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AN ALE APPROACH FOR THE
NUMERICAL SIMULATION OF INSECT FLIGHT

SUMMARY

An arbitrary Lagrangian-Eulerian (ALE) approach has been developed in order to
investigate the near wake structure of Drosophila flight. The numerical algorithm is
based on side-centered finite volume method where the velocity vector components
are defined at the mid-point of each cell face while the pressure is defined at the
element centroid. The present arrangement of the primitive variables leads to a
stable numerical scheme and it does not require any ad-hoc modifications in order
to enhance pressure coupling. The continuity equation is satisfied within each element
exactly and the summation of the continuity equations can be exactly reduced to the
domain boundary, which is important for the global mass conservation. A special
attention is also given to construct a second-order ALE algorithm while satisfying the
discrete global conservation law (DGCL). An efficient and robust mesh-deformation
algorithm based on the indirect radial basis function (RBF) method is developed at
each time level while avoiding remeshing in order to enhance numerical robustness.
For the algebraic solution of the resulting large-scale equations, a matrix factorization
is introduced similar to that of the projection method for the whole coupled system and
we use two-cycle of BoomerAMG solver for the scaled discrete Laplacian provided
by the HYPRE library, a high performance preconditioning package developed at
Lawrence Livermore National Laboratory, which we access through the PETSc library.
The present numerical algorithm is initially validated for the decaying Taylor-Green
vortex flow, the flow past an oscillating circular cylinder in a channel and the flow
induced by an oscillating sphere in a cubic cavity. Then the numerical method is
applied to the numerical simulation of flow field around a pair of flapping Drosophila
wings in hover flight. The time variation of the Eulerian coherent structures in the
near wake is analyzed with the A,-criterion. The numerical calculations with several
different wing kinematics are carried out to simulate the flow field around a pair
of flapping Drosophila wings in hover using the unstructured finite volume method
based on an Arbitrary Lagrangian-Eulerian formulation. The simulations are used to
asses the important wing kinematic parameters for the wake topology and as well as
their correlations with the force production. The angle-of-attack is proven to be very
effective for producing lift during the wing translational motion. However, the larger
values of the angle-of-attack limits the angle during the stroke reversal and reduces
the rotational lift during the stroke reversal. The maximum lift is obtained at an
angle-of-attack of 51° for a stroke amplitude of 160°. The timing of the wing rotation
is also shown to have a significant effect on the topology of the near wake structure
as well as the force production. In addition, the numerical results confirm that the
increase in the wing stroke amplitude leads the prolonged attachment of the leading
edge vortex (LEV) over a relatively large distance and increases force production. The
calculations with the the constant heave angle and figure-of-eight pattern are found to
have a more profound influence on the magnitude of force production. These numerical
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results are in relatively good agreement with the earlier experimental observations
in the literature. The paddling wing motion is also shown to be very effective to
initiate forward and backward acceleration. Finally, the numerical methods were
applied to investigate the Lagrangian coherent structures around a pair of flapping
Drosophila wing in hover. A particle tracking algorithm has been developed on moving
unstructured meshes and it has been used to compute the Finite-Time Lyapunov
Exponent (FTLE) fields in order to investigate the Lagrangian coherent structures in
addition to the Eulerian coherent structures. The present fully-coupled ALE algorithm
is sufficiently robust to deal with large mesh deformations seen in flapping wings and
reveals highly detailed near wake topology which is very useful to study physics in
biological flights and can also provide an effective tool for designing bio-inspired
MAVs.
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BOCEK UCUSUNUN ALE YAKLASIMI iLE SAYISAL SIMULASYONU

OZET

Hesaplamali akigkanlar mekanigi igerisinde hareket eden yiizey problemleri (moving
boundary problems) genis uygulama alanlar1 nedeniyle son yillarda biiyiik ilgi
cekmistir. Bu problemler yap1 akigskan etkilesimi (fluid structure interaction), he-
likopter rotor govde aerodinamik etkilesimi, akigskan parcacik etkilesimi (fluid-particle
interaction), hayvanlarin yiizmesi ve ug¢masi (animal locomotion), serbest yiizey
problemleri ve buna benzer diger problemleri icerir. Hareketli yiizey problemlerini
cozmek icin literatiirde su yontemler kullanilmaktadir: Arbitrary Lagrangian-Eulerian
(ALE) yontemi, Immersed Boundary (IBM) yontemi ve fictitious domain metodu.
ALE yonteminde kullanilan aglar iki farkli madde arasindaki yiizeyi zamana bagh
olarak takip eder ve akis denklemlerini hareketli yapisal olmayan aglar {izerinde
cozer. Bu ozelligi ile ALE yontemleri yukarida belirtilen diger iki hareketsiz aglardaki
yontemlerden ayrilir. Bunlara ek olarak ALE yontemleri hareketli aglarda geometrik
korunum kanunu (GCL) olarak bilinen ek 6zel bir diferansiyel denklemi de saglamak
zorundadir. Bu denklemin saglanmasi kullanilan sayisal yontemin kararhilik ve kiiresel
korumun yasalarinin saglanmasi1 bakimindan ¢cok dnemlidir.

Bu calismada oncelikle biiyiik Olcekli (large-scale) hareketli yilizey problemlerinin
tamamen birlesmis (fully coupled) formda ¢oziilmesi i¢in kenar merkezli yapisal
olmayan sonlu hacimler yontemine dayali Arbitrary Lagrangian-Eulerian (ALE)
yontemi gelistirilmistir. Kenar merkezli sonlu hacim metoduna dayanan bu sayisal
yontemde hiz vektor bilesenleri her bir elemanin yiizeylerinin orta noktasinda
tanimlanirken, basin¢ degerleri her bir elemanin merkezinde tanimlanmaktadir. Basing
ve hiz degerlerinin mevcut sekilde diizenlenmesi kararli bir sayisal semaya yol
acar ve bdoylece basing noktalarinin birbirleriyle etkilesmesi (pressure coupling)
icin ayrica dogal olmayan bir degisiklige ihtiya¢ kalmaz. Siireklilik denklemi
her bir eleman icerisinde tam olarak saglanmakta ve bu siireklilik denklemlerinin
toplam1 hesaplama bdolgesinin sinirlarinda tanimlanan kiiresel siireklilik denklemini
vermektedir. Geometrik korunum kanununun (GCL) ayrik bi¢imde (discrete formda)
saglanmas1 i¢in Ozel bir O6zen gosterilmistir. Ag§ deformasyonu her bir zaman
adiminda direkt olmayan radyal bazli fonksiyon interpolasyonun ¢oziilmesi ile elde
edilmis ve bu tekrar ag olusumunu gerektirmediginden sayisal yontemin performansini
artirmigtir.  Kiiglik zaman adimli zamana bagh akiglarin ¢oziimii i¢in projeksiyon
metodunda oldugu gibi olusan cebirsel denklemler ii¢ ayr1 matrise ayriklastirilmig ve
bu matrislerin tersi dnkosullandirici olarak kullanilmistir. Burada olusan ayrik Slgekli
Laplacian operatoriiniin tersi yerine iki adim HYPRE BoomerAMG 6nkosullandiricisi
kullanilmigtir. Paralel 6nkosullandirilmig iteratif yontemlerin verimini artirmak igin
PETSc ve HYPRE Kkiitiiphanelerinden yararlanilmistir. Hareketli aglar iizerinde su
testler yapilmistir: Azalan Taylor-Green Girdap akisi, kanal i¢indeki salinim hareketi
yapan silindir etrafindaki akis, yere paralel salimm hareketi yapan kiip icerisindeki
kiire etrafindaki akis.
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ALE algoritmasi ag hareketini ve deformasyonunu modellemek i¢in giiclii bir teknige
ihtiya¢ duyar. Literatiirde, sinirlar1 6teleme, donme ve sekil degistirmeye maruz kalan
hesaplama bolgelerinin igerisindeki noktalarin yer degisimlerini hesaplamak i¢in bazi
ag deformasyon algoritmalar1 6nerilmistir. Bunlardan radyal bazli ag deformasyon
algoritmasi1 (RBF) sinirlart biiyiik olciide oteleme ve donme hareketine maruz kalan
problemler icin yliksek kalitede ag olusumuna olanak saglamaktadir. Buna ragmen,
RBF yaklasiminin ii¢ boyutlu problemler icin direkt uygulanmasi1 olduk¢a pahali
olmaktadir. Bu ¢alismada RBF algoritmasi i¢ ice olmayan kaba (non-nested coarser)
bir ag tizerinde uygulanmistir. Ancak kontrol noktalar1 6nceki ¢alismalarda oldugu
gibi sinirlar iizerinde degil sinira yakin bolgelerde konumlandirilmistir. Bdylece,
RBF kontrol noktalar1 ve ylizey sinirlari arasindaki noktalar rijid cisim hareketiyle
hareket ettirilerek sinir tabaka aglarinin kalitesi korunmustur. Geri kalan diger noktalar
RBF interpolasyonu kullanilarak hareket ettirilmistir. Bu degisiklik ile hesaplama
bolgesinin toplam hacminin makine hassasiyetinde korunmasi garantilenmistir. Bu,
toplam kiitlenin siirekli olarak sabit kalmasini saglamak acgisindan olduk¢a Onem
tasimaktadir. Bununla birlikte, RBF ag deformasyon algoritmasinin direkt olmayan
uygulamasi kullanilmistir. Bu yaklagimda, kanadin rotasyonel hareketi birka¢ adima
boliinerek hesaplanmis ve yeni ag noktalar1 baslangictaki ag konumlar1 kullanilarak
hesaplanmistir. Bu yaklasim, agin periyodikligini ve kalitesini koruyarak yiiksek ag
deformasyonlarini hesaplamay1 garantilemektedir.

ALE formiilasyonuna dayali yapisal olmayan sonlu hacimler yontemini kullanarak
cirpan  Drosophila kanatlar etrafindaki akimi modellemek icin degisik kanat
kinematikleri ile hesaplamalar yapilmistir. Girdap yapisini etkileyen 6nemli kanat
kinematigi parametreleri lizerinde c¢alisilmig ve bunlarin kuvvet iiretimiyle iligkisi
incelenmistir. Kanadin 6teleme hareketi sirasinda hiicum acisinin tagima kuvveti
iretmede oldukca etkili oldugu kamitlanmigtir. Buna ragmen, yliksek hiicum agisi
degerleri stroke reversal esnasindaki agiyr sinirlandirir ve rotasyonel tagimay1 azaltir.
Maksimum tagima degeri 51° hiicum agis1 ve 160° stroke genliginde elde edilmistir.
Kanat rotasyonundaki zamanlama girdap yapist iizerinde ve ayni zamanda kuvvet
tiretimi iizerinde onemli etkiye sahiptir. Bununla birlikte, sayisal sonuclar kanadin
stroke genligindeki artisin, hiicum kenar1 girdaplarinin kanat yiizeyine uzun bir siire
bagl kaldigim ve kuvvet iiretimini artirdigin1 dogrulamaktadir. Sabit heave agis1
ile yapilan hesaplamalar ve sekiz hareketi modelinin kuvvet iiretimi iizerinde ¢ok
daha fazla etkiye sahip oldugu goriilmiistiir. Bu sayisal sonuclar daha once yapilmis
deneysel caligmalarla olduk¢a uyum igerisindedir. Daha sonra, ileri ve geri ugusu
belirlemekte 6nemli olan bazi1 parametreleri degerlendirmek iizere kanat kinematigi
iizerinde simetrik olmayan degisimler gerceklestirilmistir. Paddling kanat hareketinin
ileri ve geri ivmelenmeyi baglatmada oldukga etkili oldugu gosterilmistir. Asimetrik
stroke acis1 degisimleri ve oval hareket modeli de ileri yonde kuvvet iiretimini
artirmada ek olarak kullanilabilir. Mevcut tam birlesmis formdaki ALE algoritmasinin
cirpan kanatlarda olusan yiiksek ag deformasyonlarinin iistesinden gelmede yeterince
gelismis oldugu gosterilmistir ve biyolojik ucuslart ¢alismada gerekli olan detayl
yakin girdap bolgesini ortaya ¢ikarmaktadir. Bu yontem aymi zamanda biyolojik
canlilardan esinlenerek tasarlanan insansiz mikro hava araclarinin tasarlanmasinda da
etkili bir ara¢ saglamaktadir.

Bunlara ek olarak, elde edilen karmagsik girdap yapilar1 Lagrangian Coherent
Structures (LCS) yontemi kullanilarak incelenmistir. Bu amagla, yapisal olmayan
hareketli aglar iizerinde parcaciklarin Lagrangyan olarak takip edilmesine olanak
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veren yeni bir parcacik yoriinge hesabi algoritmasi paralel olarak gelistirilmistir.
Bu algoritma finite time Lyapunov exponent (FTLE) alanlarinin hesaplanmasinda
kullanilmis ve dogrulama problemleri i¢in test edilmisgtir.
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1. INTRODUCTION

1.1 Insect Flight

Over the past few decades, the mechanisms of aerodynamic force production and lift
augmentation in flapping insect wings have been the subject of many studies due to
potential energetic and agility benefits over fixed-wing flight. These early studies
have revealed the complex nature of insect flight aerodynamics and provided deeper
insights into the unsteady high-lift mechanism of insect flights. A flapping insect
wing differs from a conventional wing since they produce much more lift relying
on different lift augmenting aerodynamic mechanisms including the leading edge
vortex (LEV) [1], clap-and fling [2], delayed stall [3], rotational circulation and wake
capture [4] and the Wagner Effect etc. In the literature, the mechanism of aerodynamic
force production and lift augmentation in flapping insect wings have been investigated

through experimental [4—7], and computational [8—16] studies.

Understanding vortex formation and how vortices interact with wing pairs are
important for understanding insect flight. The overall flapping motion of a hovering
insect can be considered as a combination of three basic motions; sweeping (forward
and backward motion), heaving (up and down motion) and pitching (varying angle of
attack) motions. The flapping wings complete one cycle by carrying out translational
motion including two half-strokes: the downstroke and upstroke in which the wings
sweep through the air at high angles of attack and rotational motion in which the wings
rotate around the longitudinal axes and reverse their direction at the end of one half
stroke, just before moving for the next halfstroke. An insect wing constantly changes
its velocity as it flaps, slows down and stops at the ends of the downstroke and upstroke,
and then accelerates into the next halfstroke. Furthermore, the wing base always moves
slower than the wing tip, meaning that the wing velocity increases from base to tip. The
frequency range in insects is typically 5 to 200 hertz (Hz). The relationship between

the wing length and Reynolds number for different species is given in Figure 1.1 [17].



The duration of each half-stroke is the same when an insect is hovering. However, a

slower downstroke leads to generation of thrust.
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Figure 1.1: The size vs Reynolds number in insect flight [17].

Flapping wings produce lift and propulsive forces which makes insects to stay aloft
and hover and carry out extreme manoeuvres. These abilities inspire designers to built
insect like Micromechanical Flying Insect (MFI) as shown in Figure 1.2 which can be
used for exploration and optical surveillance. Robert Wood [18] and his design team
at Harvard University built Robobee micro robot shown in Figure 1.2 [a] which has a
2cm body length, 3cm wingspan and 80 milligrams weight. Currently, the power and
control are supplied externally, but the design team plans to produce self-contained
units. Another vehicle called Mesicopter shown in Figure 1.2 [b] has been designed
at Stanford Univesity for atmospheric research or planetary exploration. Mesicopter
has the ability to fly with its own power [19]. The MFI project [20] developed at the
University of California, Berkeley aims to achieve a flapping amplitude of 120° with a

frequency of 150Hz. The MFI is illustrated in Figure 1.2 [c].

[b]

Figure 1.2: Harvard Robobee [18] [a], Stanford Mesicopter [19] [b], Berkeley MFI
[20] [c].



