading are 0.8219 mW, 20.5476 mW and 1.2851 mW, 24.9095 mW, respectively. When, 

ch increases to 0.3 the output power of axially FG Case (C) increases to 23.8718 mW and 

124.2968 mW for mechanical and thermo-mechanical loading respectively. Similarly, the 

output power of axially FG Case (A) and (B) increases to 1.7698 mW, 28.6321 mW and, 

5.6237 mW, 51.8313 mW for mechanical and thermo-mechanical loading, respectively. 

This indicates axially FG beams under thermo-mechanical loading with pyroelectric effect 
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generates more power compared to mechanical loading only for given values of cb and ch. 

The Figure 6.40 (c) represents the variation of power when cb changes to 0.3. In Figure 

6.40 (c) the output power of axially FG Case (C) changes to 5.7781 mW and 51.5955 

mW while the output power of axially FG Case (A) and (B) increases to 1.1344 mW, 

23.3387 mW and 2.4750 mW, 33.3304 mW under mechanical and thermo-mechanical 

loading, respectively. When ch increases to 0.3, the output power of axially FG Case (C) 

changes to 68.9079 mW and 264.6845 mW while the output power of axially FG Case (A) 

and (B) changes to 2.4779 mW, 33.3757 mW and 11.5134 mW, 78.0562 mW under 

mechanical and thermo-mechanical loading respectively. From the analysis, it is 

observed that in axially FG beam under thermo-mechanical loading, with increase in ch, 

more power can be obtained than increase in cb. It is also observed that simultaneous 

increase in cb and ch, more output power can be scavenged in axially FG beams under 

thermo-mechanical loading compared to mechanical loading only.  

6.6.3 Time domain analysis 

In time domain analysis, the tip displacement, output voltage and output power of the 

axially FG nonprismatic (Case (A), Case (B) and Case (C)) piezolaminated beam under 

mechanical and thermo-mechanical loading with pyroelectric effect have been compared  

and presented for different taper values in the subsequent sections. 

6.6.3.1  Tip displacement response 

 

Figure 6.41 Tip displacement responses of axially FG piezolaminated beams with pyroelectric 
effect for cb=0.3, ch=0.3 of (a) Case (A) (b) Case (B) and (c) Case (C).  
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The tip displacement responses of axially FG beams (Case (A), Case (B) and Case 

(C)) with pyroelectric effect in time domain for cb= 0.3 and ch=0.3 have been shown in 

Figure 6.41 (a-c). The transverse tip displacement has been simulated for a time period 

of 5 sec. The amplitude decreases substantially with increase in time. From Figure 6.41 

(a), the peak amplitude of Case (A) under impulse loading is 4.6e-3 mm whereas under 

thermo mechanical loading it is 5.3e-3 mm. Similarly, the amplitude values for Case (B) 

and (C) are 9.4e-3 mm, 10.3e-3 mm and 18.3e-3 mm, 19.5e-3 mm as shown in Figure 

6.41 (b) and (c) respectively. From the figures it is observed that there is an increase in 

15%, 10% and 7% of peak amplitudes for Case (A), (B) and (C) under thermo mechanical 

loading compared to impulse loading. Again, Case (C) beam has got more peak 

amplitude than Case (A) and (B) beams under thermo mechanical loading for a given 

value of taper. 

6.6.3.2  Output voltage response 

Here the output voltage responses for all cases of beams are discussed. The axially 

FG (Case (A), Case (B) and Case (C)) piezolaminated beams with pyroelectric effect in 

concern with time domain for cb= 0.3 and ch=0.3 have been presented in Figure 6.42 (a-

c). The voltages have been simulated for a time period of 5 sec. The peak amplitude for 

output voltage of Case (A) under impulse loading is 0.1349 V/mm whereas for thermo 

mechanical loading it is 0.2667 V/mm. The results are shown in Figure 6.42 (a). Similar 

results are found for Case (B) and (C) beams. The results for Case (B) and (C) are 

0.1761 V/mm, 0.3687 V/mm and 0.2197 V/mm, 0.4737 V/mm as shown in Figure 6.42 (b) 

and (c) respectively. It is found that there are 97%, 109% and 115% increase in peak 

output voltage for Case (A), (B) and (C) beams under thermo mechanical loading 

compared to impulse load. For a given taper, Case (C) beam has more peak output 

voltage than Case (A) and (B) beams under thermo mechanical loading. 
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Figure 6.42 Output voltage responses of axially FG piezolaminated beams with pyroelectric effect 
for cb=0.3, ch=0.3 of (a) Case (A) (b) Case (B) and (c) Case (C). 

6.6.3.3  Output Power responses 

 

Figure 6.43 Output power responses of axially FG piezolaminated beams with pyroelectric effect 
for cb=0.3, ch=0.3 of (a) Case (A) (b) Case (B) and (c) Case (C). 

The output power of axially FG (Case (A), Case (B) and Case (C)) piezolaminated 

beam with pyroelectric effect in time domain with cb= 0.3 and ch=0.3 have been simulated 

and presented in Figure 6.43 (a-c). Here the output powers have been simulated for a 

time period of 5 sec. The peak output power of Case (A) under impulse loading is 18.2e-8 
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W/mm2 and under thermo mechanical loading it is 37.7e-8 W/mm2 as presented in Figure 

6.43 (a). The corresponding values for Case (B) and (C) are 31e-8 W/mm2, 69.4e-8 

W/mm2 and 48.3e-8 W/mm2, 114.5e-8 W/mm2 shown in Figure 6.43 (b) and (c) 

respectively. It is noticed that there is 107%, 123% and 137% increase in peak output 

power for Case (A), (B) and (C) under thermo mechanical loading compared to impulse 

load. Again, Case (C) beam generates more peak output power than Case (A) and (B) 

beams under thermo mechanical loading for a given value of taper. 

6.7 Responses of axially functionally graded non-

prismatic beam under thermo-mechanical loading 

without and with temperature dependent material 

properties. 

