11 research outputs found

    Unsteady Aerodynamics of Flapping Wings

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Simulations of propelling and energy harvesting articulated bodies via vortex particle-mesh methods

    Full text link
    The emergence and understanding of new design paradigms that exploit flow induced mechanical instabilities for propulsion or energy harvesting demands robust and accurate flow structure interaction numerical models. In this context, we develop a novel two dimensional algorithm that combines a Vortex Particle-Mesh (VPM) method and a Multi-Body System (MBS) solver for the simulation of passive and actuated structures in fluids. The hydrodynamic forces and torques are recovered through an innovative approach which crucially complements and extends the projection and penalization approach of Coquerelle et al. and Gazzola et al. The resulting method avoids time consuming computation of the stresses at the wall to recover the force distribution on the surface of complex deforming shapes. This feature distinguishes the proposed approach from other VPM formulations. The methodology was verified against a number of benchmark results ranging from the sedimentation of a 2D cylinder to a passive three segmented structure in the wake of a cylinder. We then showcase the capabilities of this method through the study of an energy harvesting structure where the stocking process is modeled by the use of damping elements

    Meshless Hemodynamics Modeling And Evolutionary Shape Optimization Of Bypass Grafts Anastomoses

    Get PDF
    Objectives: The main objective of the current dissertation is to establish a formal shape optimization procedure for a given bypass grafts end-to-side distal anastomosis (ETSDA). The motivation behind this dissertation is that most of the previous ETSDA shape optimization research activities cited in the literature relied on direct optimization approaches that do not guaranty accurate optimization results. Three different ETSDA models are considered herein: The conventional, the Miller cuff, and the hood models. Materials and Methods: The ETSDA shape optimization is driven by three computational objects: a localized collocation meshless method (LCMM) solver, an automated geometry pre-processor, and a genetic-algorithm-based optimizer. The usage of the LCMM solver is very convenient to set an autonomous optimization mechanism for the ETSDA models. The task of the automated pre-processor is to randomly distribute solution points in the ETSDA geometries. The task of the optimized is the adjust the ETSDA geometries based on mitigation of the abnormal hemodynamics parameters. Results: The results reported in this dissertation entail the stabilization and validation of the LCMM solver in addition to the shape optimization of the considered ETSDA models. The LCMM stabilization results consists validating a custom-designed upwinding scheme on different one-dimensional and two-dimensional test cases. The LCMM validation is done for incompressible steady and unsteady flow applications in the ETSDA models. The ETSDA shape optimization include single-objective optimization results in steady flow situations and bi-objective optimization results in pulsatile flow situations. Conclusions: The LCMM solver provides verifiably accurate resolution of hemodynamics and is demonstrated to be third order accurate in a comparison to a benchmark analytical solution of the Navier-Stokes. The genetic-algorithm-based shape optimization approach proved to be very effective for the conventional and Miller cuff ETSDA models. The shape optimization results for those two models definitely suggest that the graft caliber should be maximized whereas the anastomotic angle and the cuff height (in the Miller cuff model) should be chosen following a compromise between the wall shear stress spatial and temporal gradients. The shape optimization of the hood ETSDA model did not prove to be advantageous, however it could be meaningful with the inclusion of the suture line cut length as an optimization parameter

