7 research outputs found

    A general setting for symmetric distributions and their relationship to general distributions

    Get PDF
    A standard method of obtaining non-symmetrical distributions is that of modulating symmetrical distributions by multiplying the densities by a perturbation factor. This has been considered mainly for central symmetry of a Euclidean space in the origin. This paper enlarges the concept of modulation to the general setting of symmetry under the action of a compact topological group on the sample space. The main structural result relates the density of an arbitrary distribution to the density of the corresponding symmetrised distribution. Some general methods for constructing modulating functions are considered. The effect that transformations of the sample space have on symmetry of distributions is investigated. The results are illustrated by general examples, many of them in the setting of directional statistics.PostprintPeer reviewe

    Skew-rotationally-symmetric distributions and related efficient inferential procedures

    Get PDF
    peer reviewedMost commonly used distributions on the unit hypersphere Sk−1={v∈Rk:v⊤v=1}, k≥2, assume that the data are rotationally symmetric about some direction θ∈Sk−1. However, there is empirical evidence that this assumption often fails to describe reality. We study in this paper a new class of skew-rotationally-symmetric distributions on Sk−1 that enjoy numerous good properties. We discuss the Fisher information structure of the model and derive efficient inferential procedures. In particular, we obtain the first semi-parametric test for rotational symmetry about a known direction. We also propose a second test for rotational symmetry, obtained through the definition of a new measure of skewness on the hypersphere. We investigate the finite-sample behavior of the new tests through a Monte Carlo simulation study. We conclude the paper with a discussion about some intriguing open questions related to our new models

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Sine-skewed toroidal distributions and their application in protein bioinformatics

    Get PDF
    In the bioinformatics field, there has been a growing interest in modelling dihedral angles of amino acids by viewing them as data on the torus. This has motivated, over the past years, new proposals of distributions on the bivariate torus. The main drawback of most of these models is that the related densities are (pointwise) symmetric, despite the fact that the data usually present asymmetric patterns. This motivates the need to find a new way of constructing asymmetric toroidal distributions starting from a symmetric distribution. We tackle this problem in this paper by introducing the sine-skewed toroidal distributions. The general properties of the new models are derived. Based on the initial symmetric model, explicit expressions for the shape parameters are obtained, a simple algorithm for generating random numbers is provided, and asymptotic results for the maximum likelihood estimators are established. An important feature of our construction is that no normalizing constant needs to be calculated, leading to more flexible distributions without increasing the complexity of the models. The benefit of employing these new sine-skewed distributions is shown on the basis of protein data, where, in general, the new models outperform their symmetric antecedents

    A general setting for symmetric distributions and their relationship to general distributions

    No full text
    A standard method of obtaining non-symmetrical distributions is that of modulating symmetrical distributions by multiplying the densities by a perturbation factor. This has been considered mainly for central symmetry of a Euclidean space in the origin. This paper enlarges the concept of modulation to the general setting of symmetry under the action of a compact topological group on the sample space. The main structural result relates the density of an arbitrary distribution to the density of the corresponding symmetrised distribution. Some general methods for constructing modulating functions are considered. The effect that transformations of the sample space have on symmetry of distributions is investigated. The results are illustrated by general examples, many of them in the setting of directional statistics
    corecore