In this section, the proposed axially FG non-prismatic (Case (A), Case (B) and Case 

(C)) piezolaminated beam is subjected to mechanical loading of magnitude 1N along with 

thermal loading (θt= 1000C and θb= 00C). The material properties of the beam vary axially 

with position from fixed end to the tip of the beam along with average temperature using 

equation (3.1). The various material properties used in the analysis have been presented 

in Table 6.8. 
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6.7.1 Static analysis 

 

Figure 6.44 Deflection of axially FG nonprismatic (Case (A),Case (B) and Case (C)) beams under 
thermo-mechanical loading with temperature independent and dependent material properties for 

(a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

Figure 6.44 (a-d) show the beam deflection for all cases of axially FG nonprismatic 

piezolaminated beams subjected to thermo-mechanical loading with temperature 

dependent and independent material properties (such as ρ, E, υ and α) for tapers 0.1 and 

0.3. The average temperature has been considered as 500C for all cases of modelled 

beams. From Figure 6.44 (a-d), it has been observed that due to thermo-mechanical 

loading, the static deflection of the beam with temperature dependent material properties 

shows 6% more than temperature independent material properties.  

6.7.2 Frequency domain analysis 

In frequency domain analysis the frequency, output voltage and power responses of 

the axially FG modelled non-prismatic (Case (A), Case (B) and Case (C)) beams with 

thermo-mechanical loading with temperature independent and dependent material 
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properties have been discussed in the subsequent sections. For the analysis, the 

average temperature has been considered as 500C. 

6.7.2.1  Frequency responses 

 

Figure 6.45 Frequency responses of axially FG nonprismatic (Case (A),Case (B) and Case (C)) 
beams under thermo-mechanical loading for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 

and (d) cb=0.3, ch=0.3. 

 

This section provides a comparative study of frequency responses of proposed axially 

FG non-prismatic (Case (A), Case (B) and Case (C)) piezolaminated beams under 

thermo-mechanical loading with temperature independent and dependent material 

properties. Figure 6.45 (a-d) depicts the comparison of frequency responses for arbitrarily 

chosen values of cb and ch (such as 0.1, 0.3). From Figure 6.45 (a-d), it is evident that the 

amplitude ratio of axially FG (np= 4, k= 1) beam under thermo-mechanical loading with 

temperature dependent material properties shows 60% more than temperature 

independent material properties for all cases of cross-sections of beam. It is also 

observed that axially FG Case (C) under thermo-mechanical loading with temperature 
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dependent material properties produce more amplitude ratio than temperature 

independent material properties of Case (A) and Case (B) for all cases of tapers. 

6.7.2.2  Voltage response 

 

Figure 6.46 Voltage responses of axially FG nonprismatic (Case (A),Case (B) and Case (C)) 
beams under thermo-mechanical loading for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 

and (d) cb=0.3, ch=0.3. 

 

Figure 6.46 (a-d) depict the comparative study of output voltage responses of proposed 

axially FG non-prismatic (Case (A), Case (B) and Case (C)) piezolaminated beams under 

thermo-mechanical loading with temperature independent and dependent material 

properties. The analyses have been carried out for different values of cb and ch (such as 

0.1, 0.3), respectively. It is evident that the voltage amplitude of axially FG (np= 4, k= 1) 

beam under thermo-mechanical loading with temperature dependent material properties 

shows 65% more than temperature independent material properties for all cases of cross-

sections of beam shown in Figure 6.46 (a-d). It is also observed that axially FG Case (C) 

under thermo-mechanical loading with temperature dependent material properties 
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produce more amplitude ratio than temperature independent material properties of Case 

(A) and Case (B) for all cases of tapers. 

6.7.2.3  Output power response 

 

Figure 6.47 Variation of specific output power of axially FG nonprismatic (Case (A),Case (B) and 
Case (C)) beams under thermo-mechanical loading for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) 

cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

The specific output power FRF of all cases under thermo-mechanical loading with 

temperature independent and dependent material properties are shown in Figure 6.47 (a-

d) with different values of cb and ch (0.1 and 0.3). The non-prismatic axially FG beam 

under thermo-mechanical loading with temperature dependent material properties 

generates 70% more specific output power for all taper values of cb and ch than 

temperature independent material properties for all cases of cross section profiles. 

Further, it is predicted that axially FG Case (C) under thermo-mechanical loading with 

temperature dependent material properties generates 25% and 15% more specific output 

power than temperature independent material properties for all cases of tapers. 
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Figure 6.48 Variation of output power with external load resistance of axially FG nonprismatic 
(Case (A),Case (B) and Case (C)) beams under thermo-mechanical loading for (a) cb=0.1, ch=0.1 

(b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) cb=0.3, ch=0.3 

 

Figure 6.48 (a-d) show the variation of output power with external load resistance for 

axially FG non-prismatic (Cases (A), (B) and (C)) piezolaminated beams subjected to 

mechanical and thermo-mechanical loading with pyroelectric effect. The output power of 

axially FG Case (C) under thermo-mechanical loading with temperature dependent 

material properties is 35.9363 mW, whereas with temperature independent material 

properties is 31.4566 mW for taper values of cb = 0.1 and ch = 0.1 shown in Figure 6.48 

(a) and (b). However, with the same values of cb and ch the output power of axially FG 

Case (A) and Case (B) for mechanical loading and thermo-mechanical loading are 

20.5476 mW, 23.6932 mW and 24.9095 mW, 28.5457 mW respectively. When, ch 

increases to 0.3 the output power of axially FG Case (C) increases to 124.2968 mW and 

138.496 mW under thermo-mechanical loading with temperature independent and 

dependent material properties respectively. Similarly, the output power of axially FG Case 

(A) and (B) varies as 28.6321 mW, 32.6653 mW and, 51.8313 mW, 58.0401 mW under 

thermo-mechanical loading with temperature independent and dependent material 
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properties, respectively. This indicates axially FG beams under thermo-mechanical 

loading with temperature dependent material properties generate more power than 

temperature independent material properties for a given values of cb and ch. Further, 

with an increase in ch, the output power of axially FG Case (C) increases 15% more 

whereas in Case (A) and Case (B), the output power increases 14% and 11% more, 

respectively. Figure 6.48 (c) represents the variation of power when cb changes to 0.3. 