1.1.1 Leading edge vortex and delayed stall

The leading edge vortex (LEV) occurs when air passes around the leading edge of an
insect wing at high angles of attack. At this high angle of attack, the flow separates
over the leading edge, rolls up forming a leading-edge vortex and reattaches before
reaching the trailing edge as illustrated in Figure 1.3. The fluid moves along a circular
path, with a lower pressure at the center of the vortex which provides an extra suction
that increases the lift. This suction creates a force normal to the wing plane, thus
adding to the potential force and resulting an increment on the lift component [1].
The LEV would normally cause the vortex to grow so large that it separates from the
wing surface and causes the wing to stall but on the contrary, the flapping motion
allows the LEV to spiral out to the wing tip and delays stall. Dickinson and G6tz [21]
conducted an experiment to measure the aerodynamic forces of a fruit fly wing model
accelerating from rest to constant velocity at high angles of attack. They proved that the
presence of a dynamic stall vortex augmented the lift. Ellington et al. [22] visualized
the airflow around the wings of the hawkmoth Manduca sexta and pointed out the
importance of the stable leading edge vortex (LEV) for high lift force generation in
insect flight. Birch and Dickinson [6] visualized vortex topology around the flapping
wing of a dynamically scaled robot model of a Drosophila wing using two-dimensional
digital particle image velocimetry (DPIV). They investigated the reasons that give rise
to the prolonged attachment of leading edge vortex in 3D models and indicated that
the prolonged attachment of the LEV on insect wings might be due to the downwash
induced by tip vortices and wake vorticity which decrease the effective angle of attack
and hence reduce the growth of LEV. van Den Berg and Ellington [23] released smoke
from the leading edge of a scaled robotic hawkmoth wing called the flapper in order
to further investigate the LEV and three-dimensional flow pattern. They observed
that the LEV was stable and separated from the wing at approximately 75% of the
wing length. They proved that the downstroke had an important contribution to lift
generation since the LEV feed into the ring-shaped vortex wake formed by each wing
during the downstroke so that the lift force during the downstroke was about 1.5 times

the body weight of a hawkmoth.

For 2-D models, when a flapping wing travels several chord lengths at high angles

of attack, the leading edge vortex grows in size until flow reattachment is no longer



Figure 1.3: Stable attachment of the leading edge vortex [24].

possible. The Kutta condition breaks down as vorticity forms at the trailing edge
creating a trailing edge vortex as the leading edge vortex sheds into the wake. At
this point, the wing is not as effective at applying a steady downward momentum to
the fluid. As a result, there is a drop in lift, and the wing is said to have stalled. For
several chord lengths prior to the stall, however, the presence of the attached leading
edge vortex produces very high lift coefficients, a phenomenon termed delayed stall as
shown in Figure 1.4. As the trailing edge vortex detaches and is shed into the wake,
a new leading edge vortex forms. This dynamic process repeats, eventually creating
a wake of regularly spaced counter-rotating vortices known as the von Karman vortex
street. Ellington et al. [22] performed an experiment using smoke to visualize the
flow around a 3-D model Manduca sexta at a Reynolds number in the range of 103.
For a 3-D wing in flapping motion, the leading edge vortex was not shed even after
many chords of travel and thus never created a pattern analogous to a von Karman
street. Thus, the wing never stalls under these conditions. A comparison of 2-D linear

translation vs 3-D flapping translation is given in Figure 1.4.

Ellington and co-workers [22] searched for the reason which causes the prolonged
attachment of the leading edge vortex on a flapping wing compared to the 2-D
case with their model hawkmoth. They observed a steady span-wise flow from the
wing hinge to approximately three-quarters of the distance to the wing tip, at which
point the leading edge vortex detaches from the wing surface. This spanwise flow
is entrained by the leading edge vortex, causing it to spiral towards the tip of the
wing as shown in Figure 1.3. A similar flow was observed by Maxworthy [3] during
early analysis of the 3-D fling. Because this flow redirects momentum transfer in the
spanwise direction, it should correspondingly reduce the momentum of the flow from

the chordwise direction, causing the leading edge vortex to remain smaller. A smaller

4



leading edge vortex allows the fluid to reattach more easily and the wing can sustain

this reattachment for a longer time.
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Figure 1.4: A comparison of 2-D linear translation vs 3-D flapping translation [24].

Laft

1.1.2 Rotational motion

Another contribution to the lift enhancement comes from the rotational motion of the
flapping wings during stroke reversal. At the end of downstroke the wings supinate
while at the end of upstroke the wings pronate about a spanwise axis to provide a
positive angle of attack in order to produce lift during each half-stroke. Dickinson
[4] demonstrated this effect experimentally by measuring the forces on a mechanical
model of Drosophila wings shown in Figure 1.5. The lift force measurements on the
flapping wings reveals two peaks at the end of each half-stroke. Sun and Tang [8]
also obtained similar lift peaks which they defined as a resulting effect of immediate
pitching-up rotation of wing at the end of the half-strokes. In order to emphasize the
importance of rotational lift, they investigated the effects of shifting the rotation in

time.
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Figure 1.5: Robotic fly apparatus with each wing being capable of rotational motion
about three axes [4].

1.1.3 Clap and fling

The clap-and-fling mechanism was proposed by Weis-Fough [2] to explain the lift
generation in insect flight. The mechanism is illustrated in Figure 1.6 from the study
of Sane [24]. During clap, the wings approach each other dorsally with their leading
edges touching initially. Then the wings rotate around the leading edges. As the
trailing edges approach each other, vortices shed from the trailing edges and act as
stopping vortices. These trailing edge vortices then dissipate into the wake and the
leading edge vortices become weaker. At this point, the opposite vortices shed on
each wing cancel each other which would otherwise lead to a delay in the growth of
circulation caused by the Wagner effect. At the end of clap, the wings fling apart by
rotating around the trailing edges and causing a low pressure region between them.
The surrounding air immediately fills the low pressure region, generating opposite
circulations or attached vortices around each wing. The wings then move away from
each other with these attached vortices. Although, these vortices creates lift, the net
circulation is zero which is consistent with Kelvin’s Law. Despite its contribution to
lift enhancement, many insects never perform the clap [25] whereas, Drosophila rarely
performs clap under tethered conditions in free flight. Lehmann et al. [7] visualized
this clap- and-fling mechanism with DPIV flow visualizations and carried out force
measurements using a dynamically scaled robotic wing model. They observed that

this clap and fling mechanism has 17 % contribution in total lift increment.
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Figure 1.6: Clap and Fling motion of the wing [24].

1.1.4 Wake capture

Insects generate lift by producing and shedding vortices from their wings. These
vortices move with the wake as spiralling masses of air that slowly decay and disappear,
rather like the tip vortices of airplanes. For insects with high wing beat frequencies,
such as flies, the vortices move only a short distance before the wing returns in the
cycle, and they can use this as a point of leverage for generating additional lift. As
stated in the study of Dickinson et al. [4], fruit flies use wake recapture in order to
generate extra lift. This wake recapture mechanism needs a relatively high wing beat

frequency, therefore it is not as common as the LEV.

Dickinson et al. [4], Birch and Dickinson [6] and Lehmann et al. [7], examined the
effect of wake capturing of several fruit fly-like wing kinematics using a dynamically
scaled robotic fruit fly wing model. Birch and Dickinson [6] showed experimentally
that wake capture can influence lift forces based on the magnitude and distribution of

vorticity during stroke reversal.



1.1.5 Wagner effect

According to the Wagner effect, when an inclined wing is accelerated from rest, the
circulation around it does not immediately get its steady state value, it rises slowly to
its steady-state value due to viscosity. During this process, vorticity is generated and
shed at the trailing edge, and the shed vorticity eventually rolls up in the form of a
starting vortex. The velocity field induced in the vicinity of the wing by the vorticity
shed at the trailing edge additionally counteracts the growth of circulation bound to the
wing. After the starting vortex has moved sufficiently far from the trailing edge, the
wing attains its maximum steady circulation. Dickinson and Gotz [21] state that the
Wagner effect is not very strong in the range of the Reynolds numbers that is typical

of insect flight, and most recent models of insect flight neglected the Wagner effect.

1.2 Experimental Studies

Dickinson and Go6tz [21] measured the aerodynamic forces of an airfoil started rapidly
at high angles of attack in the Reynolds number range of 75 — 225 for the flapping fruit
fly wing. They showed that the presence of a dynamic stall vortex, or leading edge
vortex augmented the lift. After 2 chord lengths of travel they observed an increase in
lift coefficient, Cy. Then, due to the shedding of the LEV, C, started to decrease. The
decrease in lift coefficient was not rapid, possibly because the shedding of the LEV
was slow at such low Reynolds and from 3 to 5 chord lengths of travel, C; was still
high. The authors stated that because the fly wing typically moved only 2 — 4 chord
lengths each half-stroke, the stall-delaying behavior was more appropriate for models

of insect flight than were the steady-state approximations.

Birch and Dickinson [6] visualized flow patterns around the flapping wing of a
dynamically scaled robot using two-dimensional digital particle image velocimetry
(DPIV). They stated that the prolonged attachment of the LEV on insect wings might

be due to the decreasing effect of the downwash induced by wake vorticity.

Van Den Berg and Ellington [23] investigated the LEV and three-dimensional flow
pattern with their robotic insect wing called the flapper. They observed that the LEV
was stable and separated from the wing at approximately 75% of the wing length.

They proved the contribution of downstroke on lift generation because the lift force



was about 1.5 times the body weight of a hawkmoth during the downstroke. The

leading edge vortex during downstroke is illustrated in Figure 1.7.

Figure 1.7: Flow visualization of LEV during downstroke. The LEV at ¢ = 0° which
corresponds the top view of a hovering hawkmoth [a] and the LEV at
¢ = —25° [b] [23].

Maybury and Lehmann [26] investigated the effect of changing the fore-and hind
wing stroke-phase relationship in hover on the aerodynamic performance of each
flapping wing by using a dynamically scaled electromechanical insect wing model at
Reynolds number of approximately 100 —200. They measured the aerodynamic forces
generated by the wings and visualized flow fields around the wings using PIV. Their
results showed that wing phasing determined both mean force production and power
expenditures for flight, in particular, hind wing lift production might be varied by a
factor of two due to LEV destruction and changes in the strength and the orientation

of the local flow vector.

1.3 Numerical Studies

In the literature, there are several computational studies of insect flight to investigate
the vortex dynamics and wake topology as well as their correlations with the force
production. These can be categorized into two groups. The first one is based on
Eulerian type approach such as immersed boundary method (IBM) and the second
is based on Arbitrary Lagrangian-Eulerian (ALE) or overset (Chimera) grid type

interface tracking method.



Liu and Kawachi [27] initiated the simulation of flow field around a hovering
hawkmoth by using a time accurate solution of the three-dimensional incompressible
laminar Navier-Stokes equations. The authors used an incompressible, 3D code (with
a remeshing technique for the moving grid) to study a hawkmoth wing in hover. Their
wing section was of constant thickness but with smoothed elliptical curves at the
leading and trailing edges. They were only able to validate their results against 3D
flow visualization and 2D force data. They used their CFD results to look in detail at

the flow field associated with the LEV.

Mittal et al. [28] carried out numerical simulations to analyze the aerodynamics of
flapping flight for both single and paired wings in the normal hovering mode. For the
simulation of single wing, they indicated that among all the various vortex topologies
associated with a flapping foil, the formation of an inverse Karman vortex street is
accompanied with the highest thrust efficiency. Based on the simulations for the paired
wings, they stated that parallel stroking produces a relatively large thrust force which
is consistent with previous experimental studies. The simulations also indicated that
the efficiency of the paired wing system is lower than an isolated wing at least in the

regime covered in their study.

Ramamurti and Sandberg [9] simulated the flow around model fruit fly wings based
on wing kinematics nearly identical to those used in the experiment of Dickinson et
al. [4]. They applied an arbitrary Lagrangian Eulerian (ALE) based on a Galerkin
finite element procedure with linear tetrahedral elements to solve unsteady flow past
a three-dimensional Drosophila wing under hovering and free flight conditions. The
approach allows the near-wing grid to move as the wing does, but remeshing is still
required to eliminate badly distorted elements. They obtained results qualitatively
similar to those of the experiment. The large forces during the translational phase
were explained by the delayed stall mechanism [4]. It was stated that the large force
peaks at the beginning of the half-stroke were due to the rapid translational acceleration
of the wing and the interaction between the wing and the wake left by the previous
strokes [4, 6, 8], and those near the end of the stroke were due to the effects of wing

rotation [4, 8].

Sun and Tang [8] also tried to reproduce the experimental results of Dickinson et

al. [4] using a numerical method based on the artificial compressibility approach
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in conjunction with a body-conforming computational grid. They observed three
mechanisms to account for the large lift: the rapid acceleration of the wing at the
beginning of the stroke, the delayed stall during the stroke, and the fast pitching-up
rotation of the wing near the end of the stroke (advanced rotation). The computed
unsteady lift coefficients were smaller than those measured on a robotic wing by
Dickinson et al. [4]. They believed that it was due to using a wing with a smaller
aspect ratio than that of the robotic wing. However, the overall computed lift coefficient

pattern was very similar to that of the experimental results.

Miller and Peskin [29] employed an immersed boundary method (IBM) based flow
solver to simulate the two-dimensional Navier-Stokes equations and computed the
unsteady lift and drag coefficients for a range of Reynolds numbers. They observed that
leading and trailing edge vortices have been alternately shed behind the wing, forming
the von Karman vortex street for (Re) > 64 whereas for (Re) < 32, the leading and

trailing edge vortices have remained attached to the wing during each half stroke.

Gilmanov and Sotiropoulos [30] simulated the flow over the fruit fly (Drosophila).
They used the wing kinematics and flow parameters from the study of Birch
and Dickinson [6]. They numerically solved the three-dimensional, unsteady,
incompressible Navier-Stokes equations in a Cartesian domain using the immersed
boundary method, which is capable of handling complex geometries moving with

prescribed kinematics.
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Figure 1.8: Simulation of a modeled dragonfly in flight [28].

Mittal et al. [31] investigated the aerodynamics of dragonfly flight in terms of
wing-wing and wing-body interaction using a sharp interface immersed boundary
method. They have constructed a computational model of the dragonfly which
is illustrated in Figure 1.8 and visualized the wake structures at two distinct time

instances in a cycle which is also shown in Figure 1.8.
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Johnson [10] developed a dynamic mesh algorithm for complex moving boundary
problems and tried to reproduce the experimental work of Dickinson et al. [4]. The
scaled model of the robotic flapping fruitfly and the simulation of the vortices are

shown in Figure 1.9.
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Figure 1.9: The geometric model and set-up to reproduce the experiments [a] and
the red/yellow colors correspond to positive values and blue/green colors
correspond to negative values [b] [10].

Bos et al. [32] numerically investigated the influence of different wing kinematic
models on the aerodynamic performance of a hovering insect by means of

two-dimensional time-dependent Navier-Stokes simulations.

Aono et al. [12] presented numerical results for realistic wing-body morphologies
and kinematics and studied the near-field vortex dynamics, the far-field wake and
downwash structures, and their correlation with the force production in hover flight.
The wing-body kinematic model of a hovering fruit fly, Drosophila is shown in Figure
1.10. The wake structures around a hovering fruit fly with iso-vorticity surfaces and

velocity vectors at four different instances is illustrated in Figure 1.11.

Liu and Aono [17] presented an integrated computational study of size effects on
insect hovering aerodynamics, by observing typical insects including a hawkmoth,
honeybee, fruit fly and thrips over a wide range of Reynolds number. They used a finite
volume method based Navier-Stokes solver for the dynamically moving multi-blocked,

overset-grid system and carry out the verifications with a couple of benchmark tests.
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Figure 1.10: The positional angle ¢ [a] and instantaneous positional angle ¢
feathering angle o, and elevation angle 6 of the fruit fly wing over one
complete flapping cycle [12] [b].
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Figure 1.11: Far-field flow structures around a hovering fruit fly.  Absolute
iso-vorticity surfaces and velocity vectors with a body at four instances
of (a), (b), (e) and (g), respectively given in Figure 1.10 [b] [12].
Liang and Dong [13] used a second order finite difference based immersed boundary
solver to simulate the flow around a modeled fruitfly in hovering flight. They
investigated the wing-wing interaction, wing-body interaction, wing-wake interaction
and associated unsteady aerodynamics. The simulations performed have shown that
the vortex topologies in flow field are distorted due to the wing-wing interaction during
the dorsal stroke reversal. The 3-D perspective view of the wake topologies when

fruitfly wings just finished downstroke and started a new upstroke is illustrated in

13



Figure 1.12. There are three vortex rings which are VR1, VR2 and VR3 as indicated
in the figure. VRI1 and VR2 are in donut-shape with big hole inside, which are very
similar to the results reported in the study of Aono et al. [12] and they remain the
same during the whole process. They also stated that VR3 was due to the wing-wing
interaction at the dorsal stroke reversal and added that VR3 dissipated at the end of
upstroke and re-formed after the interaction at the beginning of downstroke. They
concluded that the lift production on both wing and body during the second half stroke
is larger than that produced in the first half stroke. This makes that wing-body and
wake-body interactions are important enough and cannot be neglected. Moreover,
the vortex formation and force generation can be significantly affected by the wing

kinematics.

