247 research outputs found

    Topological Interference Management through Index Coding

    Full text link
    This work studies linear interference networks, both wired and wireless, with no channel state information at the transmitters (CSIT) except a coarse knowledge of the end-to-end one-hop topology of the network that only allows a distinction between weak (zero) and significant (non-zero) channels and no further knowledge of the channel coefficients' realizations. The network capacity (wired) and DoF (wireless) are found to be bounded above by the capacity of an index coding problem for which the antidote graph is the complement of the given interference graph. The problems are shown to be equivalent under linear solutions. An interference alignment perspective is then used to translate the existing index coding solutions into the wired network capacity and wireless network DoF solutions, as well as to find new and unified solutions to different classes of all three problems.Comment: Revised for the IEEE Transactions on Information Theor

    Cyclic Interference Alignment and Cancellation in 3-User X-Networks with Minimal Backhaul

    Get PDF
    We consider the problem of Cyclic Interference Alignment (IA) on the 3-user X-network and show that it is infeasible to exactly achieve the upper bound of K22K−1=95\frac{K^2}{2K-1}=\frac{9}{5} degrees of freedom for the lower bound of n=5 signalling dimensions and K=3 user-pairs. This infeasibility goes beyond the problem of common eigenvectors in invariant subspaces within spatial IA. In order to gain non-asymptotic feasibility with minimal intervention, we first investigate an alignment strategy that enables IA by feedforwarding a subset of messages with minimal rate. In a second step, we replace the proposed feedforward strategy by an analogous Cyclic Interference Alignment and Cancellation scheme with a backhaul network on the receiver side and also by a dual Cyclic Interference Neutralization scheme with a backhaul network on the transmitter side.Comment: 8 pages, short version submitted to ISIT 201

    Achievable rates for relay networks using superposition coding

    Get PDF
    We investigate the superposition strategy and its usefulness in terms of achievable information theoretic rates. The achievable rate of the superposition of block Markov encoding (decode-forward) and side information encoding (compress-forward) for the three-node Gaussian relay channel is analyzed. It is generally believed that superposition can out perform decode-forward or compress-forward due to its generality. We prove that within the class of Gaussian distributions, this is not the case: the superposition scheme only achieves a rate that is equal to the maximum of the rates achieved by decode-forward or compress-forward individually. We use the insight gathered on superposition forward scheme and devise a new coding scheme. The superposition coding scheme for communication over a network, combines partial decode-forward with noisy network coding. This hybrid scheme is termed as superposition noisy network coding. The novel coding scheme is designed and analyzed for a single relay channel, single source multicast network and multiple source multicast network. The special cases of Gaussian single relay channel and two way relay channel are analyzed for superposition noisy network coding. The achievable rate of the proposed scheme is higher than the existing schemes of noisy network coding, compress-forward and binning

    Design Trade-offs for reliable On-Chip Wireless Interconnects in NoC Platforms

    Get PDF
    The massive levels of integration following Moore\u27s Law making modern multi-core chips prevail in various domains ranging from scientific applications to bioinformatics applications for consumer electronics. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn\u27t need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. An efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. A token-passing protocol proposed to grant access of the wireless channel to competing transmitters. This limits the number of simultaneous users of the communication channel to one although multiple wireless hubs are deployed over the chip. In principle, a Frequency Division Multiple Access (FDMA) based medium access scheme would improve the utilization of the wireless resources. However, this requires design of multiple very precise, high frequency transceivers in non-overlapping frequency channels. Therefore, the scalability of this approach is limited by the state-of-the-art in transceiver design. The Code Division Multiple Access (CDMA) enables multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. The CDMA protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. The CDMA based MAC protocol outperforms the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. However, the reliability of CDMA based wireless NoC\u27s is limited, as the probability of error is eminent due to synchronization delays at the receiver. The thesis proposes the use of an advanced filter which improves the performance and also reduces the error due to synchronization delays. This thesis also proposes investigation of various channel modulation schemes on token passing wireless NoC\u27s to examine the performance and reliability of the system. The trade-off between performance and energy are established for the various conditions. The results are obtained using a modified cycle accurate simulator

    Information Networks with in-Block Memory

    Full text link
    A class of channels is introduced for which there is memory inside blocks of a specified length and no memory across the blocks. The multi-user model is called an information network with in-block memory (NiBM). It is shown that block-fading channels, channels with state known causally at the encoder, and relay networks with delays are NiBMs. A cut-set bound is developed for NiBMs that unifies, strengthens, and generalizes existing cut bounds for discrete memoryless networks. The bound gives new finite-letter capacity expressions for several classes of networks including point-to-point channels, and certain multiaccess, broadcast, and relay channels. Cardinality bounds on the random coding alphabets are developed that improve on existing bounds for channels with action-dependent state available causally at the encoder and for relays without delay. Finally, quantize-forward network coding is shown to achieve rates within an additive gap of the new cut-set bound for linear, additive, Gaussian noise channels, symmetric power constraints, and a multicast session.Comment: Paper to appear in the IEEE Transactions on Information Theor

    QoS-based multipath routing for the Internet

    Full text link
    The new generation of network services is being developed for incorporation in communication infrastructure. These services, generally called Quality of Services (QoS), should accommodate data file, video, and audio applications. The different performance requirements of these applications necessitate a re-examination of the main architectural components of today\u27s networks, which were designed to support traditional data applications. Routing, which determines the sequence of network nodes a packet traverses between source and destination, is one such component. Here, we examine the potential routing problems in future Internet and discuss the advantages of class-based multi-path routing methods. The result is a new approach to routing in packet-switched networks, which is called Two-level Class-based Multipath routing with Prediction (TCMP). In TCMP, we compute multiple paths between each source and destination based on link propagation delay and bottleneck bandwidth. A leaky bucket is adopted in each router to monitor the bottleneck bandwidth on equal paths during the network\u27s stable period, and to guide its traffic forwarDing The TCMP can avoid frequent flooding of routing information in a dynamic routing method; therefore, it can be applied to large network topologies
    • …
    corecore