10 research outputs found

    Robust Dialog State Tracking for Large Ontologies

    Full text link
    The Dialog State Tracking Challenge 4 (DSTC 4) differentiates itself from the previous three editions as follows: the number of slot-value pairs present in the ontology is much larger, no spoken language understanding output is given, and utterances are labeled at the subdialog level. This paper describes a novel dialog state tracking method designed to work robustly under these conditions, using elaborate string matching, coreference resolution tailored for dialogs and a few other improvements. The method can correctly identify many values that are not explicitly present in the utterance. On the final evaluation, our method came in first among 7 competing teams and 24 entries. The F1-score achieved by our method was 9 and 7 percentage points higher than that of the runner-up for the utterance-level evaluation and for the subdialog-level evaluation, respectively.Comment: Paper accepted at IWSDS 201

    Dialogue state tracking accuracy improvement by distinguishing slot-value pairs and dialogue behaviour

    Get PDF
    Dialog state tracking (DST) plays a critical role in cycle life of a task-oriented dialogue system. DST represents the goals of the consumer at each step by dialogue and describes such objectives as a conceptual structure comprising slot-value pairs and dialogue actions that specifically improve the performance and effectiveness of dialogue systems. DST faces several challenge

    MTSS: Learn from Multiple Domain Teachers and Become a Multi-domain Dialogue Expert

    Full text link
    How to build a high-quality multi-domain dialogue system is a challenging work due to its complicated and entangled dialogue state space among each domain, which seriously limits the quality of dialogue policy, and further affects the generated response. In this paper, we propose a novel method to acquire a satisfying policy and subtly circumvent the knotty dialogue state representation problem in the multi-domain setting. Inspired by real school teaching scenarios, our method is composed of multiple domain-specific teachers and a universal student. Each individual teacher only focuses on one specific domain and learns its corresponding domain knowledge and dialogue policy based on a precisely extracted single domain dialogue state representation. Then, these domain-specific teachers impart their domain knowledge and policies to a universal student model and collectively make this student model a multi-domain dialogue expert. Experiment results show that our method reaches competitive results with SOTAs in both multi-domain and single domain setting.Comment: AAAI 2020, Spotlight Pape

    Retrieval-based Goal-Oriented Dialogue Generation

    Get PDF
    Most research on dialogue has focused either on dialogue generation for openended chit chat or on state tracking for goal-directed dialogue. In this work, we explore a hybrid approach to goal-oriented dialogue generation that combines retrieval from past history with a hierarchical, neural encoder-decoder architecture. We evaluate this approach in the customer support domain using the Multiwoz dataset (Budzianowski et al., 2018). We show that adding this retrieval step to a hierarchical, neural encoder-decoder architecture leads to significant improvements, including responses that are rated more appropriate and fluent by human evaluators. Finally, we compare our retrieval-based model to various semantically conditioned models explicitly using past dialog act information, and find that our proposed model is competitive with the current state of the art (Chen et al., 2019), while not requiring explicit labels about past machine acts

    Spectral decomposition method of dialog state tracking via collective matrix factorization

    Get PDF
    Revised versionThe task of dialog management is commonly decomposed into two sequential subtasks: dialog state tracking and dialog policy learning. In an end-to-end dialog system, the aim of dialog state tracking is to accurately estimate the true dialog state from noisy observations produced by the speech recognition and the natural language understanding modules. The state tracking task is primarily meant to support a dialog policy. From a probabilistic perspective, this is achieved by maintaining a posterior distribution over hidden dialog states composed of a set of context dependent variables. Once a dialog policy is learned, it strives to select an optimal dialog act given the estimated dialog state and a defined reward function. This paper introduces a novel method of dialog state tracking based on a bilinear algebric decomposition model that provides an efficient inference schema through collective matrix factorization. We evaluate the proposed approach on the second Dialog State Tracking Challenge (DSTC-2) dataset and we show that the proposed tracker gives encouraging results compared to the state-of-the-art trackers that participated in this standard benchmark. Finally, we show that the prediction schema is computationally efficient in comparison to the previous approaches
    corecore