From Figure 6.48 (c) the output power of axially FG Case (C) changes to 51.5955 mW 

and 58.6314 mW while the output power of axially FG Case (A) and (B) increases to 

23.3387 mW, 26.8728 mW and 33.3304 mW, 38.0714 mW under thermo-mechanical 

loading, respectively. In Figure 6.48 (d), when ch increases to 0.3, the output power of 

axially FG Case (C) changes to 264.6845 mW and 294.7352 mW while the output power 

of axially FG Case (A) and (B) changes to 33.3757 mW, 38.0174 mW and 78.0562 mW, 

87.273 mW under thermo-mechanical loading respectively. From the analysis, it is 

observed that in axially FG beam under thermo-mechanical loading, with increase in ch, 

more power can be obtained compared to increase in cb. It is also observed that 

simultaneous increase in cb and ch more output power can be scavenged in axially FG 

beams under thermo-mechanical loading with temperature dependent than temperature 

independent material properties. Also, axially FG Case (C) under thermo-mechanical 

loading generates 20% more power than case (A) and Case (B), respectively.  

6.7.3 Time domain analysis 

In time domain analysis, the tip displacement, output voltage and output power of the 

axially FG nonprismatic (Case (A), Case (B) and Case (C)) piezolaminated beam under 

thermo-mechanical loading with temperature independent and dependent material 

properties with pyroelectric effect have been compared and presented. For the analysis, 

the values for cb, ch, θt and θb are considered as 0.3, 0.3, 1000C and 00C respectively. The 

average temperature has been taken as 500C.  
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6.7.3.1  Tip displacement response 

 

Figure 6.49 Tip displacement responses of axially FG piezolaminated beams with temperature 
independent and dependent material properties considering pyroelectric effect for cb=0.3, ch=0.3 of 

(a) Case (A) (b) Case (B) and (c) Case (C). 

 

The tip displacement responses of axially FG beams (Case (A), Case (B) and Case 

(C)) with temperature independent and dependent material properties with pyroelectric 

effect in time domain for cb= 0.3 and ch= 0.3 are shown in Figure 6.49 (a-c). The tip 

displacements have been simulated for a time period of 5 sec as before. From Figure 

6.49 (a), the peak amplitude of Case (A) under thermo mechanical loading with 

temperature independent material properties is 5.3e-3 mm and for temperature 

dependent material properties is 5.4e-3 mm. Similarly, for Case (B) and (C) the peak 

amplitude with temperature independent material properties are 10.3e-3 mm and 19.5e-3 

mm, whereas with temperature dependent material properties are 10.4e-3 mm and 

19.6e-3 mm as shown in Figure 6.49 (b) and (c) respectively. In view of the above results 

it is ascertain that the peak value of tip displacement under thermo mechanical loading 

with temperature dependent material properties is more compared to temperature 
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independent material properties for all cases of proposed beams. This is due to fact that 

as the young‘s modulus decreases with increase in temperature, the beam loses its 

stiffness than the original beam towards the free end. Therefore it is concluded that the 

deflection is more in temperature dependent material properties than temperature 

independent material properties. It is also observed that the time period of Case (C) 

under thermo mechanical loading is more compared to Case (A) and (B) beams for a 

given tapers. 

6.7.3.2  Output voltage response 

 

Figure 6.50 Output voltage responses of axially FG piezolaminated beams with temperature 
independent and dependent material properties considering pyroelectric effect for cb=0.3, ch=0.3 of 

(a) Case (A) (b) Case (B) and (c) Case (C). 

 

The numerical analysis for output voltage responses of axially FG beams (Case (A), 

Case (B) and Case (C)) with temperature independent and dependent material properties 

with pyroelectric effect in time domain for cb= 0.3 and ch=0.3 are highlighted in Figure 

6.50 (a-c). The output voltages have been simulated for a time period of 5 sec. From 
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Figure 6.50 (a), the peak output voltage of Case (A) under combined thermo mechanical 

loading with temperature independent material properties is 0.2667 V/mm whereas for 

temperature dependent material properties it is 0.2966 V/mm. Further, Case (B) and (C) 

beams have peak displacement values 0.3687 V/mm and 0.4737 V/mm with temperature 

independent material properties. However, for temperature dependent material properties 

these values are 0.4122 V/mm and 0.5332 V/mm as shown in Figure 6.50 (b) and (c) 

respectively. The output voltage, under thermo-mechanical loading with temperature 

dependent material properties is considerably more than temperature independent 

material properties for all cases of beams. This is due to the fact that an additional 

deflection of the beam is resulted due to thermal loading in the beam. Further, as the 

material property (Young‘s modulus) decreases with increase in temperature and the 

beam is axially FG, stiffness reduces towards the free end. Hence, more strain can be 

generated in the piezoelectric patch thereby increasing the output voltage. 

6.7.3.3  Output Power responses 

 

Figure 6.51 Output power responses of axially FG piezolaminated beams with temperature 
independent and dependent material properties considering pyroelectric effect for cb=0.3, ch=0.3 of 

(a) Case (A) (b) Case (B) and (c) Case (C). 
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The time histories of output power of axially FG beams (Case (A), Case (B) and Case 

(C)) with temperature independent and dependent material properties with pyroelectric 

effect for cb= 0.3 and ch= 0.3 are shown in Figure 6.51 (a-c). The simulation has been 

carried out for 5 sec as before. There are significant changes in output power for both 

temperature independent and dependent material properties as shown in Figure 6.51 (a-

c).From Figure 6.51 (a), the peak output power of Case (A) under combined thermo 

mechanical loading with temperature independent material properties is 37.7e-8 W/mm2 

and for temperature dependent material properties it is 47.6e-8 W/mm2. For Case (B) and 

(C) the values are 69.4e-8 W/mm2 and 114.5e-8 W/mm2 for temperature independent 

material properties and 88.9e-8 W/mm2 and 149.2e-8 W/mm2 for temperature dependent 

material properties which are shown in Figure 6.51 (b) and (c) respectively. The output 

power under thermo mechanical loading with temperature dependent material properties 

is 30% more which is a remarkable change than temperature independent material 

properties for all proposed beams.  

6.8 Chapter summary 

The computer codes starting from finite element analysis of energy harvesting from 

prismatic and non-prismatic piezolaminated beams, homogeneous and axially FG non-

prismatic piezolaminated beams under thermo-electro-mechanical loading have been 

validated with existing results available in the literatures. The results obtained are in good 

agreement with the existing results. Three types of cross-section profiles such as linear, 

parabolic and cubic with simultaneous variation of width and height tapers have been 

analysed to study the piezo-thermo-mechanical responses of such structures under 

different bottom and top surface temperatures. It has been observed that the combined 

thermo-mechanical loading laid significant impact in all cases of proposed profile cross 

sections than only mechanical loading. From the analysis, it has been observed that, 

axially FG beams in all cases of cross section profiles generate more output voltage and 

power than homogeneous profiles for arbitrarily chosen tapers. Further, the proposed 

beams generate more output voltage and power under thermo-mechanical loading than 

mechanical loading only for the same variation of tapers. It has also been observed that 

an improved output voltage and power can be obtained for the proposed beams, when 

the material properties vary with the average temperature found from the mean of top and 

bottom surface temperatures, respectively. Moreover, the cubic cross section profile 
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beam generates more output voltage and power than the linear and parabolic cross 

section profile beams. 
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  Chapter 7

Electro-Mechanical Responses of 

Nonlinear Non-prismatic Axially FG Beam 

Structures  

This chapter presents the results of nonlinear non-prismatic axially FG beams for 

energy harvesting. Based on the methodology developed (as discussed in Chapter 4) 

various responses have been obtained considering the effect of geometric nonlinearity. 

Initially the validation of the developed computer code which is capable of finite element 

analysis of nonlinear non-prismatic axially FG beam subjected to electro-mechanical 

loading have been presented. After validation of the developed code various coupled 

electro-mechanical responses of the modelled structures have been analyzed under 

mechanical loading. 

7.1 Validation of present formulation 

Based on the finite element formulations discussed in Chapter 4, a finite element code 

has been developed for nonlinear electro-mechanical analysis of non-prismatic axially FG 

piezolaminated beam for three different profile cross-sections (linear, parabolic and 

cubic). Further, a code has been developed for optimal harvesting of power from the 

mathematical formulations described in Chapter 5 for the said profile cross-sections. 

These two codes integrated lead to design and analysis of nonlinear non-prismatic axially 

FG piezolaminated beam for optimal harvesting of power from axially FG beam 

structures. 

7.1.1 Structural validation 

In this section the large deformation effect in the cantilever beam due to transverse 

load at its tip is investigated. For this purpose, a bimorph cantilever beam has been 
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considered made up of two PVDF layers (as shown in Figure 6.3). 

 

Figure 7.1 Comparison results of (a) linear (b) nonlinear deflection ratio responses for piezo 
bimorph cantilever beam. 

The deflection ratios (Δ/Lb) for different values of load ratios (QLb
2/EI) are shown in 

Figure 7.1 (a-b). The linear response result is compared with the existing result and is 

shown in Figure 7.1 (a) whereas, for nonlinear response the result is shown in Figure 7.1 

(b). The results corroborate with the available existing results [108], and it is observed 

that the presently obtained results are comparable with the existing results. 

7.2 Responses of axially functionally graded nonlinear 

non-prismatic beam 

In this section, the static and dynamic responses (time domain responses) of proposed 

axially FG non-prismatic beams with geometric nonlinear effects are presented. 

7.2.1 Static analysis 

The tip displacements of the axially FG non-prismatic (Case (A),Case (B) and Case 

(C)) beams for both linear and nonlinear system with step load, have been discussed in 

this section. The displacement ratio (Δ/Lb; where Δ is the tip displacement) is the 

important criteria for distinction between linear and nonlinear systems. A comparative 

study is carried out for Cases (A), (B) and (C) with different values of cb and ch  Figure 7.2 

(a-d) show the variation of tip displacement of piezolaminated axially FG nonprismatic 

beam for above three cases with arbitrarily chosen taper values 0.1 and 0.3 in both width 

and height directions. To examine the large deformation effect, a varying transverse 
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impulse load up to 1 N is applied at the free end for all cases. It is observed from Figure 

7.2 (a-d) that displacement ratio is less in the nonlinear system as compared to a linear 

one for all  

 

Figure 7.2 Variation of tip displacement with load of linear and nonlinear axially FG nonprismatic 
(Case (A),Case (B) and Case (C)) beams for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, 

ch=0.1 and (d) cb=0.3, ch=0.3 

cases. It is due to the fact that for the nonlinear system, the vertical stiffness increases 

due to bending while preserving its overall length. On the contrary, the stiffness matrix in 

linear systems is independent of deflection. Due to the increased in stiffness value in the 

nonlinear system, the deflection is comparatively less than linear system. It is also 

observed that for a given width and height taper, the displacement ratio for Case (C) is 

more for both linear and nonlinear system as compared to other two cases. Further, if the 

taper value increases there is a significant change in displacement ratio for all cases. 

