100 research outputs found

    A new class of hyper-bent functions and Kloosterman sums

    Get PDF
    This paper is devoted to the characterization of hyper-bent functions. Several classes of hyper-bent functions have been studied, such as Charpin and Gong\u27s rRTr1n(arxr(2m1))\sum\limits_{r\in R}\mathrm{Tr}_{1}^{n} (a_{r}x^{r(2^m-1)}) and Mesnager\u27s rRTr1n(arxr(2m1))+Tr12(bx2n13)\sum\limits_{r\in R}\mathrm{Tr}_{1}^{n}(a_{r}x^{r(2^m-1)}) +\mathrm{Tr}_{1}^{2}(bx^{\frac{2^n-1}{3}}), where RR is a set of representations of the cyclotomic cosets modulo 2m+12^m+1 of full size nn and arF2ma_{r}\in \mathbb{F}_{2^m}. In this paper, we generalize their results and consider a class of Boolean functions of the form rRi=02Tr1n(ar,ixr(2m1)+2n13i)+Tr12(bx2n13)\sum_{r\in R}\sum_{i=0}^{2}Tr^n_1(a_{r,i}x^{r(2^m-1)+\frac{2^n-1}{3}i}) +Tr^2_1(bx^{\frac{2^n-1}{3}}), where n=2mn=2m, mm is odd, bF4b\in\mathbb{F}_4, and ar,iF2na_{r,i}\in \mathbb{F}_{2^n}. With the restriction of ar,iF2ma_{r,i}\in \mathbb{F}_{2^m}, we present the characterization of hyper-bentness of these functions with character sums. Further, we reformulate this characterization in terms of the number of points on hyper-elliptic curves. For some special cases, with the help of Kloosterman sums and cubic sums, we determine the characterization for some hyper-bent functions including functions with four, six and ten traces terms. Evaluations of Kloosterman sums at three general points are used in the characterization. Actually, our results can generalized to the general case: ar,iF2na_{r,i}\in \mathbb{F}_{2^n}. And we explain this for characterizing binomial, trinomial and quadrinomial hyper-bent functions

    On the Primary Constructions of Vectorial Boolean Bent Functions

    Get PDF
    Vectorial Boolean bent functions, which possess the maximal nonlinearity and the minimum differential uniformity, contribute to optimum resistance against linear cryptanalysis and differential cryptanalysis for the cryptographic algorithms that adopt them as nonlinear components. This paper is devoted to the new primary constructions of vectorial Boolean bent functions, including four types: vectorial monomial bent functions, vectorial Boolean bent functions with multiple trace terms, H\mathcal{H} vectorial functions and H\mathcal{H}-like vectorial functions. For vectorial monomial bent functions, this paper answers one open problem proposed by E. Pasalic et al. and characterizes the vectorial monomial bent functions corresponding to the five known classes of bent exponents. For the vectorial Boolean bent functions with multiple trace terms, this paper answers one open problem proposed by A. Muratović-Ribić et al., presents six new infinite classes of explicit constructions and shows the nonexistence of the vectorial Boolean bent functions from F2n\mathbb{F}_{2^{n}} to F2k\mathbb{F}_{2^{k}} of the form i=12k2Trkn(ax(2i1)(2k1))\sum_{i=1}^{2^{k-2}}Tr^{n}_{k}(ax^{(2i-1)(2^{k}-1)}) with n=2kn=2k and aF2ka\in\mathbb{F}_{2^{k}}^{*}. Moreover, H\mathcal{H} vectorial functions are further characterized. In addition, a new infinite class of vectorial Boolean bent function named as H\mathcal{H}-like vectorial functions are derived, which includes H\mathcal{H} vectorial functions as a subclass

    Part I:

    Get PDF

    Quantum algorithms for searching, resampling, and hidden shift problems

    Get PDF
    This thesis is on quantum algorithms. It has three main themes: (1) quantum walk based search algorithms, (2) quantum rejection sampling, and (3) the Boolean function hidden shift problem. The first two parts deal with generic techniques for constructing quantum algorithms, and the last part is on quantum algorithms for a specific algebraic problem. In the first part of this thesis we show how certain types of random walk search algorithms can be transformed into quantum algorithms that search quadratically faster. More formally, given a random walk on a graph with an unknown set of marked vertices, we construct a quantum walk that finds a marked vertex in a number of steps that is quadratically smaller than the hitting time of the random walk. The main idea of our approach is to interpolate the random walk from one that does not stop when a marked vertex is found to one that stops. The quantum equivalent of this procedure drives the initial superposition over all vertices to a superposition over marked vertices. We present an adiabatic as well as a circuit version of our algorithm, and apply it to the spatial search problem on the 2D grid. In the second part we study a quantum version of the problem of resampling one probability distribution to another. More formally, given query access to a black box that produces a coherent superposition of unknown quantum states with given amplitudes, the problem is to prepare a coherent superposition of the same states with different specified amplitudes. Our main result is a tight characterization of the number of queries needed for this transformation. By utilizing the symmetries of the problem, we prove a lower bound using a hybrid argument and semidefinite programming. For the matching upper bound we construct a quantum algorithm that generalizes the rejection sampling method first formalized by von~Neumann in~1951. We describe quantum algorithms for the linear equations problem and quantum Metropolis sampling as applications of quantum rejection sampling. In the third part we consider a hidden shift problem for Boolean functions: given oracle access to f(x+s), where f(x) is a known Boolean function, determine the hidden shift s. We construct quantum algorithms for this problem using the "pretty good measurement" and quantum rejection sampling. Both algorithms use the Fourier transform and their complexity can be expressed in terms of the Fourier spectrum of f (in particular, in the second case it relates to "water-filling" of the spectrum). We also construct algorithms for variations of this problem where the task is to verify a given shift or extract only a single bit of information about it.1 yea

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Subject index volumes 1–92

    Get PDF
    corecore