952 research outputs found

    Safety-Critical Adaptive Control with Nonlinear Reference Model Systems

    Full text link
    In this paper, a model reference adaptive control architecture is proposed for uncertain nonlinear systems to achieve prescribed performance guarantees. Specifically, a general nonlinear reference model system is considered that captures an ideal and safe system behavior. An adaptive control architecture is then proposed to suppress the effects of system uncertainties without any prior knowledge of their magnitude and rate upper bounds. More importantly, the proposed control architecture enforces the system state trajectories to evolve within a user-specified prescribed distance from the reference system trajectories, satisfying the safety constraints. This eliminates the ad-hoc tuning process for the adaptation rate that is conventionally required in model reference adaptive control to ensure safety. The efficacy of the proposed control architecture is also demonstrated through an illustrative numerical example.Comment: IEEE American Control Conference (ACC), Denver, Colorado, July 202

    Active-passive dynamic consensus filters: Theory and applications

    Get PDF
    ”This dissertation presents a new method for distributively sensing dynamic environments utilizing integral action based system theoretic distributed information fusion methods. Specifically, the main contribution is a new class of dynamic consensus filters, termed active-passive dynamic consensus filters, in which agents are considered to be active, if they are able to sense an exogenous quantity of interest and are considered to be passive, otherwise, where the objective is to drive the states of all agents to the convex hull spanned by the exogenous inputs sensed by active agents. Additionally, we generalize these results to allow agents to locally set their value-of-information, characterizing an agents ability to sense a local quantity of interest, which may change with respect to time. The presented active-passive dynamic consensus filters utilize equations of motion in order to diffuse information across the network, requiring continuous information exchange and requiring agents to exchange their measurement and integral action states. Additionally, agents are assumed to be modeled as having single integrator dynamics. Motivated from this standpoint, we utilize the ideas and results from event-triggering control theory to develop a network of agents which only share their measurement state information as required based on errors exceeding a user-defined threshold. We also develop a static output-feedback controller which drives the outputs of a network of agents with general linear time-invariant dynamics to the average of a set of applied exogenous inputs. Finally, we also present a system state emulator based adaptive controller to guarantee that agents will reach a consensus even in the presence of input disturbances. For each proposed active-passive dynamic consensus filter, a rigorous analysis of the closed-loop system dynamics is performed to demonstrate stability. Finally, numerical examples and experimental studies are included to demonstrate the efficacy of the proposed information fusion filters”--Abstract, page iv

    Meta-learning computational intelligence architectures

    Get PDF
    In computational intelligence, the term \u27memetic algorithm\u27 has come to be associated with the algorithmic pairing of a global search method with a local search method. In a sociological context, a \u27meme\u27 has been loosely defined as a unit of cultural information, the social analog of genes for individuals. Both of these definitions are inadequate, as \u27memetic algorithm\u27 is too specific, and ultimately a misnomer, as much as a \u27meme\u27 is defined too generally to be of scientific use. In this dissertation the notion of memes and meta-learning is extended from a computational viewpoint and the purpose, definitions, design guidelines and architecture for effective meta-learning are explored. The background and structure of meta-learning architectures is discussed, incorporating viewpoints from psychology, sociology, computational intelligence, and engineering. The benefits and limitations of meme-based learning are demonstrated through two experimental case studies -- Meta-Learning Genetic Programming and Meta- Learning Traveling Salesman Problem Optimization. Additionally, the development and properties of several new algorithms are detailed, inspired by the previous case-studies. With applications ranging from cognitive science to machine learning, meta-learning has the potential to provide much-needed stimulation to the field of computational intelligence by providing a framework for higher order learning --Abstract, page iii

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Assuring Safety under Uncertainty in Learning-Based Control Systems

    Get PDF
    Learning-based controllers have recently shown impressive results for different robotic tasks in well-defined environments, successfully solving a Rubiks cube and sorting objects in a bin. These advancements promise to enable a host of new capabilities for complex robotic systems. However, these learning-based controllers cannot yet be deployed in highly uncertain environments due to significant issues relating to learning reliability, robustness, and safety. To overcome these issues, this thesis proposes new methods for integrating model information (e.g. model-based control priors) into the reinforcement learning framework, which is crucial to ensuring reliability and safety. I show, both empirically and theoretically, that this model information greatly reduces variance in learning and can effectively constrain the policy search space, thus enabling significant improvements in sample complexity for the underlying RL algorithms. Furthermore, by leveraging control barrier functions and Gaussian process uncertainty models, I show how system safety can be maintained under uncertainty without interfering with the learning process (e.g. distorting the policy gradients). The last part of the thesis will discuss fundamental limitations that arise when utilizing machine learning to derive safety guarantees. In particular, I show that widely used uncertainty models can be highly inaccurate when predicting rare events, and examine the implications of this for safe learning. To overcome some of these limitations, a novel framework is developed based on assume-guarantee contracts in order to ensure safety in multi-agent human environments. The proposed approach utilizes contracts to impose loose responsibilities on agents in the environment, which are learned from data. Imposing these responsibilities on agents, rather than treating their uncertainty as a purely random process, allows us to achieve both safety and efficiency in interactions.</p

    Generalized asset integrity games

    Get PDF
    Generalized assets represent a class of multi-scale adaptive state-transition systems with domain-oblivious performance criteria. The governance of such assets must proceed without exact specifications, objectives, or constraints. Decision making must rapidly scale in the presence of uncertainty, complexity, and intelligent adversaries. This thesis formulates an architecture for generalized asset planning. Assets are modelled as dynamical graph structures which admit topological performance indicators, such as dependability, resilience, and efficiency. These metrics are used to construct robust model configurations. A normalized compression distance (NCD) is computed between a given active/live asset model and a reference configuration to produce an integrity score. The utility derived from the asset is monotonically proportional to this integrity score, which represents the proximity to ideal conditions. The present work considers the situation between an asset manager and an intelligent adversary, who act within a stochastic environment to control the integrity state of the asset. A generalized asset integrity game engine (GAIGE) is developed, which implements anytime algorithms to solve a stochastically perturbed two-player zero-sum game. The resulting planning strategies seek to stabilize deviations from minimax trajectories of the integrity score. Results demonstrate the performance and scalability of the GAIGE. This approach represents a first-step towards domain-oblivious architectures for complex asset governance and anytime planning

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop
    • …
    corecore