7.2.2 Time domain analysis 

In time domain analysis the tip displacement, output voltage and power of nonlinear 

axially FG non-prismatic (Case (A), Case (B) and Case (C)) piezolaminated beam 

subjected to mechanical loading for different taper values are presented. 
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7.2.2.1 Tip displacement response 

 

Figure 7.3 Nonlinear transient tip displacement responses of axially FG nonprismatic (Case (A), 
Case (B) and Case (C)) beams for: for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and 

(d) cb=0.3, ch=0.3. 

 

The tip responses of the piezo laminated cantilever beam for all cases (Cases (A), (B) 

and (C)) are also discussed in this section. The responses are shown in Figure 7.3 (a-d) 

for different taper values of cb and ch (such as 0.1, 0.3). The peak amplitude is obtained 

for all the cases considering geometric nonlinear effect of the beam. From Figure 7.3 (a-

d), it is noticed that the period of vibration for Case (C) is more as compared to other 

cases for different taper values. The peak amplitude for the prismatic beam is 0.025e-4 

mm. The peak amplitude for Case (C) is 0.043e-4 mm, whereas for Case (A) and Case 

(B), is the values are 0.03e-4 mm and 0.035e-4 mm for taper values of cb = 0.1 and ch = 

0.1, respectively. When the height taper increased to 0.3, the peak amplitude for Case 

(C) is shifted to 0.0853e-3 mm, whereas for Case (A) and (B), the values are 0.04e-3 mm 

and 0.0607e-3 mm, respectively. Similarly, the peak amplitude for Case (C) is 0.0606e-4 

mm, whereas for Case (A) and Case (B) are 0.0338e-3 mm and 0.0451e-3 mm for taper 
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values of cb = 0.1 and ch = 0.3, respectively. When the cb increases to 0.3, the peak 

amplitude for Case (C) is shifted to 0.105e-3 mm, whereas for Case (A) and (B) the 

values are 0.0436e-3mm and 0.0728e-3 mm. From this analysis, it is evident that with an 

increase in ch, peak amplitude is more for Case (C). 

7.2.2.2  Output voltage response 

 

Figure 7.4. Nonlinear transient output voltage responses of axially FG nonprismatic (Case (A), 
Case (B) and Case (C)) beams for: for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and 

(d) cb=0.3, ch=0.3. 

Voltage is produced in the piezoelectric patch when it is strained. The generated 

voltage is responsible for current flow through the electric circuit which is meant for power 

generation. Again, the amplitude of generated voltage depends on the cross section 

profile of the beam. This section provides a comparative study of voltage of piezo 

laminated beam by considering Cases (A), (B) and (C). The piezoelectric patch is 

attached near the clamped end of the beam where it experiences a maximum value of 

strain. As the beam vibrates, the charge gets accumulated over the surface of the 

piezoelectric patch from which the voltage can be calculated. By using equation (4.54), 
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the voltage generated in the piezoelectric patch is determined by the electro-mechanical 

coupling. Figure 7.4 (a-d) show the voltage responses in time domain for taper values of 

0.1 and 0.3 respectively. From Figure 7.4 (a-d), it is observed that the peak voltage for 

Case (C) increases around 80% more with taper values cb = 0.3 and ch = 0.3, whereas 

for Case (A) and (B) the peak voltages are of 32% and 58% more respectively. From this 

analysis, it is concluded that the peak voltage for Case (C) is more as compared to Case 

(A) and Case (B). 

7.2.2.3  Output Power responses 

 

Figure 7.5 Nonlinear transient output power responses of axially FG nonprismatic (Case (A), Case 
(B) and Case (C)) beams for: for (a) cb=0.1, ch=0.1 (b) cb=0.1, ch=0.3 (c) cb=0.3, ch=0.1 and (d) 

cb=0.3, ch=0.3. 

 

Figure 7.5 (a-d) depicts the output power responses of axially FG non-prismatic (Case 

(A), Case (B) and Case (C)) piezolaminated beams subjected to a transverse impulse 

load of 1 N with due consideration of geometric nonlinear effects. The response can be 

found by taking the constant external load resistance as 1 kΩ. From Figure 7.5 (a-d), it is 
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observed that the peak output power of Case (C) increases more than 50% with taper 

values cb= 0.3 and ch= 0.3, whereas for Case (A) and (B) the variations are of 25% and 

38% more respectively. From this analysis, it is concluded that the peak output power of 

Case (C) is more compared to Case (A) and Case (B).  

7.3 Chapter summary 

This chapter depicts the energy harvesting from nonlinear finite element analysis of the 

proposed axially FG non-prismatic (linear, parabolic and cubic profile cross sections) 

beams. The computer code developed has been validated with the existing available 

literatures. The results obtained are in close agreement with the existing result. From the 

analysis it has been observed that geometric nonlinearity influences the output voltage 

and power for all cases of arbitrarily taken tapers. Moreover, the axially FG cubic profile 

beam generates more voltage and power compared to axially FG linear and parabolic 

profile beams. 
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  Chapter 8

Optimal Output Power using Real Coded 

Genetic Algorithm 

The present chapter depicts two sections illustrating the results of optimal power 

harvesting from proposed non-prismatic axially FG piezolaminated and nonlinear non-

prismatic axially FG piezolaminated beams using real coded GA. Based on the 

methodology (as discussed in Chapter 5), the optimal output powers have been obtained 

from the proposed beams. 

8.1 Optimal output power from axially FG nonprismatic 

beams 

Based on the methodology discussed in Chapter 5, it has been observed that the 

output power from the proposed piezolaminated beam is influenced by several design 

variables such as cb, ch, R, tp, k and np. From the previous discussion in Chapter 6, it has 

been predicted that for every design variables, an optimum solution for output power can 

be obtained. However, it is difficult to predict the combination of best possible design 

variables for optimal output power. Therefore, a real coded GA based optimization 

technique has been proposed to obtain the best possible design variables for harvesting 

optimal output power. The mechanical, electrical and thermal properties used in this 

study have been presented in Table 6.7. 

8.1.1 Optimal output power under impulse loading and combined impulse-

thermal loading.  

The present section includes the comparison of optimal output power from axially FG 

non-prismatic beams under impulse and combined impulse thermal loading. It should be 

noted that the parameter vector is restricted in a range of values based on the physical 

meaning. The ranges of cb, ch, R, tp, np and k have been taken for the analysis  
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as 0 ≤ cb ≤ 0.8, 0 ≤ ch ≤ 0.8, 0 ≤ R ≤ 100000, 0.0001 ≤ tp ≤ 0.0004, 1 ≤ np ≤ 10 and 1 ≤ k ≤ 

10, respectively. The crossover and the mutation probability have been taken as 0.8 and 

0.3 respectively. In the case of thermal loading, the bottom and top surface temperatures 

are taken such that tb=00C and tp=1000C. The allowable stresses of beam and PZT 

materials have been considered as 550 MPa and 14 MPa, respectively [137] .The 

allowable open circuit voltage of PZT material has taken as 500-1000 V per 1 mm piezo 

thickness [138].  

 

 

Figure 8.1 Comparison of fitness values of axially FG nonprismatic (Case (A), (B) and (C)) beam 
under impulse and combined impulse-thermal loading. 

In order to obtain the best set of design parameters and fitness value using real coded 

GA, a computer code has been developed. Figure 8.1 compares variation of fitness with 

number of generations for axially FG non-prismatic Case (A), (B) and (C) beams. 



Chapter 8   Optimal Output Power… 
 

155 
 

Table 8.1 Optimal parameters of axially FG non-prismatic (case (A),(B) and (C)) beam under 
impulse and combined impulse-thermal loading. 

GA based optimized design variables for impulse loading 

 cb ch R(Ω) tp(m) k np P2 (W) 

Case (A) 0.641 0.00183 99993.8 0.0018 8.585 4.937 0.4163 

Case (B) 0.364 0.00068 99670.1 0.0017 4.587 1.248 0.4271 

Case (C) 0.289 3.99e-05 99612.7 0.0018 4.082 3.698 0.4441 

GA based optimized design variables for combined impulse-thermal loading 

Case (A) 0.291 0.00109 99594 0.0026 1.0687 3.450 1.5398 

Case (B) 0.1041 3.96e-04 99885 0.0025 1.255 4.8965 1.5422 

Case (C) 0.150 9.59e-05 99945 0.0025 1.2459 4.992 1.5555 

 

The best fitnesses for above three cases have been obtained by taking one hundred 

populations with five runs. From Figure 8.1, it has been observed that the fitness shows a 

steady value after 250 generations. The obtained optimal parameters along with the 

fitness values are presented in Table 8.1. It is observed that beams under combined 

impulse-thermal loading generate more output power using the design variables obtained 

from the developed real coded GA method than impulse loading. Moreover, the axially 

FG Case (C) beam generates more power than Case (A) and Case (B) beams. The 

optimal output responses (such as voltage, current and power) of axially FG non-

prismatic Case (C) under combined impulse-thermal loading in time domain are shown in 

Figure 8.2-,Figure 8.4. 

 

Figure 8.2 Optimised output voltage response of axially FG (Case (C)) beam under combined 
impulse-thermal loading. 
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Figure 8.3 Optimised output current response of axially FG (Case (C)) beam under combined 
impulse-thermal loading. 

 

 

Figure 8.4 Optimised output power response of axially FG (Case (C)) beam under combined 
impulse-thermal loading. 

8.1.2 Optimal output power under combined impulse-thermal loading with 

temperature independent and dependent material properties 

The present section describes the optimal output power from axially FG non-prismatic 

beams under combined impulse-thermal loading with temperature independent and 

dependent material properties. The average temperature has been taken as 500C. The 
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ranges of cb, ch, R, tp, np and k have been taken for the analysis as 0 ≤ cb ≤ 0.8, 0 ≤ ch ≤ 

0.8, 0 ≤ R≤ 100000 , 0.0001 ≤ tp≤ 0.0004, 1 ≤ np≤ 10 and 1 ≤ k≤ 10, respectively as 

described in section 8.1.1. 

 

Figure 8.5 Comparison of fitness values of axially FG nonprismatic (Case (A), (B) and (C)) beam 
under combined impulse and thermal loading. 

 

 To obtain the best set of design parameters and fitness value using real coded GA, a 

computer code has been developed. Figure 8.5 compares fitness values with generation 

variation of axially FG non-prismatic Case (A), (B) and (C) beams under combined 

impulse-thermal loading with temperature independent and dependent material 

properties. The best fitnesses for above three cases have been obtained by taking 100 

populations with five runs. From the Figure 8.5, it has been observed that the fitness 
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shows a steady value after 250 generations. The obtained optimal parameters along with 

the fitness values are presented in Table 8.2. Further, a comparison of output powers has 

been made between the proposed beams under combined impulse-thermal loading with 

temperature independent and dependent material properties using the developed real 

coded GA method. The obtained results have been listed in Table 8.2. Table 8.2, shows 

that more output power can be obtained from the beams under combined impulse-

thermal loading with temperature dependent material properties. 

Table 8.2 Optimal parameters of axially FG non-prismatic (case (A),(B) and (C)) beam under 

combined impulse-thermal loading with temperature independent and dependent material 

properties. 

GA based optimized design variables for combined impulse-thermal loading with temperature 

independent material properties 

 cb ch R(Ω) tp(m) k np P2 (W) 

Case (A) 0.291 0.00109 99594 0.0026 1.0687 3.450 1.5398 

Case (B) 0.1041 3.96e-4 99885 0.0025 1.255 4.8965 1.5422 

Case (C) 0.150 9.59e-5 99945 0.0025 1.2459 4.992 1.5555 

GA based optimized design variables for combined impulse-thermal loading with temperature 

dependent material properties 

Case (A) 0.201 0.004737 99551.6 0.00199 1.4058 7.55269 2.3489 

Case (B) 0.101 1.17e-03 99302.2 0.00197 1.0235 2.37031 2.3720 

Case (C) 0.141 1.22e-04 99785.5 0.00196 2.1646 7.08133 2.3794 

 

Moreover, the axially FG Case (C) beam with temperature dependent material 

properties generate 50% more power compared to beam with temperature independent 

material properties under combined impulse-thermal loading. The optimal output 

responses (such as voltage, current and power) of axially FG nonprismatic Case (C) have 

been shown in Figure 8.6- Figure 8.8.  
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Figure 8.6 Optimised output voltage response of axially FG Case (C)) beam under combined 
impulse and thermal loading. 