Figure 1.12: Vortex topology and velocity vectors at 7/7T = 1.0 [13].

Dong and Liang [33] modeled a dragonfly, as sketched in Figure 1.13, and observed
the aerodynamic performance of hindwings in terms of varying phase difference
between the forewings and hindwings by using a second-order finite-difference
based immersed-boundary solver. They stated that although, hindwings had obvious
augmentation in thrust and reduction in lift due to the existence of forewings, they did

not affect the performance of forewings.

Flow velocity = 0. 5m/s

Figure 1.13: Computational model of the dragonfly (left) and tip path of forewing and
hindwing (right) [33].

14



Bush et al. [34] developed a code, Immersed Boundary Incompressible Navier Stokes
(IBINS) for low Reynolds number (10 — 10°) bio-inspired flapping wings based on
immersed boundary method and applied this code for predicting forces and moments
on Drosophila wings. They investigated the quasi-steady model applied to Drosophila
in hover and the stability derivatives obtained from that model. The simulations were
carried out using the code IBINS on a mesh of Drosophila body having 48 million
grid points. The simulations with IBINS were compared with those based only on
the translational quasi-steady portion of the forces calculated by Faruque and Humbert
[35,36] and with those based on quasi steady model which includes both translational
and rotational effects as shown in Figure 1.14. They observed that the quasi-steady
model predicted lower lift than the IBINS simulation and stated that the difference
between the quasi-steady and IBINS based CFD results were due to the wake capture
mechanism which was excluded in the quasi-steady model. The previous numerical

studies of insect flight are summarized in Table 1.1.

-~ Translational Quasi-Steady 0.04 —Quusi-s_ready Lift
0.04 - Rotational Quasi-Steady =—=IBINS Lift
—Total Quasi-Steady |-- Difference

==|BINS

0.03:

0.02

Lift (mN)

0.01¢

[b]

Figure 1.14: Predicted (quasi-steady) lift and simulated lift for a Drosophila in
hover over a single wing stroke [a] and difference between predicted
(quasi-steady) and simulated lift [b] [34].
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The remainder of this thesis is organized as follow: The mathematical and numerical
formulations are given in Chapter 2. The mesh deformation algorithm is presented
in Chapter 3. The FTLE flow visualization is presented in Chapter 4. Chapter 5
presents the validation of ALE method with different benchmark problems including
the decaying Taylor-Green vortex flow, the flow past an oscillating circular cylinder
in a channel and the flow induced by an oscillating sphere in a cubic cavity. In
Chapter 6, the present ALE method is applied for the numerical simulation of flow
field around a pair of flapping Drosophila wing in hover flight and the numerical
simulations with different wing kinematics are carried out in order to investigate the
effects of wing kinematics on the three-dimensional Eulerian coherent structures as
well as its correlations with the force generation for hover flight. The effects of various
wing parameters on the aerodynamic performance are given in the subsequent sections.

Concluding remarks and future recommendations are provided in Chapter 7.

1.4 The Scope of the Study

The current study aims to meet the following objectives.

e To extend the side centered finite volume method given in [37] for moving boundary
problems using the arbitrary Lagrangian-Eulerian (ALE) formulation and to fulfill

the Geometric Conservation Law at the discrete level.

e To handle large mesh deformations seen in flapping wing kinematics undergoing
flapping and rotation at large amplitudes, an indirect radial basis function (RBF)
approach which provides high mesh quality and periodicity for large mesh

deformations is proposed.

e To investigate the applicability of the fully coupled iterative solution of the
momentum and continuity equations. The main reason is that employed
mesh deformation algorithms may lead to extremely small elements for
large deformations which significantly limit the allowable time step due to
Courant-Friedrichs-Lewy (CFL) restriction for decoupled approaches. In addition,
the discretized governing equations may need to be coupled to the equation of

motion of a body.
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e To study the wing kinematics effects on the three-dimensional near wake topology
as well as its correlations with the force generation for hover flight. The effects
of various wing kinematics parameters on the aerodynamic performance are

investigated by varying one parameter at a time.

e To investigate the wing kinematics in order to asses the important kinematic
parameters determining forward and backward flights. Insects increase the angle
of attack to large values on the upstroke or downstroke, respectively, and use the
increased drag to initiate acceleration. Therefore, some asymmetric variations are
introduced in the wing kinematics in order to asses the importance of the change in
the angle of attack for forward and backward flights. In addition, an asymmetry is

also introduced in the stroke angle.

e To investigate the Lagrangian coherent structures around a pair of flapping
Drosophila wing in hover. A particle tracking algorithm has been developed
on moving unstructured meshes and it has been used to compute the finite-time
Lyapunov Exponents (FTLE) fields in order to investigate the Lagrangian coherent

structures.
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2. ARBITRARY LAGRANGIAN-EULERIAN FORMULATION

Moving boundary problems in computational fluid dynamics have become of great
interest due to their wide range of application areas. In order to simulate the flow
problems with moving boundaries, several numerical approaches have been presented
in the literature including the arbitrary Lagrangian-Eulerian (ALE) method [38], the

immersed boundary method [39,40] and the fictitious domain method [41].

In the ALE method, the mesh follows the interface between the fluid and solid
boundary and the governing equations are discretized on an unstructured moving mesh.
This differs from the standard Eulerian formulation in a way that the mesh movement
has to fulfill special conditions in order to maintain the accuracy and the stability of
the time integration scheme. This condition is satisfied by the enforcement of the
so-called geometric conservation law (GCL) as coined by Thomas and Lombard [42].
The geometric conservation law requires that the volumetric increment of a moving
cell must be equal to the summation of the volumes swept by its surfaces that close
the volume. It can be interpreted such that a numerical scheme should preserve a
uniform flow solution exactly independent of the mesh motion. Although the GCL
is satisfied easily in the continuous sense, their discrete implementation may not
be trivially satisfied. The ALE time integration scheme developed by Koobus and
Farhat [43] is based on more continuous time integration of the fluxes. Such a
scheme offers second-order accuracy in time obeying the GCL, but the integration
will be computationally expensive. Geuzaine et al. [44] have showed that the GCL
is neither a necessary nor a sufficient condition for an ALE scheme to preserve its
order of time-accuracy established on fixed meshes. Recently, Mavriplis and Yang
[45] have proposed a general framework for deriving high-order temporal schemes
which respects the GCL. In the present work, a geometrically conservative arbitrary
Lagrangian-Eulerian formulation is presented for large-scale simulation of moving

boundary problems.
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The present numerical method is based on the side-centered finite volume method
where the velocity vector components are defined at the mid-point of each cell face,
while the pressure term is defined at element centroid. The present arrangement of
the primitive variables leads to a stable numerical scheme and it does not require
any ad — hoc modifications in order to enhance the pressure-velocity-stress coupling.
This approach was initially used by Hwang [37] and Rida [46] for the solution of the
incompressible Navier-Stokes equations on unstructured triangular meshes. Hwang
[37] pointed out several important computational merits for the aforementioned grid
arrangement. Rida [46] called this scheme side-centered finite volume method and
the authors reported superior convergence properties compared to the semi-staggered
approach. Rannacher and Turek [47] used the same approach within the finite element
framework by employing the stable non-conforming le / Qo finite element pair which
is a quadrilateral counterpart of the well-known nonconforming triangular Stokes
element of Crouzeix-Raviart [48]. The most appealing feature of this finite element
pair is the availability of efficient multigrid solvers which are sufficiently robust even
on non-uniform and highly anisotropic meshes. Although the fully staggered approach
with multigrid method also leads to very robust numerical algorithm [49], obtaining
the velocity components on unstructured staggered grids is not straightforward as
well as the computation of inter grid transfer operators in multigrid. The use of all
the velocity vector components significantly simplifies the numerical discretization
of the governing equations on unstructured grids as well as the implementation of
physical boundary conditions. The present arrangement of the primitive variables can
be applied to any non-overlapping convex polygon which is very important for the
treatment of more complex configurations. Although the Immersed Boundary Methods
(IBM) [31,40] has been used extensively for the simulation of flow fields around
moving/deforming bodies with complex geometrical shapes, the implementation of
the physical boundary conditions on surfaces not aligned with the mesh is still
a challenging task, in particular, at high Reynolds numbers as well as obtaining
sufficiently smooth/accurate forces next to the solid body. In the case of the
moving/deforming bodies with large amplitudes (as in flapping flight), the applications
of the IBM requires either high mesh resolutions in large percentages of the fluid
computational domain, or adaptive mesh refinement, in order to properly capture the

viscous effects.
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In the present work, a special attention will be given to satisfy the continuity equation
exactly within each element and the summation of the continuity equations can be
exactly reduced to the domain boundary, which is important for the global mass
conservation. In addition, a special attention is given to satisfy the geometric
conservation law (GCL) at discrete level. However, in order to preserve a constant
solution exactly independent of the mesh motion, the mass conservation should be
satisfied exactly over the momentum control volume in addition to the GCL. For this
purpose, one may consider to employ the collocated (non-staggered) grid arrangement
of primitive variables for the incompressible Navier-Stokes equations. However, it is
well known that the collocated grid arrangement is not stable and leads to spurious

pressure modes. Therefore, we use the stable side-centered finite volume method.

Multigrid techniques [50,51] have several attractive attributes including computational
costs and memory requirements that scale linearly with the degrees of freedom. The
basic idea of the multigrid method is to carry out iterations on a fine grid and then
progressively transfer these flow field variables and residuals to a series of coarser
grids. On the coarser grids, the low frequency errors become high frequency ones and
they can be easily annihilated by simple explicit methods. There are various possible
strategies for implementing a multigrid algorithm on unstructured meshes [52]. One
of the most successful multigrid technique has been the use of non-nested coarse and
fine levels. In this approach, coarse grid levels are created independently from the
finer meshes and flow variables, residuals and corrections are transferred back and
forth between the various grid levels in a multigrid cycle using second-order linear
interpolations. An extensive review on the fully-coupled iterative solvers for the
incompressible Navier-Stokes equations may be found in [53]. However, the fully
coupled multigrid techniques are not suitable for the time-dependent calculations with
small time steps since the advection-diffusion operator is highly diagonally dominant
and well conditioned. Therefore, a matrix factorization is introduced similar to that
of the projection method [54] for the whole coupled system and we use two-cycle
of BoomerAMG solver for the scaled discrete Laplacian provided by the HYPRE
[55] library, a high performance preconditioning package developed at Lawrence

Livermore National Laboratory, which we access through the PETSc [56] library. The
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computational domain is decomposed into a set of sub-domains or partitions using the

METIS library [57].

2.1 Governing Equations

The integral form of the incompressible Navier Stokes equations that govern the
motion of an arbitrary moving control volume Q(t) with boundary dQ(t) can be written
in the Cartesian coordinate system in dimensionless form as follows: the continuity

equation

—j{ n-udS=0 2.1)
2Q,

the momentum equations

)
Re—/ udv +Rej{ n- (u—X)]udS—i—% npdsS :j{ n-VudS (2.2)
ot Jo, 29, 09, 9Qy

In these equations, V is the control volume, § is the control volume surface area, n
represents the outward normal vector, u represents the local fluid velocity vector, X
represents the grid velocity (the velocity vector of the control volume surface), p is
the pressure and Re is the dimensionless Reynolds number. Figure 2.1 illustrates the
three-dimensional hexahedral elements with a dual control volume elements. The local

fluid velocity vector components are defined at the mid-point of each face.

Figure 2.1: Three-dimensional unstructured mesh with a dual control volume for the
velocity components.
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2.2 Discrete Geometric Conservation Law

The geometric conservation law states that the volumetric increment of a moving
element must be equal to the summation of the volumes swept by its surfaces that close
the volume. This can also be interpreted such that the grid positions and velocities
are evaluated in a certain way that a numerical scheme preserves a constant solution
exactly independent of the mesh motion. Although the GCL is satisfied easily in the
continuous sense, their discrete implementation may not be trivially satisfied. In the

present work, the GCL is satisfied over the dual finite volume shown in Figure 2.1.

The compressible continuity equation is given by

%?{pdV—k?{n-(u—X)pdS:O (2.3)

For an incompressible flow V.u = 0 and p is constant and the continuity equation

becomes

Jd e
m{dv_fn.xds_o 2.4)

Equation (2.4) is known as the Geometric Conservation Law (GCL). The GCL has to

be satisfied in the discrete level. The volumetric change can be written as follows

Vn+1 yn 8
— Z AV; =0 (2.5)
where V" and V"*! are the dual control volumes at time levels n and n+ 1, respectively
shown in Figure 2.2 [a] and AV; is the volume swept by each control volume face. The

volume swept by the control volume face can be written as

8 An+l An n+1 —x"
+ G (2.6)

AVZ

At

where A" and A;""! are the triangular control volume surface area vectors at time

levels n and n + 1, respectively. xg and X”+1

are the geometric centroid of these
triangular faces at time levels n and n + 1, respectively. Thus Equation (2.6) becomes
as follows,

n+1

At

v"+1 4 A4 AT — XL

=0 2.7

L
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The second term on the right hand side of Equation (2.7) represents the grid velocity
and is given by
n+1 _ on

: XG XG
X=-— Y 2.8
At ( )

The computation of grid velocity using Equation (2.8) and evaluation of fluxes on
surfaces A" and A"t! will ensure that the GCL is satisfied in the discrete level for the

present ALE method.

[b]
Figure 2.2: The dual control volume at time levels n and n+ 1 [a] and the covolume

() used for the evaluation of gradient terms for the area vector Aj,s (red
volume) [b].

2.3 Extension of Geometric Conservation Law to Second Order

The left hand side of Equation (2.3) can be rewritten via second order backward

difference
P 3yntl _gqyn 4 yn-l
— odV = 2.9
ot j{ 2At (2.9)
It should be noted that
n+1 —4yn n—1 n+1 _ yn 1 n__yn—l1
3V Vi+V _ § \% \% 1 vr—v (2.10)
2At 2 At 2 At

From Equation (2.7) the right hand side of Equation (2.10) can be written as follow

Vn+1 —_yn 8 An+1 A" n+l _ on
_ kil I (2.11)
At = 2 At

1

In a similar manner

n__yn—l1 8 n n—1 n__ yn—1
vr—v :Z[A-I—A :||:X X } 2.12)




Then, Equation (2.10) becomes

3yrtl_gqynqyn-l 8 3 [ ATt LAn x" 1 _xn 1 | A"+A"! X" —x" |
2Af :Zii 2 ’ At -2 2 ) At (2.13)
1=

Therefore, the discrete Geometric Conservation Law will be exactly satisfied. Due to

(2.13), the flux due to mesh motion has to be computed from [58]

1 1 -1 -1
bl gl :E {x’ﬁ _xn] . {An+ +A”} 1 {X”—x" } . {A”—l—zA” } 2.14)

2 At 2 2 At

2.4 Three-Dimensional Numerical Discretization

The momentum equations along the x—, y— and z— directions are discretized over the
dual finite volume shown in Figure 2.1. The discrete contribution from the right cell
shown in Figure 2.1 is given below for each term of the momentum equation along the
x— direction.

The time derivative

3Re &4+1+ gt L ARe [3u Yol

2 | 4Ar  6-4Ar | 1B% 2 [4Ar 6-4Ar| 1P

Re [3uf7'  Yul!

