3,010 research outputs found

    A generic ellipsoid abstract domain for linear time invariant systems

    Full text link

    Distributed Random Convex Programming via Constraints Consensus

    Full text link
    This paper discusses distributed approaches for the solution of random convex programs (RCP). RCPs are convex optimization problems with a (usually large) number N of randomly extracted constraints; they arise in several applicative areas, especially in the context of decision under uncertainty, see [2],[3]. We here consider a setup in which instances of the random constraints (the scenario) are not held by a single centralized processing unit, but are distributed among different nodes of a network. Each node "sees" only a small subset of the constraints, and may communicate with neighbors. The objective is to make all nodes converge to the same solution as the centralized RCP problem. To this end, we develop two distributed algorithms that are variants of the constraints consensus algorithm [4],[5]: the active constraints consensus (ACC) algorithm, and the vertex constraints consensus (VCC) algorithm. We show that the ACC algorithm computes the overall optimal solution in finite time, and with almost surely bounded communication at each iteration. The VCC algorithm is instead tailored for the special case in which the constraint functions are convex also w.r.t. the uncertain parameters, and it computes the solution in a number of iterations bounded by the diameter of the communication graph. We further devise a variant of the VCC algorithm, namely quantized vertex constraints consensus (qVCC), to cope with the case in which communication bandwidth among processors is bounded. We discuss several applications of the proposed distributed techniques, including estimation, classification, and random model predictive control, and we present a numerical analysis of the performance of the proposed methods. As a complementary numerical result, we show that the parallel computation of the scenario solution using ACC algorithm significantly outperforms its centralized equivalent

    Introducing symplectic billiards

    Full text link
    In this article we introduce a simple dynamical system called symplectic billiards. As opposed to usual/Birkhoff billiards, where length is the generating function, for symplectic billiards symplectic area is the generating function. We explore basic properties and exhibit several similarities, but also differences of symplectic billiards to Birkhoff billiards.Comment: 41 pages, 16 figure

    Closed geodesics and billiards on quadrics related to elliptic KdV solutions

    Get PDF
    We consider algebraic geometrical properties of the integrable billiard on a quadric Q with elastic impacts along another quadric confocal to Q. These properties are in sharp contrast with those of the ellipsoidal Birkhoff billiards. Namely, generic complex invariant manifolds are not Abelian varieties, and the billiard map is no more algebraic. A Poncelet-like theorem for such system is known. We give explicit sufficient conditions both for closed geodesics and periodic billiard orbits on Q and discuss their relation with the elliptic KdV solutions and elliptic Calogero systemComment: 23 pages, Latex, 1 figure Postscrip

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)
    • …
    corecore