 

 

Figure 8.7 Optimised output current response of axially FG Case (C)) beam under combined 
impulse and thermal loading. 
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Figure 8.8 Optimised output power response of axially FG Case (C)) beam under combined 
impulse and thermal loading. 

8.2 Optimal output power from axially FG nonprismatic 

beams with geometric nonlinearity. 

Based on the methodology discussed in Chapter 5, it has been observed that the 

output power from the proposed piezolaminated beam is influenced by several design 

variables such as cb, ch, R, tp, k and np. From the previous discussions in Chapter 7, it 

has been predicted that for every design variables, an optimum solution for output power 

can be obtained. However, it is difficult to predict the combination of best possible design 

variables for optimal output power. Therefore, a real coded GA based optimization 

technique has been proposed to obtain the best possible design variables for harvesting 

optimal output power. This section describes the optimal output power from nonlinear 

axially FG non-prismatic beams under impulse loading. It should be noted that the design 

variable vectors are restricted in a range of values based on the physical meaning.  
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Figure 8.9 Comparison of fitness values of nonlinear axially FG nonprismatic (Case (A), (B) and 
(C)) beam under impulse loading. 

 

The ranges of cb, ch, R, tp, np and k are taken for the analysis such that 0 ≤ cb ≤ 0.8, 0 ≤ 

ch ≤ 0.8, 0 ≤ R ≤ 100000, 0.0001 ≤ tp ≤ 0.0004, 1 ≤ np ≤ 10 and 1 ≤ k ≤ 10, respectively. In 

order to get the best set of design parameters and fitness value using real coded GA, a 

computer code has been developed. Figure 8.9 compares fitness values with generation 

variation of nonlinear axially FG non-prismatic Case (A), (B) and (C) beams. The best 

fitnesses for above three cases have been obtained by taking 100 populations with 5 

runs. Figure 8.9 shows that the fitness has a steady value after 250 generations.  

Table 8.3 Optimal parameters of nonlinear axially FG non-prismatic (case (A),(B) and (C)) beam. 

Any arbitrary values of design variables (Trial and Error Method ) 

 cb ch R(Ω) tp(m) k np P2 (W) 

Case (A) 0.0753 0.0692 90245.9 0.0016 1.27 0.422 0.0153 

Case (B) 0.0753 0.0692 90245.9 0.0016 1.27 0.422 0.0168 

Case (C) 0.0753 0.0692 90245.9 0.0016 1.27 0.422 0.0184 

GA based optimised design variables 

Case (A) 0.7998 0.0013 99992.4 0.0016 4.08 9.983 0.051 

Case (B) 0.0753 6.70e-05 99989.8 0.0027 8.57 7.845 0.061 

Case (C) 0.0753 1.00e-04 99986.2 0.0022 5.98 5.989 0.063 
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The obtained optimal parameters along with the fitness values are presented in Table 

8.3. A comparison of output powers has also been made between the trial and error and 

the developed real coded GA method, which is also listed in the same table. We find that 

more power can be obtained using the developed real coded GA than trial and error 

method of the proposed beam. Moreover, the nonlinear axially FG Case (C) beam 

generates approximately 20% more power compared to Case (A) and Case (B) beams. 

Further the optimal output responses (such as voltage, current and power) of nonlinear 

axially FG nonprismatic Case (C) have been demonstrated in Figure 8.10- Figure 8.12.  

 

Figure 8.10 Optimised output voltage response of nonlinear axially FG Case (C)) beam under 
impulse loading. 
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Figure 8.11 Optimised output current response of nonlinear axially FG Case (C)) beam under 
impulse loading. 

 

 

Figure 8.12 Optimised output power response of nonlinear axially FG Case (C)) beam under 
impulse loading. 

8.3 Chapter summary 

This chapter highlights the optimal energy harvesting using real coded GA based 

constrained optimization technique from the proposed axially FG nonprismatic, i.e., Case 
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(A), (B) and (C) profile beams. A detailed comparison has been made between beams 

under impulse and combined impulse-thermal loading to get the optimised parameters for 

maximising the output power. Furthermore, the analysis has been carried out for the 

comparison between beams under combined impulse-thermal loading with temperature 

independent and dependent material properties. From the numerical analysis, it has been 

seen that more output power can be obtained using the proposed methodology compared 

to the conventional trial and error method. Moreover, axially FG Case (C) profile beam 

under combined impulse- thermal loading generates an improved power compared to 

other cases of beams. The influence of geometric nonlinearity on output power has been 

discussed as well. It has been noticed that, with consideration of geometric nonlinearity, 

the GA based constrained optimization technique generates more power than the 

conventional trial and error method. Furthermore, the axially FG cubic profile beam 

generates more output power than the other two cases of beams.  
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  Chapter 9

Conclusion and Scope for Further Work 

This chapter presents the important conclusions based on the finite element analysis 

and optimal vibration energy harvesting for different cross section profiles using the 

methodologies developed in the present work. The scope of future work in this direction 

has also been presented in the subsequent sections. 