; 2& 6ﬁmlﬁﬁswﬂ»ﬁﬂ2&%im (2.15)

The convective term due to fluid velocity
Re [w}5 - A5 | uizs +Re [uhis - Adys'| i
b Re [ AT i) 4 Re [uld - A% .16
The convective term due to grid velocity
— Re[Xj35 - AQjs | uils —Re %335 - Abis [ ups
Re [X3)5 - A5 | ihgs — Re [Xis - AQs | us (2.17)
The pressure term

+1 n+1
pit+p2+ps|” . p2+p3+ps .
[—} A+[—] A i

3 3
n+1 n+l1
_ﬂm+?+m} M%+%&i%iﬁ} Aus-i (2.18)
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The viscous term

au n+1 L au n—+1 . au n+1 X
- (E) A i <—> Al ~J—|—< ) Al k| (2.19)
415 Y/ 415 415

where V(,345 is the volume of the pyramid between the points Xx;, X», X3, X4 and X5
shown in Figure 2.1, A5, A23s, A3gs and Ag45 are the area vectors of the dual volume
triangular surfaces. The area vectors are computed from the cross product of vectors
(as an example, Ajps = 0.5(x3 — X5) X (X] —X5)). The values ujzs, U35, U3ys and
uy5 are the velocity vectors defined at the mid-point of each dual volume triangular
surfaces and p1, p2, p3, p4 and ps are the pressure values at the points X1, X3, X3, X4 and
X5, respectively. However, the pressure values are known only at the element centroids
and the pressure values at x|, X, X3 and x4 have to be computed. To compute the

pressure at Xp, as an example, a second-order Taylor series expansion can be written as

0 0 0
pi=p1+ a_l; |x:x1 (xc,i _xl) + a_;) ’x:xl (yc,i _yl) + 8_12 |x:x1 (Zc,i _Zl)

with i=1,2,..,m (2.20)

where m represents the number of the neighboring hexahedral elements connected
to the point x; and X.; corresponds to the neighboring element centroids. This
overdetermined system of linear equations may be solved to compute the pressure
value and the pressure gradient components in a least square sense using the normal
equation approach, in which both sides are multiplied by the transpose. The modified
system is solved using the singular value decomposition provided by LAPACK driver
routines in order to avoid the numerical difficulties associated with solving linear
systems with near rank deficiency. In a similar manner, the u—velocity component
values at X1, X3, X3 and x4 are computed using the same approach. To compute the
u—velocity component at Xy,

u u du
ui=ui+ - |x=x; (Xf,i—X1)+a—y |x=x, ()’ﬁi—)’l)"‘a_z x=x; (2f,i —21)

with i=1,2,... (2.21)
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where [ represent the number of the faces connected to the point x| and X7 ; corresponds
to the face mid-points. The overdetermined system of linear equations is also solved
in a least square sense as before and the computed u—velocity components are used to
compute the velocity gradients defined at the mid-point of each dual volume triangular

faces using the Green-Gauss theorem:

Ju, Jdu. du 1
V=254 2540 P — —
J 0z Ve Jog,

o T3y udA

(2.22)

where V., covolume consists of two tetrahedral elements that share the same dual
volume triangular surface area with their fourth vertices located at the midpoint of the
hexahedral element faces. As an example, the covolume €. is shown in Figure 2.2.b
for the triangular dual volume area vector A,s. The right-hand side of the equation

(2.22) 1s evaluated using the mid-point rule on each of the covolume faces.

The convective velocity vector components 155, U3s, U34s and ug s are computed at
the mid-point of the dual volume triangular surfaces using the least square upwind

interpolations [59] [60]. As an example,

urps = B [ur +Vuy - (X125 —x5,1) | + (1= B) [ua + Vuz - (X125 —x52) ] (2.23)

where B is a weight factor determining the type of convection scheme used, Vu; and
Vu, are the gradients of velocity components where the u#1 and u, velocity components
are defined and x5 = (X] + X + X5)/3. For evaluating the gradient terms, Vu;
and Vuy, a least square procedure is used in which the velocity data is assumed to
behave linearly. Referring to Figure 2.1 as an example, the following system can be

constructed for the term Vu;

Xf2—=Xf1 Y2 —=Yr.1 2f2 —2f,1 Uy — ug
Xf3—Xf1 YF3 =Y 23— 2f1 ou us —uj
Xfa4—Xf1 Yra—Yfi1 2f4—2f 1 ox ug — Uy
jCCf.,s :jccﬁl Y5 :yf,l 215 :Zﬁ] a_u us :ul (2.24)
£.6 —Xf,1 Y6 —YVfa Zf6 —2f,1 y Ug — Ui
Xf7—Xf1 YT —YVf Zr7 —2f1 g_bzt u7 — uq
Af8 —Xf1 Y8 —Yfi1 2f8 —Zf.1 ug — uj
L X799 —Xf,1 Y9 —Yri1 2f9 —Zf,1 | | uo —uy |

This overdetermined system of linear equations may be solved for Vu; in a least
square sense using the same normal equation approach. The gradient term Vuj, is

also computed in a similar manner.

27



To compute the fluxes due to mesh motion, a special attention is given to satisfy the
discrete geometric conservation law (DGCL). The DGCL states that the volumetric
increment of a moving element must be equal to the summation of the volumes swept
by its surfaces that close the volume. Therefore, the mesh motion flux is evaluated

from (2.14) [44,61],

KAl =
3 1 [A’Ss] + Al 1 1y [Als+ Arfz_s]}
E(X@s —X/p5)" B S—— E(X'fzs —X{p5 )" f(Z.ZS)

This approach will ensure that the DGCL is satisfied and the present ALE scheme
preserves a uniform flow solution exactly independent of the mesh motion. However,
Geuzaine et al. [44] showed that the compliance with the DGCL is neither a necessary
nor a sufficient condition to preserve its order of time-accuracy established on fixed
meshes. Because, the authors indicated by means of truncation error arguments that
the linearization of the convective terms in the equation (2.16) using the values at
time level n will drop the accuracy of the numerical scheme to first-order on moving
meshes. Hence, several sub-iterations have to be performed in order to maintain the

second-order time accuracy.

The discretization of the momentum equation along the y— and z—direction follows
very closely the ideas presented here. It should be noted that the present dual
volume surface integrals involve only triangular planar surfaces for the momentum
equations which significantly simplify the three-dimensional numerical discretization.
The continuity equation (2.1) is integrated within each hexahedral element , and

evaluated using the mid-point rule on each of the element faces

e

(WA A+ VA + WAL =0 (2.26)

i=1
where A = A,i+Ayj+AK is the hexahedral element surface area vector and u, v and w
are the velocity vector components defined at the mid-point of each hexahedral element

face. The discretization of above equations leads to a saddle point problem [62] of the

form:
Bl 1 0 0 B14 u bl
0 Bzz 0 324 1% o b2
0 0 B33 334 w o b3 (2.27)
By By Bsyz 0 p 0
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where, B, B> and B33 are the convection diffusion operators, (Bl4,B24,Bg4)T is the
pressure gradient operator and (Byj,B4z,Bs3) is the divergence operator. It should
also be noted that on a uniform Cartesian mesh, the multiplication of the matrices
B41B14 + B4oByy + B43B3y gives the classical five-point Laplace operator as in the
MAC scheme [63] which is very important for the efficient implementation of present

iterative solvers.

2.5 Iterative Solver

In practice, the solution of equation (2.27) does not converge very quickly and it
is rather difficult to construct robust preconditioners for the whole coupled system
because of the zero-block diagonal resulting from the divergence-free constraint. In
the present work, we use the following upper triangular right preconditioner which
results in a scaled discrete Laplacian instead of a zero block in the original system.

Then the modified system becomes

BU 0 0 Bl4 I 0 O Bl4 q bl
0O By 0 By 0 I 0 By r{ | b
0 0 B33 B34 0 0 I B34 N o b3 (2'28)
B41 B42 B43 0 0 0O 1 P 0
where
u I 0 0 By q
v . 010 Bz4 r
w N 0 0 1[I B34 N (2.29)
p 000 I p

and the zero block is replaced with B41B14 + B4yB24 + B43B34, which is a scaled
discrete Laplacian. Unfortunately, this leads to a significant increase in the number
of non-zero elements due to the matrix-matrix multiplication. However, it is possible
to replace the block matrices in the upper triangular right preconditioner with
computationally less expensive matrices. The calculations indicate that the largest
contribution for the pressure gradient in the momentum equations comes from the
right and left elements that share the common face where the components of the
velocity vector are discretized. Therefore, we will use the contribution from these
two elements which leads to maximum three non-zero entries per row. Although, this
approximation does not change the convergence rate of an iterative solver significantly,

it leads to a significant reduction in the computing time and memory requirement. As
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an example, the two-dimensional Stokes flow in a lid-driven square cavity is solved
on a uniform 201 x 201 mesh using an incomplete LU(ILU(4)) preconditioner. The
original approach requires 184 iterations in order to reduce the relative residual norm to
108, meanwhile the modified approach requires 192 iterations. The present one-level
iterative solver is based on the restricted additive Schwarz method with the flexible
GMRES((m) [64] algorithm. Because the zero block is removed, a block-incomplete
factorization coupled with the reverse Cuthill-McKee ordering [65] can be used within
each partitioned sub-domains. Multigrid methods [50] [51] are known to be the most
efficient numerical techniques for solving large-scale problems that arise in numerical
simulations of physical phenomena because of their computational costs and memory

requirements that scale linearly with the degrees of freedom.

The multilevel preconditioner is based on a multiplicative non-nested multigrid
method with one V-cycle. In this multigrid method, coarse grid levels are created
independently from the finer meshes and flow variables, residuals and corrections
are transferred back and forth between the various grid levels in a multigrid cycle.
To reduce the memory requirement of the multigrid method we use more aggressive
coarsening method similar to the work of Lin et al. [66, 67]. In order to reduce the
complexity of data structure, the velocity vector components are defined at vertices
on the coarse grid levels. The preconditioned flexible GMRES(m) algorithm [64]
with the restricted additive Schwarz method is used as a smoother and either the
successive over-relaxation (SOR) preconditioner or the block-incomplete factorization
with no fill-in is employed within each partitioned sub-blocks. The implementation of
the preconditioned Krylov subspace algorithm, matrix-matrix multiplication and the
multilevel preconditioner were carried out using the PETSc [56] software package
developed at the Argonne National Laboratories. METIS library [57] is used to

decompose the flow domain into a set of sub-domains.

Although the fully coupled multigrid technique is shown to be very efficient [68] for
the computation of the steady-state solutions, it is not suitable for the time-dependent

calculation of the incompressible Navier-Stokes equations with small time steps since
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the saddle point problem approaches to the following form:

1 0 0 Bus
0 1 0 By
0 0 I B (2.30)

By By Bsyz O

Therefore, a matrix factorization can be introduced similar to that of the projection

method [54]

1 0 0 O I 000 I 0 0 By
0 1 0 O 071 0O 0 I 0 By
0 0 I 0 0011 0 0 O I Bz (2.31)
By By Byy 1 000 S 000 I
where S = —B41B14 — ByyBoy — B43B3s is the scaled Laplacian. Then the
preconditioner matrix becomes
I 0 0 —Byus I 00 O 1 0 0 0
0 1 0 —By 071 0 O 0 1 0 0
0 0O I —Bxy 00171 O 0 0 1 0 (2.32)
000 1 000 S! —B41 —Bsp —Bgz 1

The parallel algebraic multigrid solver BoomerAMG from the HYPRE library [55]
is used for the inverse of the scaled discrete Laplacian. However, the Parallel
Modified Independent Set (PMIS) algorithm within the BoomerAMG solver is used
for coarsening scheme rather than the default Falgout algorithm due to its higher
computational efficiency [69]. The implementation of the preconditioned Krylov
subspace algorithm, matrix-matrix multiplication and the multilevel preconditioner
are carried out using the PETSc [56] software package. The METIS library [57] is
used to partition an unstructured mesh for a balanced domain decomposition. The
most appealing feature of the present fully coupled approach is that it allows us to
avoid time step restriction due to the Courant-Friedrichs-Lewy condition. This is
very important for large mesh deformations where the mesh deformation algorithms
may lead to extremely small elements. In addition, the equation of motion of a
deforming body has to be coupled with the incompressible Navier-Stokes equations

for free-swimming/flying bodies [70].
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3. MESH DEFORMATION ALGORITHM

For the numerical simulation of moving boundary flow problems, a body-conforming
mesh has to be regenerated at each time step or the existing grid must deform to
follow the computational domain. However, regenerating the mesh at each time step
is computationally expensive. For moving boundary problems one must guarantee the
mesh validity so that there would not be any negative volume and it should ensure
quality in terms of mesh cell orthogonality and skewness. In the literature, several
mesh deformation algorithms have been proposed to compute the displacement of
the internal points as the boundaries of a computational domain translate, rotate and
deform in order to maintain mesh quality and validity. These approaches include
the spring analogy [71], the Laplace Equation based mesh deformation method, the
elastic medium analogy [72], the edge swapping algorithm [73], the radial basis
function (RBF) interpolation algorithm [74] and the remeshing algorithm [75]. Some
of these methods are detailed in the following sections. Our goal is to apply the
most robust mesh deformation method suitable for large deformations and high mesh
resolution simulations on parallel computers. In this study, a radial basis function
(RBF) interpolation based mesh deformation algorithm is proposed to cope with large

deformations.

3.1 The Spring Analogy Method

One of the most widely used mesh deformation method is the spring analogy since
it can be applied to both structured and unstructured meshes. In this method, it is
assumed that the mesh points are connected to each other by a set of springs. Although,
the application of this method is simple, it leads to less robust results compared to other
methods. There have been several attempts carried out to improve the robustness of this

method. Farhat et al. [58] present a study to improve the robustness of torsional spring
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analogy with an additional spring to control mesh skewness and adapt this analogy for

2D problems.

3.2 The Laplace Equation Based Mesh Deformation Method

The Laplace equation based mesh deformation algorithm is the most widely used mesh
deformation method. This deformation method is based on modeling the interior mesh
deformation by partial differential equations. The Laplace equation based method is
used with either a constant or a variable distance-based diffusion coefficient in order to
enhance the mesh quality. The following equation is defined for the Laplace equation
with variable diffusivity. According to the Laplace equation based mesh deformation
method, the point displacements is largest close to the moving boundary whereas it is

small at large distances from the moving/deforming boundary.
A-(yAx) =0 3.1)

where x represents the displacement field and v is the diffusion coefficient which is

inversely proportional to minimum distance d from the deforming boundary

y(d) = — (3.2)

The diffusion function y(d) has strong effect on the mesh quality therefore one must

choose this coefficient carefully. y(d) can also be defined as

Y(d) = — (3.3)

where V is the volume of the element.

3.3 The Elastic Medium Analogy

In this method,the mesh is considered as an elastic body which is deformed according
to the displacements at its boundaries. This method is based on the linear elasticity
equation. The equation of linear elasticity for the displacement of the internal nodes

can be written as

V.o=f (3.4
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Here o represents the stress tensor and f is force vector. The stress tensor is related to

the strain with the following definition,
6 = Atr(e(d))I+2ue(d) 3.5)

where tr is the trace, d is the displacement, A and u are Lame constants, I is the identity

tensor, and €(d) is the strain tensor defined as,
1
£(d) = 5(Vd+ vd') (3.6)

Here £(d) denotes the relative change in length. Although, Equation (3.3) does not
allow for rotations, one can change the strain equation such that rigid body rotations
are allowed. An extra term is added into Equation (3.3) in the study of Dwight [76]

and the following stress equation is obtained,
1 T T
e(d) = E(Vd+Vd +Vd' -Vd) 3.7)
Combining Equations (3.7), (3.4), (3.5) yields,
V- (yVd)+V(y(Vd-Vd")) - Atr(Vd) =0 (3.8)

where ¥ is a diffusion coefficient. Equation (3.8) allows for rigid body rotations.
Solving the SBR Stress equation or Laplace equation leads to a sparse system of
equations where standard iterative solvers can be used. However, these methods

maintain high mesh quality for problems with limited boundary rotation.

3.4 Radial Basis Function Interpolation

The RBF interpolation algorithm leads to high quality meshes when the domain
boundaries exhibit large translations and rotations [74]. Therefore, in order to handle
large mesh deformations, radial basis function interpolation will be used for the
simulation of flapping Drosophila wings. In the RBF method, an interpolation problem
is solved to transfer the displacements known at the boundary to the entire mesh
domain.
N
Ax; = Z‘E)W(I!Xi—XjH) +M(x;) (3.9)
j=
where N is the number of control points, y; is the weight of control point x;,
¢ (||x; —x;]|) is the radial basis function, M (x;) = Bi + Box; + B3yi + Pazi is a low degree
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polynomial and |||| is the Eucledian norm. There are four additional constraints due to

translational and rotational rigid-body motion:

Y v=0 (3.10)
Y vixj=0 (3.11)
Y vyj=0 (3.12)
272 =0 (3.13)

Therefore, the value of the weight coefficients for Ax can be evaluated by applying the

equation (3.9) for i = 1,2, ..., N using the control points:

[0 - oy 1 ox oy ow N Axy

Ont - Oy L xny YN v W Axy
Il - 1 0 0 0 0 B |=1] 0 (3.14)
xx - xxy 0 0 0 O B> 0

yio - yy 0 0 0 O B3 0

o - w00 0 0 |[B] | 0|

where ¢;; = ¢(||x; —x||) is the radial basis function. Once the weights y; are

computed, the deformation of internal points can be calculated from Equation 3.9.

The radial basis functions are categorized in two groups: functions with compact
support and functions with global support. Radial basis functions with compact

support satisfy the following property:

flx/r) 0<x<r

¢(x/r) = { 0 xo7r (3.15)

where r is the support radius which indicates that only the internal mesh points with
radius r around a center are affected by the movement of the boundary points. When
r is increased, the mesh motion becomes more precise. However, very large values of
support radius causes a dense matrix system. On the other hand, when a low support
radius is chosen, it leads to a sparse matrix system which can be solved by present
iterative solvers. Some radial basis functions with compact support are shown in Table

3.1.
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Table 3.1: Radial basis functions with compact support (§ = x/r) [77].

Ref. nr. RBF Name f (&)
1 cpC? f(1-E&)?
2 CP C? FA=E*4E+1)
3 Cp c* F(1=E)8(RE2+6E+1)
4 CP C® F(1—E)8(328% +25E2+8E +1)
5 CTPS C° f1=E&)
6  CTPSC! 1+80E2 4083 +15E% - 8E5 +20&210g(&)
7 CTPS C2  1—30E%—10E3 +45E% —6E° —60&E310g(&)
8 CTPS C? 1—20&2+80&3 —45E% — 16E° 4 60E*0g(E)

On the other hand, functions with global support cover the whole mesh domain and
hence lead to a dense matrix. Table 3.2 illustrates some of the radial basis functions

with global support. In here, we only employ radial basis function with global support.

Table 3.2: Radial basis functions with global support [77].

Ref. nr. RBF Name Abbrev. f(x)
9  Thin plate spline TPS x*log(x)
10 Multiquadratic Bi-harmonics MQB (a® +x?)
11 Inverse Multiquadratic Bi-harmonics IMQB +/1/(a? +x2)
12 Quadratic Bi-harmonics QB (14x)?
13 Inverse Quadratic Bi-harmonics 1QB ﬁ
14 Gaussian Gauss e

Although there are various radial basis functions available in the literature, cubic spline
function with global support has been employed for large mesh deformations due to its
mesh quality. However, the RBF approach is too costly with its most straightforward
implementation for large three-dimensional problems. An approximation algorithm
for RBF mesh deformation has been suggested by Rendall and Allen [78] in which
the RBF is applied using a coarsened subset of the surface mesh. A greedy algorithm
is used to add points from the mesh that have the largest error. In the present paper,
the RBF control points are created using a non-nested coarser mesh. However, the
control points are not exactly located on the domain boundary but next to the boundary.
Therefore, the mesh points between the RBF control points and the domain boundary
are moved using the rigid body motion. The rest of the points are deformed using
the RBF interpolation. The present modification will ensure that the total volume
of computation is conserved at machine precision. This is very important for the

use div-stable discretizations of the incompressible Navier-Stokes with all Dirichlet
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boundary conditions where the total mass should be kept constant. In practise the
implementation of the RBF mesh deformation algorithm is based on either the absolute
or the relative implementations [14]. The absolute method constructs the linear system
on an initial mesh and leads to very efficient implementation since the linear system
needs to be factorized only once. However, the mesh quality is limited for large
deformations as shown in Figure 3.1. Therefore, the relative approach as shown in
Figure 3.2 should be implemented. In this approach, the linear system is constructed
from the node points at the previous time step. The problem with the second approach
is that the mesh periodicity and quality may be lost for large time integrals. In the
present paper, the indirect implementation of the RBF mesh deformation algorithm is
proposed. In this approach, the wing rotation motion is split into several steps and
the new grid nodes are computed starting from the initial mesh. This approach will
also ensure larger mesh deformations with the mesh periodicity and quality. Another
advantage of the present RBF method is that, if the RBF mesh deformation algorithm
fails for the given iteration number, the iteration number may be increased to have a

valid mesh.

b, L.

Figure 3.1: The direct implementation of RBF interpolation to the rotation of a cube
inside another rigid cube. The rotational angles are 15°,30°,45°,60°,75°
and 90°.
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L]

Figure 3.2: The relative implementation of RBF interpolation to the rotation of a cube

inside another rigid cube. The rotational angles are 15°,30°,45°,60°,75°

and 90°.
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4. FTLE FLOW VISUALIZATION

In this study, Finite Time Lyapunov Exponent (FTLE) is computed to visualize the
unsteady flow fields. FTLE and the related structures called Lagrangian Coherent
Structures (LCS) which appear as ridges in the FTLE field [79] is a fundamental tool
for analyzing the fluid behavior. The FTLE measures the amount of stretching around
a point or separation of two neighboring particles over a finite time interval. It is based
on taking the maximum eigenvalue of the Cauchy-Green deformation tensor of the
flow map [80, 81]. Shadden et al. [82] define LCS as a ridge of the FTLE field which
are special gradient lines of the FTLE field and they give an estimate for the material
flux through FTLE ridges. Haller and Sapsis [83] show that the smallest FTLE is
associated with LCS, and can be used to compute the attracting LCS from forward

standard FTLE.

FTLE has several application areas including the motion of jellyfish, flying animals,
visualizing of vortex shedding and etc. Finding the FTLE field is computationally
expensive and time intensive therefore, there are several suggestions in the literature
to accelerate the computations of FTLE. Jimenez [80] and Ament [84] present a
GPU-based FTLE computation for regular 2D grids which leads to the ability to find
thousands of trajectories in parallel. Conti et al. [81] present GPU and APU accelerated
computations of FTLE fields through OpenCL. Brunton and Rowley [85] suggest
efficient methods for computing FTLE for unsteady flows. Lipinski and Mohseni [86]
present an algorithm which tracks the ridges in the FTLE field at each time step by
using both temporal and spatial coherency of LCS, then approximates the location of
the ridges at the next time step by advecting the LCS forward with the flow. They give
an error estimator in terms of the difference between advected ridge and actual LCS.
Fuchs et al. [87] describes a scale-space approach to overcome the undersampling
problems that can occur due to limited space and computing time availability. Figure

4.1 illustrates an example of an FTLE flow visualization which is taken from the work
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of Kasten [88]. In this study, we will develop an algorithm in order to compute FTLE

fields for three-dimensional unstructured moving meshes.

Figure 4.1: Simultaneous visualization of forward (red) and backward (blue) L-FTLE,
integration time T = 3 periods [88].

4.1 Particle Tracking Algorithm

The numerical simulation of the Lagrangian coherent structures requires the
computation of extremely large number of particle trajectories. The current particle
tracking algorithm is based on the integration of the trajectories of massless particles

by solving the time-varying velocity field by integrating the following ODE

% =u(x,?) 4.1)
where x represent the particle location at time level . The particle trajectories are
calculated using a fixed time-step, second order Runge-Kutta scheme. The particle
tracking algorithm can be summarized with the following steps: The implementation
of particle tracing algorithm starts with specifying the initial position for the particle
of interest. The algorithm uses the velocities computed from the previous Runge-Kutta
step and determines the new position of the particle. After finding the new location of
the particle, one must determine the next element that contains the particle. For this
purpose, four vectors are defined from the center of the initial element to the vertices
of each face. Then these successive neighboring vectors are multiplied with each other
to compute the area vectors. Since the particle new location is known, another vector
called distance vector is calculated from the new location of the particle to the element

center. Then the calculated area vectors are multiplied with the distance vector one by

one. If all the dot products are positive, it means that the particle can leave the initial
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element from that face only. However, this process does not tell whether the particle
will pass through that face or remain inside the initial element. Therefore, another test
must be performed. In this case, additional vectors are defined as the vectors from
the face vertex points to the face midpoint. Then the area vectors are computed. An
another vector is defined from the new location of the particle to the face midpoint. The
summation of the dot product of these vectors denotes the volume. Positive volume
means that the particle will leave the initial element and hence, the next neighboring
element number should be determined. Since our finite volume discretization is a face
based approach, we have the neighboring left and right elements information for each
face. Once the element that contains the particle is found using the same steps a least

square procedure is employed in order to compute the particle velocity.

4.2 The Finite-Time Lyapunov Exponent

Finite-Time Lyapunov Exponent (FTLE) field is a powerful tool for analyzing the flow
field in terms of separation in a fluid flow. The computation of FTLE field requires
a particle tracing algorithm which is used to determine the separation regions by
calculating the Jacobian at every point of interest. In order to compute the FTLE field,
the particle locations after a certain time are calculated and a flow map between these

new locations and previous locations is formed. The Jacobian of the flow map is given

by
¢ 99y 99:
i %%
J= a—yx a—y’ 8_; 4.2)
99, 9Py 99
dz Jdz dz
The FTLE is defined as
1
Oy = ﬁln(llm(ﬂf)l) 4.3)

Here, (J Ty ) is the Cauchy-Green deformation tensor and A,y is the largest eigenvalue.
The amount of particle separation is determined by taking the maximum eigenvalue of
the Cauchy-Green deformation tensor of the flow map. High value ridges in a FTLE

field are called Lagrangian Coherent Structures.

43



4.3 The Double Gyre Flow

The FTLE fields were calculated for a well-known analytic two-dimensional example,
known as the double gyre [82] in order to validate the current particle tracking

algorithm on unstructured moving meshes. The analytical velocity field is given by

u(x,y,z,t) = —Amnsin(mwfix)cos(my) 4.4)
v(x,y,z,t) = —Amcos(wfix)sin(my)fr 4.5)
w(x,y,z,t) = 0 (4.6)
where
fi(x,y,z,t) = esin(@t)x® +[1 —2esin(ot)]x 4.7)
fH(x,y,z,t) = esin(wt)2x+[1 —2esin(wt)] 4.8)

and € =0.1, o =2m/10 and A = 0.1.

The mesh motion is taken to be

Ax(x,y,t) = 0.lsin(2xt)sin(0.57x)sin(my) (4.9)

Ay(x,y,t) = 0.lsin(2nt)sin(0.57x)sin(my) (4.10)

The particle trajectories are computed with a constant time step of 1 x 1073 over the
domain [0,2] x [0,1]. The particle initial positions are set to the vertex locations.
The computed forward FTLE contours are shown in Figure 4.3 at t = 15. The
comparison of the FTLE field with the Figure 4.2 of Shadden et al. [82] shows very
good agreement. The small pollution next to the domain boundary is due to the

particles that leave the domain due to the numerical integration errors.
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[b]

Figure 4.2: The computed forward [a] and backward [b] FTLE field at t = 15 for the
double gyre flow on moving unstructured elements.

N=O=NWhHhO~N®O

[b]

Figure 4.3: The computed forward FTLE field at r = 15 for the double gyre flow on
moving unstructured elements [a] and the FTLE plots of Shadden et al. for
t=0 (T=15) [82].
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5. NUMERICAL VALIDATIONS FOR ALE ALGORITHM

In this section, the proposed ALE scheme is initially validated for the decaying
Taylor-Green vortex flow, the flow past an oscillating circular cylinder in a channel
and the flow induced by an oscillating sphere in a cubic cavity. The present numerical

results are obtained by using the Euler implicit time marching scheme.

5.1 The Decaying Taylor-Green Vortex Flow

The Taylor-Green Vortex [89] is an analytical solution of the two-dimensional
incompressible unsteady Navier-Stokes equations and it has been extensively used for
testing and validation of the spatial and temporal order of convergence [90-92]. The
spatial domain is taken here as the unit square [0, 1] x [0, 1] and the analytical solution

in non-dimensional form is given by

u(x,y,t) efznzt/Resin(ﬂx)cos(n'y) (5.1
vix,y,t) = —e*Z”ZI/Recos(nx)sin(ﬂy) (5.2)
plx,y,t) = 6_4”2t/Re% [cos(2mx) + sin(2my)] (5.3)

For the present validation case the Reynolds number is taken to be Re = 10. The
Reynolds number is based on the maximum velocity at the initial time ¢ = 0, the size
of the vortex and the kinematic viscosity of the fluid. The mesh deformation for the

present calculations is taken to be

Ax(x,y,t) = 0.1sin(mt/0.8)sin(7x)sin(my) (5.4)
Ay(x,y,t) = 0.lsin(wt/0.8)sin(7mx)sin(my) (5.5)
The Dirichlet boundary conditions are applied for the velocity components at all
time levels. The calculations are started at + = O by the exact solutions and are

marched forward in time numerically until + = 0.4, at which time the numerical error

is computed. The numerical error is taken to be:

47



||”_”exact||2
—_— 5.6
N, (5.6)

where N, is the number of edges. The mesh space Ak on the unstructured quadrilateral

Error =

element is defined as

1
Ah =

5.7

=

where N, is the number of elements.

In order to establish the spatial convergence of the method, an A—refinement study
is performed on both uniform Cartesian meshes as well as unstructured quadrilateral
meshes. For uniform Cartesian meshes, five different meshes are employed: mesh Ul
with 21 x 21 node points, mesh U2 with 41 x 41 node points, mesh U3 with 81 x 81
node points, mesh U4 with 161 x 161 node points and mesh U5 with 321 x 321 node
points. For unstructured quadrilateral meshes the following meshes are considered:
mesh M1 with 432 node points and 391 elements, mesh M2 with 1 729 node points
and 1 648 elements, mesh M3 with 6 844 node points and 6 683 elements, mesh M4
with 26 848 node points and 26 527 elements and mesh M5 with 105 453 node points
and 104 812 elements. The successive meshes are generated using the mapping and
paving algorithms provided within the CUBIT mesh generation environment [93]. In
order to produce unstructured meshes with approximately uniform mesh size by the
paving algorithm in a unit square, the computational domain is split into two by a
circle of radius 0.35. The non-linear convective term in the equation (2.16) is evaluated
at time level n+ 1 using two sub-iterations in order to guarantee the second-order
convergence properties on moving meshes [44]. The convergence of numerical error
with mesh spacing is shown in Figure 5.1-a with Ar = 10~* and the numerical error
decays at an algebraic rate as the mesh is refined. In here, it should be noted that
the error measure is a function of mesh space Ah and time step Az. For a sufficiently
small Az the numerical error is dominated by the spatial error and in a log-log scale
the expected rate of convergence would appear as a straight line. The present ALE
algorithm indicates an algebraic convergence rate of O(Ah?) for both structured and
unstructured meshes. The convergence of numerical error with time step is also shown
in Figure 5.1-b on the meshes M3, U3, M4 and U4. For a sufficiently small Ak the
error is dominated by the temporal error for large time steps and the numerical error

curves show that the ALE method has an algebraic convergence rate of O(Ar?).
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Figure 5.1: The spatial (left) and temporal (right) convergence of the numerical error
for the decaying Taylor-Green vortex flow at Re=10.

