297 research outputs found

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Object recognition in infrared imagery using appearance-based methods

    Get PDF
    Abstract unavailable please refer to PD

    Chaos, Complexity, and Random Matrices

    Get PDF
    Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an O(1)\mathcal{O}(1) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce kk-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate kk-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.Comment: 61 pages, 14 figures; v2: references added, typos fixe

    Exploring Periodic Orbit Expansions and Renormalisation with the Quantum Triangular Billiard

    Full text link
    A study of the quantum triangular billiard requires consideration of a boundary value problem for the Green's function of the Laplacian on a trianglar domain. Our main result is a reformulation of this problem in terms of coupled non--singular integral equations. A non--singular formulation, via Fredholm's theory, guarantees uniqueness and provides a mathematically firm foundation for both numerical and analytic studies. We compare and contrast our reformulation, based on the exact solution for the wedge, with the standard singular integral equations using numerical discretisation techniques. We consider in detail the (integrable) equilateral triangle and the Pythagorean 3-4-5 triangle. Our non--singular formulation produces results which are well behaved mathematically. In contrast, while resolving the eigenvalues very well, the standard approach displays various behaviours demonstrating the need for some sort of ``renormalisation''. The non-singular formulation provides a mathematically firm basis for the generation and analysis of periodic orbit expansions. We discuss their convergence paying particular emphasis to the computational effort required in comparision with Einstein--Brillouin--Keller quantisation and the standard discretisation, which is analogous to the method of Bogomolny. We also discuss the generalisation of our technique to smooth, chaotic billiards.Comment: 50 pages LaTeX2e. Uses graphicx, amsmath, amsfonts, psfrag and subfigure. 17 figures. To appear Annals of Physics, southern sprin

    Probabilistic Framework for Sensor Management

    Get PDF
    A probabilistic sensor management framework is introduced, which maximizes the utility of sensor systems with many different sensing modalities by dynamically configuring the sensor system in the most beneficial way. For this purpose, techniques from stochastic control and Bayesian estimation are combined such that long-term effects of possible sensor configurations and stochastic uncertainties resulting from noisy measurements can be incorporated into the sensor management decisions

    Shell Model Monte Carlo Methods

    Get PDF
    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of {\it pf}-shell nuclei, the thermal and rotational behavior of rare-earth and γ\gamma-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed
    corecore