9.1 Conclusion 

The two noded FE based axially FG (based on proposed power law) non-prismatic 

(such as linear, parabolic and cubic) piezolaminated cantilever beam has been analysed 

for output power under thermo-mechanical loading using Hamilton‘s principle. Further, 

the nonlinear finite element based analysis of axially FG non-prismatic piezolaminated 

beam has been performed using classical beam theory with Von-Karman‘s nonlinear 

strain-displacement relationships for output power. A real coded GA based constrained 

optimization scheme with simulated binary crossover and parameter based mutation has 

been developed for optimal design variables in order to maximize the output power. A 

complete computer code starting from FE based axially FG non-prismatic piezolaminated 

beams under thermo-mechanical loading for output power, nonlinear FE based axially FG 

nonprismatic piezolaminated beams under mechanical loading and optimal output power 

from the axially FG non-prismatic piezolaminated beams has been developed. The 

developed code has been validated before using it for analysis and design of proposed 

axially FG beams for output power. After validation of the developed code the detailed 

analysis has been carried out for all proposed cross section profiles. From the theoretical 

and computational simulation analysis some important conclusions are drawn as follows. 
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 Combined variations of tapers have significant effect on the frequency and 

deflection of the piezolaminated beam.   

 The fundamental frequency of Case (C) profile beam is less compared to the 

Case (A) and (B).  

 The tip deflection of piezolaminated proposed profile cantilever beams is more 

than the prismatic beam for a given applied load condition. 

 For a given load condition, the strain developed in the piezolaminated patch is 

more in Case (C) profile beam than other two proposed beams. 

 The voltage developed in the piezoelectric patch is more in Case (C) profile 

beams.  

 The output power generated in Case (C) profile piezolaminated beam has got 

more value than other two profile beams for a given external load resistance.  

 The external load resistance has a significant effect on output power. There is an 

optimum resistance for which the output power is maximum. 

 The optimum output power obtained is inversely proportional to the external load 

resistance. 

Based on the variation of material properties in axial direction using the proposed 

power law based formula for all cases of profile beams, some important observations are 

laid down as follows. 

 The power gradient index and the integer parameter have significant effect on the 

material properties of the axially FG nonprismatic beam. 

 For a given integer parameter with increase in power gradient index, the material 

properties decreases towards the free end of the beam. 

 The natural frequencies of axially FG nonprismatic proposed beams are less than 

the nonprismatic homogeneous beams.  

 For a given load condition the axially FG nonprismatic proposed beams have 

more static deflection than the nonprismatic homogeneous beams. The voltage 

generated from the axially FG nonprismatic proposed beams are more compared 

to the nonprismatic homogeneous beams for a given load condition. 

 The output power generated from the axially FG nonprismatic proposed beams 

are more compared to the nonprismatic homogeneous beams for a given external 

load resistance as well. 

Further, some important observations are made for the proposed axially FG beams 

under impulse-thermal loading condition for energy harvesting. 
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 The static deflection of the axially FG beam under impulse-thermal loading is 

significantly more than impulse loading. 

 The output voltage generated for Case (C) axially FG profile beam under impulse-

thermal loading is also more than other axially FG profile beams.  

 For Case (C) axially FG profile beam under impulse-thermal loading generates 

more power than other proposed axially FG profile beams. 

The effect of temperature on material properties plays a predominant role when it is 

exposed to extreme hot or cold conditions for energy harvesting. Based on above some 

of the important observations are presented as follows. 

 With increase in temperature the Young‘s modulus of the beam decreases. There 

is an increasing tendency of Poisson‘s ratio and coefficient of thermal expansion 

with increase in temperature.  

 The static deflection of axially FG beams under combined impulse-thermal loading 

with temperature dependent material properties are more than temperature 

independent material properties. 

 More output voltage and power can be obtained from the axially FG Case (C) 

profile beam under impulse-thermal loading with temperature dependent material 

properties.  

Based on the effect of geometric nonlinearity on the proposed cross section profile 

piezolaminated axially FG beams some of the important observations are summarized as 

follows. 

 Due to presence of nonlinearity, the static tip deflection of the beam reduces with 

increase in load. 

 The geometric nonlinearity has a pronounced effect on output voltage and power 

for all tapers of axially FG nonprismatic beams.  

 There is decreasing trend in output voltage and power for all cases of axially FG 

nonprismatic beams due to geometric nonlinearity. 

Based on the concept of real coded GA based constrained optimization scheme for 

maximising the output power, some of the important observations are summarized as 

follows.  

 The optimised output powers of axially FG nonprismatic beam are more compared 

to homogeneous beams. 

 The optimised output powers of axially FG nonprismatic beam under combined 

impulse-thermal loading are more compared to impulse loading. 
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 The optimised output powers of axially FG nonprismatic beam under combined 

impulse-thermal loading with temperature dependent material properties are 

significantly high compared temperature independent material properties. 

 For all cases, the optimised output power of Case (C) profile beam is more 

compared than Case (A) and (B).  

 The axially FG Case (C) profile beam considering geometric nonlinearity 

generates considerably more power than axially FG Case (A) and (B) profile 

beams. 

Finally, it can be concluded that more output power can be scavenged from axially FG 

nonprismatic profile piezolaminated beams under combined impulse-thermal loading with 

temperature dependent material properties. Furthermore, from the comparative study it is 

observed that Case (C) profile beam generates more output power than other profile 

piezolaminated beams. 

9.2 Scope of further work 

 In continuation to the present model, power generation for any arbitrary forcing 

function can be established (such as base excitation, wind pressure and transient 

thermal loading.) 

 An accurate method for estimating damping ratio of the models with nonlinear 

effect needs further investigation. Damping ratio for a structure needs to be well 

estimated before using the model for predicting power generation. 

 In the field of power generation, nano-tube reinforced piezoelectric energy 

harvester is a promising one since nanotubes can generate higher strain than 

PZT transducers due to their notable mechanical properties.  

 More application for the use of the generated power need to be determined. 

Though the generated power is less it can be used intermittently if stored for a 

longer time. 

 Modelling of vibration energy harvesting in the presence of nonlinear storage 

circuit need to be examined. 

 Nonlinear vibration energy harvesting under thermal loading need to be 

examined. 
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