5.2 The Flow Past an Oscillating Circular Cylinder in a Channel

The flow around a circular cylinder undergoing sinusoidal transverse oscillation in a
channel with a specified amplitude and frequency is solved by Wan and Turek [94]. We
solved this benchmark problem to verify the present ALE method. The computational
domain has a size of [2.2 x 0.41]. The initial location of the cylinder center (xo, yo)
is (1.1,0.2) relative to the left bottom corner of the domain. The cylinder diameter
is 0.1 and the cylinder center is oscillating sinusoidally such that the location of the
cylinder center is given by x = xo+Asin(27ft), where t is the time, A = 0.25 and
f = 0.25 are amplitude and frequency of the oscillation, respectively. The kinematic
viscosity v is 1x 1073m? /s and the density is 1 kg/m>. The calculations are started
from the rest and the Dirichlet velocity boundary condition is imposed on all solid
surfaces using their analytical values. The computational mesh consists of 191 014
vertices and 189 874 quadrilateral elements leading to 951 650 DOF. The mesh is
highly clustered near the cylinder surface and on the lateral walls. Although there is
a significant transverse translation for the cylinder, the mesh deformation algorithm
is capable of handling such a large mesh deformation. The time step is set to 0.005
and the non-linear convective term in the equation (2.16) is evaluated at time level
n+ 1 using two sub-iterations. The computed u—velocity component contours with
the streamtraces are given in Figure 5.2 at time levels ¢ = 20s, t = 21s, t = 22s and

t = 23s. The contour plot at ¢t = 21s is very similar to the Figure 5 of reference [94].
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These pictures show relatively large velocities when the cylinder is passing through
the channel center line. In addition, several very large separation bubbles are observed
on the channel upper and lower walls. For a more accurate comparison, the computed
drag coefficient C;=2F ,/pU2,,D and the lift coefficient C;=2F,/pU?,,D are compared
with the results of Wan and Turek [94] in Figure 5.3. From the comparison, we observe

that the numerical results are indistinguishable from one another.

[b]

[d] '02-11 =1 418 a8 07 06 05 094 03 02 01 2 01 a2 03 a4 a5 06 a7z a&s 089 1 11

Figure 5.2: The instantaneous u—velocity component contours with streamtraces for
an oscillating circular cylinder in a channel at t=20s [a], t=21s [b], t=22s
[c] and t=23s [d].
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Figure 5.3: The comparison of the drag and lift coefficients with the numerical results
of Wan an Turek for a circular cylinder undergoing sinusoidal transverse
oscillations in a channel [94].

5.3 The Flow Induced due to a Horizontally Oscillating Sphere in a Cubic Cavity

The flow around a rigid sphere undergoing sinusoidal transverse oscillation in a
cubic cavity with a specified amplitude and frequency is solved by Gilmanov and
Sotiropoulos [30]. For this benchmark problem, a rigid sphere of diameter D is place in
the center of a cubic cavity with side length L = 2D filled with viscous incompressible
Newtonian fluid, which is initially at rest. Flow is induced by oscillating the sphere
back and forth along the horizontal x—direction. The motion is initiated impulsively
at r = 0 and the location of the sphere is prescribed as follows: x(¢) = h[1 — cos(27t)]
where 4 = 0, 125D. The Reynolds number for this flow is based on the sphere diameter
and the maximum sphere velocity and is taken to be Re = 20, which is the value used
in the work of Gilmanov and Sotiropoulos [30]. The computational mesh consists
of 492,596 vertices and 473,856 hexahedral elements leading to 4,794,264 DOF. The
time step ¢ is taken to be 0,005. The sequences of four snapshots are shown for the
u-velocity contours with streamtraces in Figure 5.5 at timest = 0,1t =T/4,t =T/2

and t = 3T /4 where T is the period (T = 1). At time t =T /4 and t = 3T /4 the
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sphere is stationary and the streamtraces are parallel to the solid surfaces. These
are relatively in good agreement with the Figure 6.b in the study of Gilmanov and
Sotiropoulos [30]. However, the immersed boundary element method in the study of
Gilmanov and Sotiropoulos [30] indicates streamtraces penetrating the solid surface,
which is not physical. The instantaneous drag coefficient C4=F/(1/2pU.>®w D*/4)
is given in Figure 5.6. The drag coefficient is oscillating like sine functions. The
other components of the force coefficient are zero due to the flow symmetry. However,
we can not compare the maximum and minimum values of the drag coefficients since
it is not available in the study of Gilmanov and Sotiropoulos [30]. In addition, we
observe from the pressure contours that when the sphere approaching the right wall,
the pressure is very high in the region close to the front stagnation point and the sphere
will encounter very large drag. After the sphere changes its direction, very low pressure
is generated in this region. Since the sphere is oscillating only in the right half part of

y — z plane, the peak of force coefficients is not symmetrical in one complete cycle.

Figure 5.4: Instantaneous streamlines and pressure contours on the finest mesh from
the study of Gilmanov and Sotiropoulos [30].
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Figure 5.5: The instantaneous u-velocity component contours with streamtraces at
several different time levels over a cycle for a rigid sphere oscillating in a
cubic cavity at Re = 20: t=0 [a], t=T/4 [b], t=T/2 [c] and t=3T/4 [d].
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6. THE NUMERICAL SIMULATION OF FLOW FIELD AROUND THE
FRUITFLY, DROSOPHIILA

The present ALE algorithm is applied to solve the flow field around a pair of
flapping Drosophila wings in hover flight in order to further establish the reliability
and accuracy of the proposed method. The study of the insect flight reveals the
sophisticated mechanism of generation of aerodynamics forces, well beyond values
predicted by conventional wing, which can be considered as a combination of clap
and fling, attached leading edge vortex, wake re-capture and rotational lift. The use of
ALE formulations for the present problem is challenging due to extremely large mesh

deformations which may lead to inadmissible elements.
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9/k

-0.4

-0.6

-0.8

717\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1 12 14 16 18 2 2.2 2.4 2.6 2.8 3 3.2

xlc

Figure 6.1: The geometry of the three-dimensional insect wing.

The three-dimensional wing shape shown in Figure 6.1 and kinematics used in the
present study are the same as those of robotic fly by Dickinson et al. [4]. All the length
variables are non-dimensionalized by the maximum wing chord ¢ and it is taken to be
unity. The distance from the wing tip to the hinge location is 2.5 and the wing cross
section has a constant thickness of 0.032. The wing hinge locations are 1.1 apart from
each other. The wing cross section area is computed to be 1.5578. The kinematics of

the wing motion corresponds to the symmetrical rotation with respect to stroke reversal
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in the experiments [4] and it is approximated as follows:

all) = oco+tcmzcﬁtanh C(t)sinaf(t+n/f))] 6.1)
o(r) — ¢0+m_f’wsm1[0.97sin<2nf(r—o.25/f))] 62)
0(t) = 6o+ Oisin(27Nf1) (6.3)

where C(t) = 1.6+ 1.6 [sin(2 f (¢t + n/f))]z, f is the wing beat frequency and is set
to 1, o(z) is the wing angle of attack (pitch angle) from the inertial frame x — z plane
to the wing cross-section, 1] is the angle of attack phase angle, ¢(¢) is the wing stroke
(azimuthal) angle from the inertial frame x — y plane to the wing axis of rotation and
0(¢) is the deviation (heave) angle from the horizontal x — z plane to the wing axis of
rotation as shown in Figure 6.2. In here, the indices 0 and 1 indicate the mean and
amplitude values, respectively, and N is either 1 or 2. The new coordinates of the wing

surface is computed from:

cos(¢p) O sin(9) cos(0) —sin(6) 0 1 0 0 X=X X0
0 1 0 sin(0) cos(8) 0 0 cos(a) —sin(ar) y=yo | + | yo | (6.4)
—sin(9) 0 cos(¢) 0 0 1 0 sin(a) cos(@) Z—20 20

where (xo,Y0,z0) is the hinge location. The non-dimensional Reynolds number is based
on Re =Uc/v. U is the maximum translational velocity at the wing tip and Vv is the
kinematic viscosity. The calculations are carried out in a domain of [—5,5] x [3,—17] X

[—5,5] as in the experiments [4].
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X

“Wing rotation axis

Figure 6.2: The definition of the different angles for the three-dimensional insect
wing.

The computational mesh is shown in Figure 6.3 and consists of 1,300,358 vertices
and 1,276,666 hexahedral elements leading to 12,837,448 DOF. The mesh is stretched
near the wing surface, in particular close to the leading and trailing edges, and it is
symmetric according to the x —y plane. The mesh is created using the mapping, paving
and sweeping algorithms available within the CUBIT mesh generation environment
[93]. The mesh deformation is achieved by employing the indirect RBF interpolation
as described in Section 3. The control points used for the indirect RBF method are
shown in Figure 6.4 and these points do not exactly lie on the computational domain
boundary but next to the boundary. Because the use of the classical RBF method
with coarsened grid points on the boundary does not guarantee that all the points
on the boundary obey the rigid body motion at machine precision. However, the
present simple modification ensures that all the points between the control points
and the domain boundary obey the rigid body motion and the total volume of the
computation domain is conserved. Therefore, the use of div-stable discretizations of
the incompressible Navier-Stokes with all Dirichlet boundary conditions do not cause

any convergence problem due to the incompatible boundary conditions. Although we
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have tested several radial basis functions such as the linear, cubic and thin plate spline,

etc., the cubic radial basis function has produced the highest mesh quality.
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Figure 6.3: The computational mesh with 1,300,358 vertices and 1,276,666 hexahe-
dral elements (12,837,448 DOF).

The effect of the number of steps used in the indirect RBF approach to the mesh quality
is shown in Figure 6.5 using several different steps at y = O plane. Apparently, the
direct approach is not enough and leads to element with negative volume. Although

there is an increase in the mesh quality with large number of steps, this increase is not
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Figure 6.4: The control points used for RBF based mesh deformation algorithm for

the Drosophila wing.

This will insure mesh

significant after several steps and we employ only five steps.

periodicity and quality for relatively long calculations.

0.005 and and it

The present calculations are started impulsively with a time step At

requires 200 time steps for each wingbeat cycle. The temporal variations in the flow

structure and the aerodynamic loads disappear after several wingbeat cycles and the

numerical results from the ninth period are presented in the following sections. The
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non-linear convective term in the equation (2.16) is treated using two sub-iterations
at each time step in order to guarantee the second-order convergence properties on
moving meshes. The computation wall time for the simulation of each wing kinematics
is less than 2 days on the Karadeniz (Intel Xeon 5550) machine at the National Center

for High Performance Computing using 128 nodes.
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6.1 The Effect of Wing Kinematics

In this section, the numerical calculations with several different wing kinematics are
carried out to simulate the flow field around a pair of flapping Drosophila wings in

hover.

6.1.1 The effect of wing rotation phase angle

The first set of numerical results corresponds to the advanced, symmetrical and delayed
wing rotation with respect to stroke reversal in the experiments of Dickinson et
al. [4]. The wing kinematic parameters are provided in Table 6.1 for the advanced,
symmetric and delayed wing rotations. In order to correctly asses the important wing
kinematic parameters between different wing motions, the maximum translational
velocity computed from the symmetrical wing rotation with respect to stroke reversal
(U = 16.09) is used for the non-dimensional Reynolds number as well as the
non-dimensional aerodynamic force coefficients throughout the thesis study. The
non-dimensional Reynolds number is also fixed to 136. The wing kinematics for
the advanced, symmetric and delayed wing rotations with respect to stroke reversal
is illustrated in Figure 6.6. The main features of the wake structure around a pair of

Drosophila wings are depicted in Figure 6.7.

The time variation of the computed Eulerian coherent structures in the near wake is
shown in Figures 6.8 and 6.9 for the symmetrical wing rotation with respect to stroke
reversal using the A,-criterion [95]. Because, A,-criterion is a more reliable method
for vortex structure identification since it does distinguish the swirling motion of a
vortex from the wing rotation motion. The initial motion of the Drosophila wing
starts with the wing downstroke and it creates not only the leading and trailing edge
vortices as in two-dimension but also causes the formation of tip and root vortices.
The initial acceleration motion of the wing leads to a U type vortex ring around the
edges of the wing. The vortex ring mostly shed away with the wing forward motion.
However, the upper part of the vortex ring with its main component in the spanwise
direction stays attached close to the upper leading edge and creates a low pressure
region. As the wing moves forward, the tip and root vortices are continuously shed
from the wing surface due to the axial flow within the leading edge vortex. Eventually

the rotational wing motion leads to the finite C-type tip and root vortices which create
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Figure 6.6: The wing kinematics for the advanced [a], symmetric [b] and delayed [c]
wing rotations with respect to stroke reversal.

the required downwash needed for lift. Due to local induced velocity, the tip and root

vortices also move downward as they develop behind the wing. The computed wake
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structure is in very good agreement with the wake structures shown in the Figure 4 of
Kweon and Choi [15] even though the authors’ simulation involves only a single wing.
The simulation of the Eulerian coherent structures for the advanced and delayed wing
rotation with respect to stroke reversal are shown in Figures 6.10-6.11 and Figures
6.12-6.13, respectively. In the advanced case, the wing rotation proceeds the stroke
reversal by 8% of the wingbeat cycle. On the other hand, the wing rotation is delayed
by 8% of the stroke reversal for the delayed case. The numerical results indicate that
the timing of the wing rotation has a significant effect on the topology of the near
wake structure. In the case of the advanced wing rotation, more stronger shed vortices
are observed following the stroke reversal. In addition, the tip and root vortices form
earlier and they are relatively longer compared to those of the symmetrical case. On the
other hand, these vortices do not form during the initial phase of the wing translational
motion for the delayed wing rotation case. This significantly reduces the wing force
generation. The magnitude of the total forces and moments acting on the Drosophila
left wing hinge location and the total power requirement for flapping are computed

from the following surface integrals as a function of time

F(i) = fgg(n-a)ds (6.5)
M(1) = fagrx(n-o)ds 6.6)
P(t) = ]ggn-(o-u)ds ©6.7)

where o is the stress tensor including the pressure term, n- ¢ is the traction vector,
r is the distance to the hinge location and dQ,, is the Drosophila left wing surface.
The computed force coefficients (F/0.5pU 25), moment coefficients (M/0.5pU 25¢)
and power coefficient (P/0.5pU3S) are shown in Figure 6.14 for the advanced,
symmetrical and delayed wing rotation with respect to stroke reversal and the total
lift coefficients are compared with the experimental result of Dickinson et al. [4] and
the numerical result of Kweon and Choi [15] in Figure 6.15. Due to the symmetry of
the flow structure, the following total force and moments are zero: ) Fy =0,y M, =0
and Y M, = 0. Although the computed lift coefficient is in a relatively good agreement
with the numerical result of Kweon and Choi [15], where the authors approximated
the wing kinematics using smooth cubic spline functions, there is some difference

with the experimental results of Dickinson et al. [4]. The slight difference with the
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numerical study of Kweon and Choi [15] is believed to be due to the lack of wing-wing
interactions in their simulations. In the present simulations, it is quite interesting that
the amplitude of the forces Fy and F; is comparable to the lift force F,. The transient
peak in the force coefficient at the start and end of each upstroke and downstroke is
explained as rotational lift by Dickinson et al. [4]. The wing rotation approximately
around the leading edge leads to the formation and shedding of the trailing edge vortex.
The formation of the vortex on the upper surface creates a low pressure region on
the wing and leads to positive force generation. However, as the angle of attack
proceeds 90°, the shed vortex is closer to the lower surface of the wing and leads
to negative force generation as seen in Figure 6.14. The wing-wake interactions highly
depend on the initial position of previously created vortices which is very sensitive to
wing kinematics. In addition, the translational motion of the wing causes the fluid to
accelerate towards to the wing, in particular, within the tip vortices. Even though the
wing is decelerated and stopped at t = 0.57, it still experiences relative velocity due
to its wake resulting in non-zero positive drag. The wing may also produce lift for
0° < o < 90° even though the translational velocity is zero. This process also helps to
partially recover the energy dumped into the wake. During the deceleration process,
the bound vortex detaches from the wing surface and the wing rotation motion causes
the formation of a trailing edge vortex which then will interact with the wing during the
preceding stroke reversal as seen in Figure 6.16-b and Figure 6.8-b. The resulting force
due to the wing wake interaction highly depends on the initial position of previously
created vortices which is very sensitive to wing kinematics. As it may be seen from
Figure 6.16-a the lift force on the Drosophila wing surface is mainly produced in the
regions close to the wing tips and the leading edges where the stable leading edge
vortices attach themselves as shown in Figure 6.16-b. The streamline directions are
towards to the lower pressure regions on the wings. These finite C-type vortices create

the downwash required for lift.
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Table 6.1: The Drosophila wing kinematics parameters for the advanced, symmetric
and delayed wing rotations with respect to stroke reversal.

o o ®o ¢1 6o 61 n
Advanced 90° —50° 0° 80° 0° 0° 0.08
Symmetric 90° —50° 0° 80° 0° 0° 0.00
Delayed 90° —50° 0° 80° 0° 0° —0.08

Table 6.2: The time averaged values of force, moment and power coefficients of the
Drosophila wing for the delayed, symmetric and advanced wing rotations
with respect to stroke reversal.

Crx Cry Cr: Cumx Cwmy Cwm; Cp
Advanced 0.0533 0.4404 0.0009 —0.0018 —0.0036 0.7261 0.4745
Symmetric —0.0309 0.3585 0.0012 0.0012 —0.0027 0.5837 0.3323
Delayed —0.0969 0.1806 0.0004 0.0019 —-0.0031 0.3203 0.2730

Root vortex

Figure 6.7: The main features of the wake structure around a pair of Drosophila wings.
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[d]

[e]

Figure 6.8: The instantanecous downstroke wake structures (A,-criterion) around a pair
of Drosophila wings for the symmetrical wing rotation with respect to
stroke reversal at several different time levels: r+ = 0.007T [a], t = 0.10T
[b], t = 0.20T [c],t =0.307 [d], t = 0.40T [e] and r = 0.50T [f].
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[b]

[d]

] [f]
Figure 6.9: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for the symmetrical wing rotation with respect to
stroke reversal at several different time levels: r+ = 0.507 [a], t = 0.60T
[b], t =0.70T [c],t =0.807 [d], t = 0.90T [e] and r = 1.007 [f].
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Figure 6.10: The instantaneous downstroke wake structures (A,-criterion) around a

pair of Drosophila wings for the advanced wing rotation with respect to
stroke reversal at several different time levels: + = 0.00T [a], r = 0.10T

[b], # = 0.20T [c],t =0.307 [d], t = 0.40T [e] and t = 0.50T [f].
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Figure 6.11: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for the advanced wing rotation with respect to stroke
reversal at several different time levels: ¢t = 0.507T [a], t = 0.60T [b],
t =0.70T [c],t =0.80T [d],  =0.90T [e] and t = 1.00T [f].
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[e]
Figure 6.12: The instantaneous downstroke wake structures (A,-criterion) around a

pair of Drosophila wings for the delayed wing rotation with respect to
stroke reversal at several different time levels: + = 0.00T [a], r = 0.10T

[b], # = 0.20T [c],t =0.307 [d], t = 0.40T [e] and t = 0.50T [f].
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e]

Figure 6.13: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for the delayed wing rotation with respect to stroke
reversal at several different time levels: ¢t = 0.507T [a], t = 0.60T [b],
t =0.70T [c],t =0.80T [d],  =0.90T [e] and t = 1.00T [f].
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Figure 6.14: The computed force, moment and power coefficients for the advanced
[a], symmetric [b] and delayed [c] wing rotations with respect to stroke
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Figure 6.15: The computed lift coefficients for the advanced [a], symmetric [b]
and delayed [c] wing rotations with respect to stroke reversal and
the comparison of the lift coefficient with the experimental work of
Dickinson et al. [4] and the numerical result of Kweon and Choi [15].

An algorithm has been developed as mentioned in Chapter 4 in order to compute

FTLE fields for three-dimensional unstructured moving meshes. The FTLE fields are

computed by using 20,264,106 particles. The comparison of Lagrangian and Eulerian

coherent structures for ¢+ = 0.57 is given in Figure 6.17. As it may be seen from

the figure, the tip vortices are apparent in both cases. It can be easily noticed that
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Figure 6.16: The computed instantaneous pressure contours during the downstroke
motion at t = 0.007,¢ =0.107,¢t =0.207,¢t =0.307,¢t =0.40T and ¢t =
0.50T on the upper left wing surface [a] and the instantaneous v-velocity
component isosurfaces with the streamtraces showing the stable leading
edge vortex [b].

the Lagrangian coherent structures lead to a more detailed wake structure. However,

the computation of Lagrangian coherent structures is rather expensive since the FTLE

fields require extremely large number of particle tracking and they are very sensitive

to particle resolution.

[a] [b]

Figure 6.17: The comparison of Lagrangian (backward FTLE) [a] and Eulerian (lower
A, value) [b] structures for t=0.5T.
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In addition to the Eulerian structure, the particle displacements are shown in Figure
6.18 after one complete cycle for the symmetrical, advanced and delayed wing
rotations with respect to stroke reversal. The downwash effects and the tip vortices
are seen clearly. These particle traces will be used to compute the forward FTLE

structures.

Figure 6.18: The side view x —y and z — y of the computed particle locations after
one cycle for the symmetrical [a], advanced [b] and delayed [c] wing
rotations with respect to stroke reversal.
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6.1.2 The effect of angle of attack

The second set of numerical results corresponds to the numerical simulation with some
modifications in the angle of attack. The angle of attack is very effective for producing
lift during the wing translational motion. However, the larger values of the angle of
attack limits the angle during the stroke reversal and reduces the rotational lift during
the stroke reversal [S]. The initial wing kinematics is similar to that of the symmetric
wing rotation with respect to stroke reversal. However, the angle of attack parameters
shown in Table 6.3 are modified in a way that the angles of attacks at mid-stroke are
set to 0°, 20°, 40° and 60°. The angle of attack follows approximately a trapezoidal
wave function, which maintains a constant angle of attack during each half-stroke and
constant rotational velocity during stroke reversal. The time variation of the computed
Eulerian coherent structures is shown for an angle of attack of 0° in Figure 6.19 for
downstroke and 6.20 for upstroke. Due to the zero translational angle of attack, no
formation of the leading edge vortex and the shedding of the tip and root vortices are
observed. However, very strong vortices are shed by the wing rotation around the
spanwise axis, because the wing must flip over by 180° during stroke reversal, making
the angular velocity of the wing particularly large. These shed vortices first get closer
to each other and then move downward and dissipate. During this downward motion, a
significant downwash velocity is induced between the vortices close to the x = 0 plane.
The effect of the large angular velocity may be seen from the force, moment and power
coefficients in Figure 6.29-[a]. As the angle of attack is increased, the peak values of
the force coefficient Fj is significantly reduced due to lower angular velocity. The
time variation of the computed Eulerian coherent structures at angle of attack of 20° is
shown in Figures 6.21 and 6.22. With the increase in the translational angle of attack,
the stable leading edge vortex is formed over the wing surface and leads to the shedding
of the tip and root vortices. Then the translational angle of attack is further increased
to 60° and the computed wake topology is presented in Figures 6.23 and 6.24. The
high value of the angle of attack leads to the formation of the stronger leading edge
vortex and the shedding of the tip and root vortices from the wing. These vortices
interact with the descending vorticity of the previous stroke leading to a relatively
more complex wake structure, which significantly increase the power requirement.

The downwash is observed to be very strong in the region between the tip and root
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vortices rather than the x = 0 plane as seen in Figure 6.25. The present numerical
results are in good agreement with the experimental results of Sane and Dickinson [5].
The authors investigated the effect of the angle of attack with the stoke amplitude and
the maximum lift is obtained around an angle of attack of 50° for a stroke amplitude of
160°. The present calculations indicate that the maximum lift is obtained for an angle

of attack close to 51° with Cy,. = 0.382 as seen in Figure 6.26.

In addition to the above symmetrical wing kinematics, an asymmetry is introduced in
the angle of attack. Because, insects increase the angle of attack to large values on the
upstroke or downstroke to accelerate into forward or backward flight, respectively, and
use the increased drag to initiate acceleration [96]. Therefore, the mean value of the
translational angle of attack is increased by 10° as shown is Table 6.3. The computed
wake topology do not show any significant difference from that of the symmetrical
wing rotation with respect to stroke reversal. However, the tip and root vortices are
stronger during the downstroke due to the higher angle of attack compared to those
of the upstroke. The computed force coefficients, moment coefficients and power
coefficient are shown in Figure 6.29-[e] and the computed forward force for a 10°
increase in mean value of the translational angle of attack is found out to be 24% of the
total lift force. This confirms the earlier experimental claims [96,97] that the paddling
wing motion is very effective to initiate forward and backward acceleration. However,
it should be noted that the present calculations do not include the effect of the co-flow
due to forward motion.

Table 6.3: The effect of the angle of attack parameters to the mean values of force,
moment and power coefficients of the Drosophila wing.

Cryx Cr y Cr z Chix Cum y Cm z Cp

op =90,01 = —90 0.0934 0.0843 0.0001 0.0004 —0.0001 0.1637 0.2147
op =90,0q = —70 0.0512 0.2068 0.0002 0.0012 —0.0005 0.3535 0.2212
0p =90, 01 = —50 (Sym.) —0.0309 0.3585 0.0012 0.0012 —0.0027 0.5837 0.3323
op =90,0q = —30 —0.1313 0.3615 0.0014 0.0013 —0.0026 0.5382 0.4984
o = 80,01 = =50 —0.0307 0.3283 0.0799 —0.0367 —0.2192 0.5382 0.3303
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[e]

Figure 6.19: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for an angle of attack of zero at mid-stroke at
several different time levels: r = 0.007T [a], t = 0.10T [b], t = 0.20T [c],
t =0.307 [d], r = 0.40T [e] and t = 0.50T [f].
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Figure 6.20: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for an angle of attack of zero at mid-stroke at several
different time levels: ¢ = 0.50T [a], t = 0.60T [b], t = 0.70T [c], t =
0.807 [d], t = 0.90T [e] and r = 1.00T [f].
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Figure 6.21: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for an angle of attack of 20° at mid-stroke at
several different time levels: r = 0.007T [a], t = 0.10T [b], t = 0.20T [c],
t =0.307 [d], r = 0.40T [e] and t = 0.50T [f].
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Figure 6.22: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for an angle of attack of 20° at mid-stroke at several
different time levels: ¢ = 0.50T [a], t = 0.60T [b], t = 0.70T [c], t =
0.807 [d], t = 0.90T [e] and r = 1.00T [f].
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Figure 6.23: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for an angle of attack of 60° at mid-stroke at
several different time levels: r = 0.007T [a], t = 0.10T [b], t = 0.20T [c],
t =0.307 [d], r = 0.40T [e] and t = 0.50T [f].
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Figure 6.24: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for an angle of attack of 60° at mid-stroke at several
different time levels: ¢ = 0.50T [a], t = 0.60T [b], t = 0.70T [c], t =
0.807 [d], t = 0.90T [e] and r = 1.00T [f].
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Figure 6.25: The instantaneous downwash velocity around a pair of Drosophila wings
for an angle of attack of 0° [a] and an angle of attack of 60° [b] at

mid-stroke for r = 0.307.
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Figure 6.26: The variation of the lift coefficient with the angle-of-attack for the
Drosophila wing.
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Figure 6.27: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a mean angle of attack of 10° 4+40° at
several different time levels: ¢t = 0.007T [a], t = 0.10T [b], t = 0.20T
[c],t=0.30T [d], r = 0.40T [e] and t = 0.50T [f].
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Figure 6.28:

[f]
The instantaneous upstroke wake structures (A;-criterion) around a pair
of Drosophila wings for a mean angle of attack of 10° +-40° at several

different time levels: t = 0.50T [a], t = 0.60T [b], t = 0.70T [c], t =
0.80T [d], t =0.90T [e] and t = 1.00T [f].
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6.1.3 The effect of stroke angle

The third set of the numerical results corresponds to the numerical simulations that
involve some variations in the stroke angle. The increase in the wing stroke amplitude
leads the prolonged attachment of the leading edge vortex (LEV) over a relatively large
distance and enhance force production [6]. The insects also respond to asymmetric
wing damage with asymmetric changes to wing stroke amplitude sufficient to restore
symmetry in lift production [98]. Therefore, the insects my use variations in the
stroke angle to augment lift or to modulate appropriate force moments during steering
maneuvers. The initial wing kinematics is also based on the symmetric wing rotation
with respect to stroke reversal. However, the amplitude of the stroke angle is reduced
to 70° as seen in Table 6.4. The time variation of the computed Eulerian coherent
structures in the near wake is shown in Figure 6.30 and 6.31 for downstroke and
upstroke, respectively. The overall wake topology is very similar to that of the
symmetrical wing rotation with respect to stroke reversal. However, the translational
velocity is significantly reduced due to the relatively small stroke amplitude which
leads to the formation of the weaker leading edge vortex and the shedding of the tip
and root vortices. The low translational velocity also causes a significant reduction
in the force generation as seen in Figure 6.36-[a]. The computed time averaged force
coefficient Fy in Table 6.4 indicates that a 10° reduction in the stroke amplitude leads
to 27% reduction in the force coefficient Fy. It is worth noting that the rotational
lift created during the stroke reversal is also seemed to be reduced significantly even
though the angular velocity around the the wing spanwise axis (pitch axis) is not
altered. This may suggest that the created rotational lift is also related to the magnitude

of the translational velocity as well.

In the second test case, an asymmetry is introduced in the stoke angle by increasing
the mean stroke angle to 10° while keeping the stroke amplitude at 80° as seen in
Table 6.4. The computed wake topology in Figure 6.32-6.33 does not indicate any
significant difference from that of the symmetrical wing rotation with respect to stroke
reversal. However, the wings are far apart from each other during the start of the
downstroke motion, ¢ = 0, and they are very close and perfectly parallel to each other
at the end of the downstroke motion, t = 0.57. Due to the relatively close distance

between the wings, the upstroke motion leads to a slightly larger force production as
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seen in Figure 6.36-[b]. Although the asymmetric wing kinematics leads to a positive
forward force, the force is relatively very weak. In order increase the forward force, the
wing kinematics is modified in order to utilize the large sudden forces created during
the stroke reversal. Therefore, one of the wing stroke reversal is arranged to happen
when the wing is parallel to the x —y plane and the second stroke reversal happens
when the wing are parallel to the x — z plane. Therefore, the amplitude and the mean
value of the stroke angles are set to 45° as seen in Table 6.4. The time variation of
the computed Eulerian coherent structures is presented in Figures 6.34 and 6.35 for
downstroke and upstroke, respectively. The relatively small stroke amplitude, which
leads to the formation of the weaker leading edge vortex and the shedding of the tip
and root vortices, leads to a significant reduction in force generation as seen in Figure
6.36-[c]. The computed time averaged value of the forward force is approximately
9% the total lift force. This ratio is lower than that of the asymmetric wing paddling
motion in the previous section. However, the further increase in the stroke amplitude
may increase the forward force due to the effects of the clap-and-fling motion. The
insect may also afford to increase its wing beat frequency due to the lower power
requirement. In addition, the current asymmetric wing kinematics leads to a large
nose-up pitching moment M, on the insect body since the wing is moving only in the

positive z—axis part.
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Figure 6.30: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a stroke amplitude angle of 70° at several
different time levels: ¢t = 0.007T [a], t = 0.10T [b], r = 0.20T [c], t =
0.307 [d], t = 0.40T [e] and ¢t = 0.50T [f].
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Figure 6.31: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for a stroke amplitude angle of 70° at several
different time levels: t = 0.507 [a], t = 0.60T [b], t = 0.70T [c],
t =0.807 [d], t =0.90T [e] and r = 1.00T [f].
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Figure 6.32: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a mean stroke angle of 10° with ¢; = 80° at
several different time levels: r = 0.007T [a], t = 0.10T [b], t = 0.20T [c],
t =0.307 [d], r = 0.40T [e] and t = 0.50T [f].
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Figure 6.33: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for a mean stroke angle of 10° with ¢; = 80° at
several different time levels: r = 0.507 [a], t = 0.60T [b], t = 0.70T |[c],
t =0.807 [d], t = 0.90T [e] and ¢ = 1.00T [f].
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Figure 6.34: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a mean stroke angle of 45° and a stroke
amplitude angle of 45° at several different time levels: ¢ = 0.007 [a],
t =0.107 [b], t = 0.20T [c],t =0.307 [d], t = 0.40T [e] and t = 0.50T
[f].
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[d]

[e]

[f]

Figure 6.35: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for a mean stroke angle of 45° and a stroke
amplitude angle of 45° at several different time levels: ¢ = 0.50T [a],
t =0.607 [b], t =0.70T [c],t =0.807 [d], # = 0.90T [e] and t = 1.00T
[£].
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Figure 6.36: The computed force, moment and power coefficients for several different
prescribed stroke kinematics: ¢g = 0°, ¢; = 70° [a], ¢9 = 0°, ¢; = 80°
[b], ¢o = 10°, ¢; = 80° [c] and ¢ = 45°, ¢; =45° [d].

Table 6.4: The effect of the stroke angle parameters to the mean values of force,
moment and power coefficients of the Drosophila wing.

CF X

CFy CFZ

CMx

CM Z CP

¢o =0°,¢; = 80° (Sym.) —0.0309 0.3585 0.0012 0.0012 —0.0027 0.5837 0.3323

0o =0°,¢; =70°
¢o =10°,¢; = 80°
@ = 45°, ¢ =45°

—0.0614 0.2631 0.0008 0.0009 —0.0022 0.4607 0.2274
—0.0317 0.3573 0.0026 —0.0999 —0.0164 0.5716 0.3323
—0.0000 0.1054 0.0098 —0.1523 —0.0132 0.1481 0.0791
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6.1.4 The effect of heave angle

The final set of the numerical results corresponds to the numerical simulations with
changes in the heave angle. The wings of insects do not always beat back and forth
within a flat stroke plane, but may exhibit large and complex variations. The heave
motion also influences force production by altering the effective angle of attack [5].
The upward heave motion of the wing results in a decrease in the effective angle of
attack, meanwhile the downward motion causes an increase in the effective angle of
attack. In addition, the heave motion may be a very effective tool for controlling the

wing-wake interactions.

[c]
Figure 6.37: The wing kinematics for a constant heave angle of 10° [a], figure-of-8

pattern [b], figure-of-U pattern [c] and figure-of-O pattern [d].

The Drosophila wing heave motions along different paths are shown in Figure 6.37.
The initial wing kinematics corresponds to the symmetrical wing rotations with respect
to stroke reversal with a constant heave angle of 10° from the horizontal x — z plane
as seen in Table 6.5. The time variation of the computed Eulerian coherent structures
in the near wake is very similar to that of the symmetrical wing rotations as seen in
Figures 6.38 and 6.39. However, the descending vorticity of the previous stroke tends
to drift sideways. The root vortices are also found to be slightly stronger and lead to
an increase in the force production during the translational motion as seen in Figure

6.48-[a]. Because, the wing root corner location moves further away with the wing
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heave motion and experience relatively larger relative velocity. The increase in the
force production is also accompanied with a slight increase in the power coefficient.
Then the wing kinematics is modified for the figure-of-eight pattern and its kinematics
parameters are provided in Table 6.5. The downstroke motion of the figure-of-eight
pattern begins with an upward motion of the wing from the horizontal stroke plane.
The small relative angle of attack due to upward motion delays the formation of the
leading edge vortex over the wing surface and the shedding of the tip and root vortices
as seen in Figures 6.40 and 6.41. This also reduces the force production following
the stroke reversal as seen in Figure 6.48-[b]. However, the wing moves downward
during the most of its translational motion. The wing downward motion towards
the descending vorticity of the previous stroke increases the strength of the leading
edge vortex and causes the interaction of the tip and root vortices with the preceding
vortices leading to a relatively more complex wake structure. The downward part of the
wing motion significantly enhances the force generation. In addition, the calculations
for the negative figure-of-eight pattern is also carried out. The time variation of the
computed near wake structure is presented in Figure 6.42 for downstroke and 6.43 for
upstroke. Due to the upward motion of the wing during the most of its translational
motion, the strength of the leading edge vortex, as well as the tip and root vortices,
is significantly reduced and the tip and root vortices do not strongly interact with the
preceding vortices. However, the initial force generation following to stroke reversal is
relatively larger as seen in Figure 6.48-[c]. The figure-of-U pattern is also performed
around the pair of flapping Drosophila wings in hover flight. The wing kinematics of
the figure-of-U pattern is given in Table 6.5 and it also starts with downward motion.
The downward motion of the wing towards the descending vorticity leads to strong
interactions of the shed tip and root vortices with the preceding vortices leading to a
relatively more complex wake structure as shown in Figures 6.44 and 6.45. The initial
force generation of the figure-of-U pattern is also relatively large due to the initial
downward wing motion as seen in Figure 6.48-[d]. However, the force production is
significantly reduced with the wing upward movement just after the mid-stroke. The
final heave motion corresponds to the figure-of-O pattern which is not a symmetric
wing kinematics leading to a positive forward force F,. The wing motion starts with
the upward motion which leads to delay the shedding of the tip and root vortices as seen

in Figure 6.46 and Figure 6.47 for downstroke and upstroke, respectively. However, the
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Table 6.5: The effect of several different heave motions to the mean values of force,
moment and power coefficients of the Drosophila wing.

9(1‘) N Pattern Cry CFy Cr; Cux CMy Cuy; Cp

0° Symm. —0.0309 0.3585 0.0012 0.0012 —0.0027 0.5837 0.3323
10° Const. —0.0692 0.3914 0.0015 0.0025 —0.0031 0.6444 0.3480
10°sin(2nNft) 2 Fig-of-8 0.0213 0.3721 0.0026 0.0000 —0.0051 0.7211 0.3412
—10°sin(2neNft) 2 Fig-of-(-8) —0.0475 0.3084 0.0014 0.0017 —0.0037 0.3675 0.3296
10°cos(2nN ft) 2 Fig-of-U —0.0803 0.3552 0.0014 0.0018 —0.0049 0.5320 0.3436
10°sin(2xNft) 1 Fig-of-O  —0.0092 0.3437 0.0225 —0.1419 —0.0866 0.5625 0.3237

wing starts to move upward just after the mid-stroke which significantly improves the
force production. Therefore, the wing force production is larger during the downstroke
compared to that of the upstroke. The large force generation toward the end of the
downstroke motion also leads to large drag values which creates the forward F; force.
The computed forward force is approximately 6% of the total lift force Fy. In addition,
the asymmetric wing kinematics leads to a large nose-up pitching moment M, on the
insect body. The tip and root vortices created during the downstroke and upstroke

motions are relatively far away from each other and they do not interact strongly.

The present numerical calculations indicate that the constant heave angle deviation
and the figure-of-eight pattern deviation have a more profound influence on the
magnitude of force production. The other deviation patterns do not lead to any
increase in the mean lift production. The present numerical results are in relatively
good agreement with the experimental results of Sane and Dickinson [5] where the
authors investigated the figure-of-eight pattern and figure-of-O pattern (oval motion).
The authors presented similar force productions over time and noted a significant
decrease in the force generation during the wing translational motion for the minus
figure-of-eight pattern even though the authors employed an advanced wing rotation
with respect to stroke reversal as seen in Figure 8 of [S]. The measured mean lift
coefficients in Figure 9 of [5] do not indicate any lift enhancement for both the
(positive/negative) figure-of-eight pattern and figure-of-O pattern. However, the lift
enhancement for the positive figure-of-eight pattern is predicted up to 68; = 20° in their
quasi-steady model. Lehmann and Pick [99] also tested several different kinematic
patterns identical in stroke amplitude, stroke frequency and angle-of-attack but varied
in heaving motion. The authors employed an angle-of-attack of 50° at half-stroke, a

stroke amplitude of 160° and a heave angle of 19° with a symmetrical wing rotation
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with respect to stroke reversal. The measured total vertical force for the figure-of-eight
pattern in Table 1 of [99] indicates only very mild lift enhancement for a pairs of
flapping wing. However, the augmentation in the vertical force is relatively larger
for a single flapping wing (6%). More recently, Bos et al. [100] have performed
three dimensional numerical simulations in order to investigate effects of different
wing kinematics including the figure-of-O, figure-of-U and figure-of-eight patterns.
However, the wing planform geometry is modelled as an ellipsoid and the numerical
results did not indicate any lift enhancement. As far as authors’ knowledge goes, the

constant heave angle with a non-zero mean value is not considered in the earlier works.
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Figure 6.38: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a constant heave angle of 10° at several
different time levels: ¢ = 0.00T [a], t = 0.10T [b], t = 0.207T [c], t =
0.307 [d], t = 0.40T [e] and t = 0.50T [f].
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Figure 6.39: The instantaneous upstroke wake structures (A,-criterion) around a pair

of Drosophila wings for a constant heave angle of 10° at several different
time levels: t = 0.507 [a], r = 0.60T [b], t = 0.70T [c], t = 0.80T [d],
t =0.90T [e] and t = 1.00T [f].
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Figure 6.40: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a figure-of-8 pattern at several different time
levels: + = 0.007T [a], t = 0.10T [b], t = 0.207T [c], t = 0.30T [d], t =
0.40T [e] and r = 0.50T [f].
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Figure 6.41: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for a figure-of-8 pattern at several different time
levels: t = 0.50T [a], t = 0.60T [b], t = 0.70T [c], t = 0.80T [d], t =
0.90T [e] and t = 1.00T [f].
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Figure 6.42:

The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a minus figure-of-8 pattern at several
different time levels: ¢ = 0.007 [a], t = 0.10T [b], t = 0.20T [c],
t =0.30T [d], t = 0.40T [e] and t = 0.50T [f].
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Figure 6.43: The instantaneous upstroke wake structures (A,-criterion) around a pair

of Drosophila wings for a minus figure-of-8 pattern at several different

time levels: t = 0.507 [a], r = 0.60T [b], t = 0.70T [c], t = 0.80T [d],
t =0.90T [e] and ¢ = 1.00T [f].
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Figure 6.44: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a figure-of-U pattern at several different
time levels: + = 0.007 [a], t = 0.107T [b], t = 0.207T [c], t = 0.307T [d],

t =0.40T [e] and t = 0.507 [f].
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Figure 6.45:

The instantaneous upstroke wake structures (A;-criterion) around a pair
of Drosophila wings for a figure-of-U pattern at several different time
levels: t = 0.50T [a], t = 0.60T [b], t = 0.70T [c], t = 0.80T [d], t =
0.90T [e] and t = 1.00T [f].
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Figure 6.46: The instantaneous downstroke wake structures (A,-criterion) around a
pair of Drosophila wings for a figure-of-O pattern at several different
time levels: + = 0.007 [a], t = 0.107T [b], t = 0.207T [c], t = 0.307T [d],
t =0.40T [e] and t = 0.50T [f].
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Figure 6.47: The instantaneous upstroke wake structures (A,-criterion) around a pair
of Drosophila wings for a figure-of-O pattern at several different time
levels: t = 0.50T [a], t = 0.60T [b], t = 0.70T [c], t = 0.80T [d], t =
0.90T [e] and t = 1.00T [f].
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7. CONCLUSIONS AND FUTURE WORK

A novel ALE approach based on the side-centered unstructured finite volume method
has been presented for large-scale simulation of moving boundary problems in a
fully coupled form. The numerical formulation uses the staggered arrangement of
the primitive variables in order to avoid odd-even pressure decoupling or spurious
pressure modes on unstructured meshes. The most appealing feature of the present
approach is that it leads to very robust numerical algorithm when it is combined
with multigrid methods [68] similar to that of the classical MAC method [49]. In
the current discretization, the continuity equation is satisfied within each hexahedral
elements at machine precision and the summation of the discrete equations can be
exactly reduced to the domain boundary, which is important for the global mass
conservation. In addition, a special attention is given to construct a second-order
ALE algorithm obeying the discrete geometric conservation law (DGCL). A mesh
deformation algorithm based on the indirect radial basis function method has been
proposed in order to handle large mesh deformations caused by translations and
rotations. The resulting system of linear algebraic equations are solved in a fully
coupled manner using a matrix factorization similar to that of the projection method
[54] and the BoomerAMG, a parallel algebraic-multigrid preconditioner, is employed
for the scaled discrete Laplacian provided by the HYPRE library [55] that is called
trough the PETSc library [56] interface. The present numerical algorithm is validated
for the classical benchmark problems in the literature. Then, it is applied to the
numerical simulation of flow field around a pair of flapping Drosophila wings in hover
flight. The numerical calculations with several different wing kinematics are carried
out to simulate the flow field around a pair of flapping Drosophila wings in hover using
the unstructured finite volume method based on an Arbitrary Lagrangian-Eulerian
(ALE) formulation. The simulations are used to asses the important wing kinematic
parameters for the wake topology and as well as their correlations with the force
production. The angle of attack is proven to be very effective for producing lift during

the wing translational motion. However, the larger values of the angle of attack limits
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the angle during the stroke reversal and reduces the rotational lift during the stroke
reversal. The maximum lift is obtained at an angle of attack of 51° for a stroke
amplitude of 160° which is remarkably in good agreement with the value of Sane
and Dickinson [5]. The timing of the wing rotation is also shown to have a significant
effect on the topology of the near wake structure as well as the force production. In
addition, the numerical results confirm that the increase in the wing stroke amplitude
leads the prolonged attachment of the leading edge vortex (LEV) over a relatively
large distance and increases in force production. The calculations with the the constant
heave angle and figure-of-eight pattern are found to have a more profound influence
on the magnitude of force production. These numerical results are in relatively good
agreement with the earlier experimental observations, in particular with the work of
Sane and Dickinson [5] and Lehmann and Pick [99]. The paddling wing motion is also
shown to be very effective to initiate forward and backward acceleration as claimed
in [96,97]. The asymmetric stroke angle variations and the figure-of-O pattern may
also be used for the enhancement of the forward force generation. The numerical
methods have been applied to investigate the Lagrangian coherent structures around
a pair of flapping Drosophila wing in hover. A particle tracking algorithm has been
developed on moving unstructured meshes and it has been used to compute FTLE fields
in order to investigate the Lagrangian coherent structures. The present fully-coupled
ALE algorithm is shown to be sufficiently robust to deal with large mesh deformations
seen in flapping wings and reveals highly detailed near wake topology which is very
useful to study physics in biological flights and can also provide an effective tool for

designing bio-inspired MAVs.

As a future work, the following items could be investigated in detail:

The effect of the insect body could be investigated.

The fluid-structure interaction (FSI) could be investigated.

The present ALE algorithm could be coupled with the equations of motion in order

to simulate free flight.

The side wind effect on the stability of flight could be analyzed.

The effect for the forward flight could be investigated.
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e The effect of different wing kinematics for each wing could be investigated for

manoeuvre flight.

e The calculations could be used for optimizing a Micromechanical Flying Insect

(MFI).

7.1 The Novelties and Significance of the Thesis

The novelties of this thesis from the previous studies are summarized as follows:

e This is the first ALE algorithm of side centered finite volume method where the
velocity vector components are defined at the mid-point of each cell face, while the
pressure term is defined at element centroids. The continuity equation is satisfied
within each element at machine precision and the summation of the continuity
equations can be exactly reduced to the domain boundary, which is important for

the global mass conservation.

e The current indirect RBF mesh deformation algorithm is sufficiently robust to deal
with large mesh deformations seen in flapping wings. The control points for the
RBF algorithm are taken inside the computational domain rather than on the domain

boundary surface.

e The time variation of the Eulerian coherent structures in the near wake is shown
for different wing kinematics around a pair of flapping Drosophila wings in hover
flight. The effect of wing kinematics to three-dimensional vortex dynamics and
wake topology in the near wake as well as its correlations with the force generation
is investigated using the unstructured finite volume algorithm based on the ALE

formulation.

e The wing kinematics is investigated in order to asses the important wing kinematic

parameters determining forward and backward flights.

e This is the first study of finite-time Lyapunov Exponents (FTLE) structures around

a pair of Drosophila wings in hover.
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