    An Ale Approach For The Numerical Simulation Of Insect Flight

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2014Bu çalışmada öncelikle büyük ölçekli (large-scale) hareketli yüzey problemlerinin tamamen birleşmiş (fully coupled) formda çözülmesi için kenar merkezli yapısal olmayan sonlu hacimler yöntemine dayalı Arbitrary Lagrangian-Eulerian (ALE) yöntemi geliştirilmiştir. Kenar merkezli sonlu hacim metoduna dayanan bu sayısal yöntemde hız vektör bileşenleri her bir elemanın yüzeylerinin orta noktasında tanımlanırken, basınç değerleri her bir elemanın merkezinde tanımlanmaktadır. Basınç ve hız değerlerinin mevcut şekilde düzenlenmesi kararlı bir sayısal şemaya yol açar ve böylece basınç noktalarının birbirleriyle etkileşmesi (pressure coupling) için ayrıca doğal olmayan bir değişikliğe ihtiyaç kalmaz. Süreklilik denklemi her bir eleman içerisinde tam olarak sağlanmakta ve bu süreklilik denklemlerinin toplamı hesaplama bölgesinin sınırlarında tanımlanan küresel süreklilik denklemini vermektedir. Geometrik korunum kanununun (GCL) ayrık biçimde (discrete formda) sağlanması için özel bir özen gösterilmiştir. Ağ deformasyonu her bir zaman adımında direkt olmayan radyal bazlı fonksiyon interpolasyonun çözülmesi ile elde edilmiş ve bu tekrar ağ oluşumunu gerektirmediğinden sayısal yöntemin performansını artırmıştır. Küçük zaman adımlı zamana bağlı akışların çözümü için projeksiyon metodunda olduğu gibi oluşan cebirsel denklemler üç ayrı matrise ayrıklaştırılmış ve bu matrislerin tersi önkoşullandırıcı olarak kullanılmıştır. Burada oluşan ayrık ölçekli Laplacian operatörünün tersi yerine iki adım HYPRE BoomerAMG önkoşullandırıcısı kullanılmıştır. Paralel önkoşullandırılmış iteratif yöntemlerin verimini artırmak için PETSc ve HYPRE kütüphanelerinden yararlanılmıştır. Hareketli ağlar üzerinde şu testler yapılmıştır: Azalan Taylor-Green Girdap akışı, kanal içindeki salınım hareketi yapan silindir etrafındaki akış, yere paralel salınım hareketi yapan küp içerisindeki küre etrafındaki akış.An arbitrary Lagrangian-Eulerian (ALE) approach has been developed in order to investigate the near wake structure of Drosophila flight. The numerical algorithm is based on side-centered finite volume method where the velocity vector components are defined at the mid-point of each cell face while the pressure is defined at the element centroid. The present arrangement of the primitive variables leads to a stable numerical scheme and it does not require any ad-hoc modifications in order to enhance pressure coupling. A special attention is also given to to satisfy the discrete global conservation law. An efficient and robust mesh-deformation algorithm based on the indirect radial basis function method is developed at each time level in order to enhance numerical robustness. For the algebraic solution of the resulting large-scale equations, a matrix factorization is introduced similar to that of the projection method for the whole coupled system and we use two-cycle of BoomerAMG solver for the scaled discrete Laplacian provided by the HYPRE library, which we access through the PETSc library. The present numerical algorithm is initially validated for the decaying Taylor-Green vortex flow, the flow past an oscillating circular cylinder in a channel and the flow induced by an oscillating sphere in a cubic cavity. Then the numerical method is applied to the numerical simulation of flow field around a pair of flapping Drosophila wings in hover flight. Finally, the numerical calculations with different wing kinematics are carried out to simulate the flow field around a pair of flapping Drosophila wings in hover.DoktoraPh

    A Model Integrated Meshless Solver (mims) For Fluid Flow And Heat Transfer

    Get PDF
    Numerical methods for solving partial differential equations are commonplace in the engineering community and their popularity can be attributed to the rapid performance improvement of modern workstations and desktop computers. The ubiquity of computer technology has allowed all areas of engineering to have access to detailed thermal, stress, and fluid flow analysis packages capable of performing complex studies of current and future designs. The rapid pace of computer development, however, has begun to outstrip efforts to reduce analysis overhead. As such, most commercially available software packages are now limited by the human effort required to prepare, develop, and initialize the necessary computational models. Primarily due to the mesh-based analysis methods utilized in these software packages, the dependence on model preparation greatly limits the accessibility of these analysis tools. In response, the so-called meshless or mesh-free methods have seen considerable interest as they promise to greatly reduce the necessary human interaction during model setup. However, despite the success of these methods in areas demanding high degrees of model adaptability (such as crack growth, multi-phase flow, and solid friction), meshless methods have yet to gain notoriety as a viable alternative to more traditional solution approaches in general solution domains. Although this may be due (at least in part) to the relative youth of the techniques, another potential cause is the lack of focus on developing robust methodologies. The failure to approach development from a practical perspective has prevented researchers from obtaining commercially relevant meshless methodologies which reach the full potential of the approach. The primary goal of this research is to present a novel meshless approach called MIMS (Model Integrated Meshless Solver) which establishes the method as a generalized solution technique capable of competing with more traditional PDE methodologies (such as the finite element and finite volume methods). This was accomplished by developing a robust meshless technique as well as a comprehensive model generation procedure. By closely integrating the model generation process into the overall solution methodology, the presented techniques are able to fully exploit the strengths of the meshless approach to achieve levels of automation, stability, and accuracy currently unseen in the area of engineering analysis. Specifically, MIMS implements a blended meshless solution approach which utilizes a variety of shape functions to obtain a stable and accurate iteration process. This solution approach is then integrated with a newly developed, highly adaptive model generation process which employs a quaternary triangular surface discretization for the boundary, a binary-subdivision discretization for the interior, and a unique shadow layer discretization for near-boundary regions. Together, these discretization techniques are able to achieve directionally independent, automatic refinement of the underlying model, allowing the method to generate accurate solutions without need for intermediate human involvement. In addition, by coupling the model generation with the solution process, the presented method is able to address the issue of ill-constructed geometric input (small features, poorly formed faces, etc.) to provide an intuitive, yet powerful approach to solving modern engineering analysis problems

    Analysis of Non-Symmetrical Flapping Airfoils and their Configurations

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree-Cartesian grids

    No full text
    10.1016/j.jcp.2006.02.025Journal of Computational Physics2182510-548JCTP

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore