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Abstract

A standard method of obtaining non-symmetrical distributions is that of
modulating symmetrical distributions by multiplying the densities by a per-
turbation factor. This has been considered mainly for central symmetry of a
Euclidean space in the origin. This paper enlarges the concept of modulation
to the general setting of symmetry under the action of a compact topological
group on the sample space. The main structural result relates the density
of an arbitrary distribution to the density of the corresponding symmetrised
distribution. Some general methods for constructing modulating functions
are considered. The effect that transformations of the sample space have
on symmetry of distributions is investigated. The results are illustrated by
general examples, many of them in the setting of directional statistics.

Keywords: Directional statistics, Skew-symmetric distribution,
Symmetry-modulated distribution, Transformation
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1. Introduction

Because many appealing distributions are symmetrical but many data sets
are not, intense work has been dedicated to the study of families of tractable
distributions obtained by modifying standard symmetrical distributions such
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as normal distributions. A major impetus in this development was [4], which
introduced families of univariate distributions of the form

f(x;λ) = 2G0(λx) f0(x), x ∈ R, (1)

where f0 is a given density that is symmetrical about 0, G0 is a distribution
function having density that is symmetrical about 0 and λ is a real para-
meter. Hence a ‘baseline’ symmetric density f0 is modulated, i.e., multiplied
by a perturbation factor G0(λx), to give an asymmetric distribution. If λ = 0
then f = f0; otherwise f is asymmetric to the left or to the right, depend-
ing on the sign of λ. The most popular example of this construction is the
skew-normal distribution, obtained when f0 and G0 are the standard normal
density and its distribution function, respectively. This initial construction
has subsequently been extended considerably, leading to an extensive litera-
ture. A comprehensive discussion is provided by [7].

A substantially more general version of (1), proposed independently in
[25] and in [8] in slightly different forms, starts from a multivariate density f0,
satisfying the condition of central symmetry f0(x) = f0(−x) for all x ∈ Rd.
Modulation of this baseline density to

f(x) = 2G(x) f0(x), x ∈ Rd, (2)

is achieved via the perturbation factor G(x) which satisfies

G(x) ≥ 0, G(x) +G(−x) = 1. (3)

A convenient mechanism for building a suitable such function G is to set
G(x) = G0{w(x)}, where w is an odd real-valued function, i.e., w(−x) =
−w(x). For any G of type (3), there are infinitely many G0 and w such that
G(x) = G0{w(x)}. If G(x) = 1/2 or, equivalently w(x) = 0, then f = f0.
Densities (2) can take on shapes very different from that of the baseline f0,
for instance allowing for multimodality in cases where f0 is unimodal.

An important property of density function (2) is that a random variable
Z having density (2) can be represented as

Z =

{
Z0 with probability G(Z0),
−Z0 with probability G(−Z0),

(4)

where Z0 has density f0. One route to the constructive use of formula (4) is
to generate a random variable U ∼ U(0, 1) independent of Z0 and to examine
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whether or not U ≤ G(Z0); an equivalent route is to generate T ∼ G0 and
examine whether or not T ≤ w(Z0). A corollary of construction (4) is the
modulation-invariance property, which states that t(Z0) and t(Z) have the
same distribution for any Rq-valued function t such that t(x) = t(−x) for all
x in Rd.

Even more general formulations of (2) exist; see [3]. However, almost
all formulations assume central symmetry of f0, i.e., f0(x) = f0(−x). One
paper which moves away from this assumption is [6], where central symmetry
is replaced by ‘generalised symmetry’, meaning that a random variable X on
Rd has the same distribution as R−1(X) for some invertible mapping R from
Rd to Rd, a condition ensured by the requirement that if f0 is the density of
X then f0(x) = f0{R(x)} and | detR′(x)| = 1 for some invertible mapping
R from Rd to Rd. If R(x) = −x then we return to the earlier construction.
With an additional condition on R, one can establish an analogue of (4) and
hence of the modulation-invariance property. A similar treatment for discrete
variates is provided in [11].

The phrase ‘skew-symmetric’ is often used to refer to distributions of type
(2). This arose because the construction evolved from that of the more re-
stricted ‘skew-elliptical’ class. Since the phrase ‘skew-symmetric’ may convey
the misleading message that skewness is the essential feature of distributions
of this type, we prefer to call them ‘symmetry-modulated’ distributions.

Since all symmetry is symmetry under the action of some group, the aim
of this paper is to extend known results on symmetrical and asymmetrical
distributions to a very general setting. This programme is developed in
the subsequent sections, where we consider measure-preserving actions of
compact topological groups (such as finite groups or compact Lie groups) on
sample spaces that are measure spaces.

2. A general setting for symmetry

Let K be a group and K×X → X be an action of K on some measurable
space X . We shall write the action as (k, x) 7→ k.x. By the definition of an
action,

e.x = x

k2.(k1.x) = (k2k1).x, k1, k2 ∈ K,
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where e denotes the identity element of K. A function f on X is K-symmetric
(or K-invariant) if

f(k.x) = f(x), k ∈ K, x ∈ X . (5)

Similarly, a measure µ on X is K-invariant if

µ(k.A) = µ(A)

for all k in K and all measurable subsets A of X . If µ is a K-invariant
measure and X is a random variable with K-symmetric density then k.X
has the same distribution as X, for all k in K.

If K is a compact topological group then there is a (unique) left K-
invariant and right K-invariant probability measure (Haar measure) ν on K.
We say that a real-valued function f on X is K-odd if

∫

K

f(k.x) dν(k) = 0, x ∈ X .

If K = C2, the group with 2 elements, acts by reflection in the origin
then f is K-odd if and only if f{(−1).x} = −f(x), where −1 denotes the
non-identity element of C2.

Define the quotient map π : X → X/K as the map that sends x in X to
the corresponding equivalence class [x] = {kx : k ∈ K}. Then π sends any
measure µ on X into a corresponding measure π∗µ on X/K, given by

π∗µ(B) = µ(π−1B) (6)

for all measurable subsets B of X/K.
If µ is a measure on X that is invariant under the action of K then there

is a bijection f0 7→ f̃0 between densities f0 (with respect to µ) on X that are
K-symmetric (in the sense of (5)) and densities f̃0 on X/K (with respect to
π∗µ), where f̃0([x]) = f0(x).

Example 1. Let X be the unit sphere Sp−1 and K = C2 act by (−1).x = −x.
Then X/K is the projective space, RP p−1, and distributions on RP p−1 are
identified with antipodally symmetric distributions on Sp−1.
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The main structural result relating arbitrary distributions to symmetric
distributions is the following proposition. It states that the density of a ran-
dom variable X on X is equivalent to the pair consisting of the marginal
density of [X] on X/K and the conditional density of X given [X]. This
equivalence is a generalisation of that in (2) for the case of X = Rd and
K = C2 acting by reflection in the origin. In this case, |X| can be identi-
fied with [X], f0(|x|) is the marginal density of [X] at [x], and G(x) (given
|x|) is regarded as the conditional density of X given |X|. This case is
considered in greater detail after the proof of the proposition. For ease of
exposition, Proposition 1 is stated as if densities and conditional densities
were well-defined functions. There is a more careful version in which it is
acknowledged that densities are equivalence classes of functions that differ
on sets of measure zero.

Proposition 1. Let the compact group K act on a measure space X ,
π : X → X/K be the quotient map, and µ be a measure on X that is invari-
ant under the action of K. Suppose that either K is finite or µ is σ-finite.
Then the equations

f(x) = f̃0([x])Γ̃(x|[x]) (7)

= f0(x)Γ(x) (8)

give bijections between

(a) densities f on X with respect to µ,

(b) pairs (f̃0, Γ̃) with f̃0 a density on X/K with respect to π∗µ and Γ̃ a
family of conditional densities Γ̃(·|[x]) on π−1([x]) given [x],

(c) pairs (f0,Γ) with f0 a K-symmetric density on X (with respect to µ)
and Γ a non-negative function on {x ∈ X : f0(x) > 0} such that

∫

K

Γ(k.x) dν(k) = 1. (9)

Proof. For x in X , define ix : K → π−1([x]) by ix(k) = k.x and define the
measure ν[x] on π−1([x]) by ν[x] = (ix)∗ν, i.e.,

∫

π−1[x]

h(y) dν[x](y) =

∫

K

h(k.x) dν(k) (10)

for every function h on π−1([x]) for which the right hand side exists. It follows
from K-invariance of ν that ν[x] is well-defined.
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Let g : X → R be µ-measurable. Because µ is K-invariant,
∫

X
g(k.x) dµ(x) =

∫

X
g(x) dµ(x)

for all k in K and all integrable g : X → R. Integrating this over K gives
∫

K

∫

X
g(k.x)dµ(x) dν(k) =

∫

X
g(x) dµ(x).

Since (k, x) 7→ g(k.x) is integrable and either K is finite or µ is σ-finite,
Fubini’s theorem gives

∫

X
g(x) dµ(x) =

∫

K

∫

X
g(k.x) dµ(x) dν(k)

=

∫

X

∫

K

g(k.x) dν(k) dµ(x)

=

∫

X/K

{∫

π−1([x])

g(y) dν[x](y)

}
dπ∗µ([x]), (11)

where equality of the inner integrals in the last two lines follows from (10).
Thus the measure µ is decomposed (disintegrated) in the sense of [12,

Section 5] or [14] into the marginal measure π∗µ on X/K and the conditional
measures ν[x] on the fibres π−1([x]).

Given a density f on X , define f̃0 and Γ̃ by

f̃0([x]) =

∫

K

f(k.x) dν(k), (12)

Γ̃(y|[x]) = f(y)/f̃0([x]), y ∈ π−1([x]), f0(x) > 0.

Then (7) holds. Replacing g in (11) by gf gives
∫

X
g(x)f(x) dµ(x)

=

∫

X/K

{∫

π−1([x])

g(y)Γ̃(y|[x]) dν[x](y)

}
f̃0([x]) dπ∗µ([x]).

Thus the marginal and conditional densities are f̃0 and Γ̃(·|[x]), respectively.
Conversely, such a f̃0 and Γ̃ can be combined by (7) to give a density f
on X . Equivalence between (7) and (8) comes from putting f0(x) = f̃0([x])
and Γ(x) = Γ̃(x|[x]). Verification that (7) and (8) are bijections is straight-
forward. In particular, uniqueness of the decomposition in (7) follows from
f0(x) = f̃0([x]) and (12). �
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In the case of X = Rd and K = C2 acting by reflection in the origin, i.e.,
e.x = x and (−1).x = −x, (8) is usually written as

f(x) = 2f0(x)G(x),

as in (2) (cf. ([4])), where G(x) = Γ(x)/2, i.e., G expresses the conditional
density with respect to counting measure on C2, whereas Γ expresses the
conditional density with respect to the Haar probability measure ν. See
Example 2. In this case, Proposition 1 becomes Propositions 1 and 3 of [25].

Remark 1. It follows from (8) that if f(x) > 0 then f0(x) > 0. If K is
finite then it follows from (9) that {x ∈ X : f0(x) > 0} =

⋃
k∈K k.{x ∈ X :

f(x) > 0}. �

If K is a finite group of order m then (9) becomes

1

m

∑

k∈K
Γ(k.x) = 1. (13)

If m = 2 and the action of the non-identity element, −1, of C2 on X is written
as (−1).x = R(x), as in [6], then (13) is equivalent to G(x) +G{R(x)} = 1,
where G(x) = Γ(x)/2.

One way of looking at Proposition 1 is to say that modulation is not just
one method of creating non-symmetrical distributions but the only method.
The job of Γ is to break the symmetry of f0 by redistributing probability
within each π−1([x]). The interesting non-symmetrical distributions are those
in which the Γ have pleasant properties or are plausible ways of modelling
the asymmetry of the data.

Remark 2. Denote by L1(X ) the space of real functions on X that are in-
tegrable with respect to µ. The subspaces L1

K(X ) and L1
0(X ) of K-symmetric

and of K-odd functions in L1(X ) are

L1
K(X ) =

{
f ∈ L1(X ) : f(k.x) = f(x)

}
,

L1
0(X ) =

{
f ∈ L1(X ) :

∫

K

f(k.x) dν(k) = 0

}
,

respectively. If f ∈ L1
K(X )∩L1

0(X ) then for x ∈ X , f(x) =
∫
K
f(k.x) dν(k) =

0. Thus L1
K(X ) ∩ L1

0(X ) = {0}. On the other hand, for f in L1(X ), define
f̄ by

f̄(x) =

∫

K

f(k.x) dν(k). (14)
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Then f = f̄ + (f − f̄) and f̄ ∈ L1
K(X ), f − f̄ ∈ L1

0(X ). Thus there is a direct
sum decomposition

L1(X ) = L1
K(X )⊕ L1

0(X ). (15)

(The L2 analogue of (15) is considered in [18, Section 2].) For a density f ,
the functions f0 and Γ in (8) satisfy f0 ∈ L1

K(X ) and Γ − 1 ∈ L1
0(X ). The

decomposition of f given by (15) is

f = f0 + f0(Γ− 1). (16)

This is an additive version of the multiplicative decomposition (8) of f . Av-
eraging (16) over K shows that

f0 = f̄ ,

where f̄ is the symmetrisation of f given by (14). �
Remark 3. Let the group K act both on X and on a space Θ. Among the
parametric statistical models on X that are parameterised by Θ, a particularly
nice class consists of those having densities (with respect to a K-invariant
measure) f(·; θ) that satisfy

f(k.x; k.θ) = f(x; θ), k ∈ K. (17)

Models satisfying (17) are composite transformation models in the sense of
[13, Section 2.8]. Some important examples are those with X = Θ = Rd,
K = C2 acting by

e.x = x, e.θ = θ, (−1).x = −x, (−1).θ = −θ,
where (−1) denotes the non-identity element of C2, and densities (with re-
spect to Lebesgue measure)

f(x; θ) = 2G0(θ
>x) f0(x)

with f0 a centrally-symmetric density on Rd. Then a simple calculation shows
that these models satisfy (17). �
Proposition 2. Let Z0 and Z be random variables on X with densities f0

and f , respectively, where f0 is K-symmetric and

f(x) = f0(x)Γ̃(x|[x]), (18)

Γ̃(·|[x]) being the conditional density of x given [x]. If t : X → Y is
invariant, i.e., t(k.x) = t(x) for all k in K then t(Z0) and t(Z) have the
same distribution.
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Proof. The function x 7→ [x] is a maximal invariant, i.e., any invariant
t : X → Y must have the form t(x) = u([x]) for some function u : X/K → Y .
By (18), [Z0] and [Z] have the same distribution and so, therefore, do u([Z0])
and u([Z]). �

In the case of X = Rd and K = C2 acting by reflection in the origin,
Proposition 2 gives the modulation-invariance property described after (4).

Example 2. (central symmetry on Rd) Here X = Rd and K = C2 acts by
reflection in the origin, i.e., e.x = x and (−1).x = −x. In this case, a useful
representation of functions Γ in (8) is

Γ(x) = 2G0{w(x)}, (19)

where G0 is the cumulative distribution function of a univariate random vari-
able symmetric about 0 and w is a real-valued function on Rd satisfying
w(−x) = −w(x). Expression (19) is the traditional form of the perturb-
ation factor recalled in the passage following (3). The traditional factor of 2
does not appear in (8), because the conditional density Γ is taken with respect
to the probability measure ν rather than counting measure on C2.

Example 3. Here K is the additive group of the integers, acting by (k, x) 7→
Rkx, where R is an invertible µ-preserving transformation of X . The case
of X = Rd and functions Γ of the form (19) with w{R(x)} = −w(x) is
considered in [6, Sect. 2].

Example 4. Let X = R2 and K = Cs, the cyclic group of order s. Consider
the case in which K acts on X by rotations through multiples of 2π/s, so that
k.x = Mkx for k = 0, . . . , s− 1, where

M =

(
cos 2π/s − sin 2π/s
sin 2π/s cos 2π/s

)
.

Let f0 be a density on R2 with circular symmetry about the origin, e.g., the
standard bivariate normal density. Consider a function G : R2 → [0, 1] such
that

s−1∑

k=0

G(Mkx) = 1 (20)
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and define Γ by Γ(x) = sG(x). Then f , defined by

f(x) = sf0(x)G(x), (21)

is a probability density on R2.
The case s = 2 is included in (19). The next step is to consider s = 3.

One specific function G satisfying (20) is given by

G(x) =

{
1/2 if 1/2 < ‖x‖−1x>u0 ≤ 1,
1/4 otherwise

(22)

for some fixed unit vector u0. If f0 : R2 → (0,∞) is a probability density
function which is constant on every circle with centre at the origin (such as
an isotropic bivariate normal distribution with mean zero) then f , defined by

f(x) = 3 f0(x)G(x), (23)

is also a probability density function on R2. An alternative, continuous,
choice of G is the following. Define G0 : [0, 2π/3) → [0, 1/2) and G2 :
[4π/3, 2π)→ (0, 1/2] by

G0(θ) =
3

4π

√(
2

3
π

)2

−
(
θ − 2

3
π

)2

, G2(θ) =
3

4π

√(
2

3
π

)2

−
(
θ − 4

3
π

)2

and define G : X → R by

G(x) =




G0(θ) if 0 ≤ θ < 2π/3,
G2(θ) if 4π/3 ≤ θ < 2π,
1−G0(θ − 2π/3)−G2(θ + 2π/3) otherwise,

(24)

where x = (r cos θ, r sin θ)>. With this choice of G, 0 ≤ G(x) ≤ 1/2 and
(20) holds with s = 3. Then (23) is a density on R2.

Now consider the case s = 4. A direct adaptation of (22) is

G(x) =

{
1/2 if (

√
2/2) < ‖x‖−1x>ru0 ≤ 1,

1/6 otherwise.

An alternative choice of G is G(x) = 2−1Φ(αx1 x2), where Φ is the stan-
dard normal distribution function, α is a real parameter, and x = (x1, x2)

>.
Taking f0 to be the standard bivariate normal density, (21) gives

f(x, y) = 4f0(x, y){2−1Φ(αxy)} = 2 f0(x, y) Φ(αxy),

which is the density of the distribution studied in [1, Section 4.1] and
appearing in [6, (15)].
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Example 5. The action of C4 on R2 described in Example 4 extends to an
action of the dihedral group D8 of rotations and reflections of the square.
This appears in (16) of [6].

Example 6. (rotations of R2) The group, SO(2), of rotations of the plane
can be identified with the unit circle, S1, regarded as the interval [−π, π] with
its ends identified. Use of polar coordinates (r, θ) on R2 enables the standard
action of SO(2) on R2 to be written as φ.(r, θ) = (r, θ + φ) for φ, θ ∈ S1 .
For X = R2 and K = SO(2), the above action gives X/K = [0,∞). Let x,
with polar coordinates (r, θ), be a random point in the plane, having density
f with respect to dr (2π)−1dθ. (The factor (2π)−1 is used to get a probability
measure on S1.) Then (7) can be interpreted as the decomposition of the joint
density of (r, θ) on the product space [0,∞) × S1 into the marginal density
of r and the conditional density of θ given r. If x has the standard bivariate
normal distribution then the marginal density of r is

f̃0(r) = r exp(−r2/2).

The standard bivariate normal distribution can be modulated by using as per-
turbation factor the conditional densities

Γ̃(θ|r) = r |π−1θ|r−1/2, θ ∈ [−π, π).

By Proposition 1, the function given in polar coordinates by

f(r, θ) = f̃0(r)Γ̃{(r, θ)|r} (25)

is a density on the plane, with respect to dr (2π)−1dθ. In contrast to densities
of type (2), where necessarily 0 ≤ f(x)/f0(x) ≤ 2, densities produced by this
construction have the property that the ratio f(x)/f0(x) is unbounded.

The plots in Figure 1 below display (a) some contours of the bivariate
density (25), transformed to rectangular co-ordinates, (b) the marginal den-
sity of the first component x1 of x, obtained by numerical integration of the
bivariate density, with the N (0, 1) density superimposed as a dashed curve,
(c) the ratio of this marginal density to the N (0, 1) density. Plot (c) high-
lights the fact that the ratio of the densities in plot (b) diverges to +∞ as
x1 moves towards −∞. In other words, the marginal density of the new dis-
tribution on R2 appears to have a heavier left tail than the N (0, 1) density,
a feature which cannot be achieved by perturbation of the normal density via
(2).

11
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Figure 1: (a) contours of density (25), (b) marginal density of first component, with
standard normal density (dashed), (c) ratio of marginal density to standard normal density.

Example 7. (exchangeability) If X = Yn then the permutation group Σn

acts on X by permuting the copies of Y. A distribution is Σn-invariant iff it
is exchangeable.

Taking Y = R and n = 3 gives X = R3, on which the permutation group
Σ3 acts by permuting the coordinates. Each such permutation can be written
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uniquely as the rotation Rr R̃s of R3 for r = 0, 1, 2 and s = 0, 1, where

R =




0 1 0
0 0 1
1 0 0


 and R̃ =




1 0 0
0 0 1
0 1 0


 .

Given any probability density g on R, define f0 : R3 → R by f0(x) =∏3
j=1 g(xj) for x = (x1, x2, x3)

>. Then f0 is a Σ3-invariant density on R3.
Define the subsets D1, . . . , D6 of X by

D1 = {x : x1 ≤ x2 ≤ x3}, D2 = {x : x1 ≤ x3 ≤ x2},
D3 = {x : x2 ≤ x3 ≤ x1}, D4 = {x : x2 ≤ x1 ≤ x3},
D5 = {x : x3 ≤ x1 ≤ x2}, D6 = {x : x3 ≤ x2 ≤ x1}.

The group Σ3 permutes D1, . . . , D6 and each Dj can be obtained from D1 by
one of these permutations. If sets of measure 0 are ignored then {D1, . . . , D6}
is a partition of X . Thus, by symmetry under Σ3, each Dj has probability
1/6 under the distribution with density f0. Given any non-negative numbers
p1, . . . , p6 such that

∑6
j=1 pj = 1, define G by

G(x) = pj if x ∈ Dj.

Then
2∑

r=0

1∑

s=0

G(Rr R̃sx) = 1,

and so f , defined by

f(x) = 6 f0(x)G(x), x ∈ X ,

is a probability density.
We now introduce a variant construction in which G is smoother than the

above step function. To simplify the problem, we merge the sets Dj in pairs
by defining

Ej = D2j−1 ∪D2j, j = 1, 2, 3.

Then E2 = RE1 and E3 = R2E1. The function G, defined by

G(x) =




x1/(x1 + x2 + x3) if x ∈ E1,
x2/(x1 + x2 + x3) if x ∈ E2,
1− 2x3/(x1 + x2 + x3) if x ∈ E3,
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is continuous on R3\{0} and the function f with the same formal expression
as (23) is a density on X .

Some modulations of products of independent identically distributed Pois-
son random variables on N2 are used in [11] to model scores in sporting
tournaments.

Example 8. (reflection on the circle) The choice of a reference direction,
θ = 0, on the circle, S1, makes it possible to define an action of C2 on S1

that maps the angle θ to −θ. This is equivalent to reflection of S1 in the line
through θ = 0 and θ = π.

One standard distribution on S1 that is symmetric about 0 is the wrapped
Cauchy distribution with mean direction 0 and mean resultant length ρ. Its
density (with respect to dθ), f0, is given by

f0(θ) =
1

2π

1− ρ2

1− 2ρ cos θ + ρ2
.

A skewed version of f0, considered in [23, Section 2], is f , given by

f(θ) = f0(θ) (1 + sin θ). (26)

The generalisation of (26) introduced in [23] takes f0 to be any probability
density on S1 that is symmetric about 0 and replaces the factor 1 + sin θ by
Γ(θ), where

Γ(x) = 2G0{w(x)} (27)

with w : S1 → S1 C2-equivariant, i.e., w(−x) = −w(x), and

G0(x) =

∫ x

−π
g(u) du

for some density g on S1 which is symmetric about 0. If f is defined by
f(θ) = f0(θ)Γ(θ), as in (8), then f is a probability density on S1.

The bijection in Proposition 1 relating densities f on X to pairs of the
form (f0,Γ) can be expressed in terms of random variables as follows.

Proposition 3. Let f0 be a K-symmetric density on X and Γ be a non-
negative function on {x ∈ X : f0(x) > 0} satisfying (9). Let Z0 and S be
random variables on X and K, respectively, such that Z0 has density f0 and
the conditional density of S given Z0 is h(s|x) = Γ(s.x). Put Z = S.Z0.
Then the density of Z is

f(z) = f0(z)Γ(z).

14



Proof. The density of Z at z is

f(z) =

∫

K

f0(k.z)h(k|k−1.z) dν(k)

=

∫

K

f0(z)Γ{k.(k−1.z)} dν(k)

= f0(z)Γ(z). �

This result is an extension of [5, Proposition 2] for distributions of type
(1) and of (4) for distributions of type (2). There is a similar result based
on [X] instead of X, paralleling [5, Proposition 3] and its extension in [7,
Proposition 1.6]. In the case K = C2, the representation Z = S.Z0 is known
as the ‘stochastic representation’ of Z.

Remark 4. In contrast to earlier developments, this paper does not derive
modulation invariance as a corollary of the stochastic representation. How-
ever, this connection still exists and it is possible to derive Proposition 2 from
Proposition 3. �

If the group K is finite then the stochastic representation given in Propos-
ition 3 can be considered as a selection mechanism which is applied to
values of Z0 in order to obtain values of Z. The construction is described in
Corollary 1 below and is a direct extension of that for s = 2 appearing at
the end of Section 2.1 in [11], which in turn is related to expression (9) of
[10]; all these formulations are generalisations of representation (4) for the
case K = C2.

Corollary 1. Suppose that the group K is finite and choose an enumerat-
ion k1, . . . , ks of its elements. Let f0 be a K-symmetric density on X and
G be a non-negative function on X such that

∑s
i=1G(ki.x) = 1. Define

w0(x), . . . , ws(x) by w0(x) = 0 and wi(x) =
∑i

j=1G(kj.x) for i = 1, . . . , s.
Let Z0 and Y be independent random variables on X and [0, 1], respectively,
such that Z0 has density f0 and Y is uniformly distributed.
Define the random variable Z on X by

Z = ki.Z0 if wi−1(Z0) ≤ Y < wi(Z0).

Then the density of Z at z is f(z) = sf0(z)G(z).
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Proof. Define Γ by Γ(x) = sG(x) and define the random variable S on K
by

S = ki if wi−1(Z0) ≤ Y < wi(Z0).

Then Γ satisfes (9) and the result follows from Proposition 3. �

3. Parametric models for the conditional density Γ

A convenient class of conditional densities Γ in (8) consists of those of
the form

Γ(x; α) = c([x],α)−1q{α>h(x)}, (28)

where h : X → Rd, α runs through a subset of Rd, q : R→ R, and

c([x],α) =

∫

K

q{α>h(k.x)} dν(k).

Special cases of interest include the following.

(a) If X = Rd, K = C2 acts by central symmetry, h(x) = x and q(t) = Φ(t)
then c([x],α) = 1/2 and the functions Γ(·; α) are those arising in the
multivariate skew-normal distributions [9].

(b) If q(t) = exp(t) then, for each [x], the family of conditional densi-
ties Γ̃(·|[x]; α) is an exponential family with canonical statistic h. If
also X = Rd, K = C2 acts by central symmetry, and h(x) = x then
c([x],α) = cosh(α>x) and so

f(x) = 2f0(x)L0(2α>x),

where L0 is the standard logistic distribution function. In the case
d = 1 this is of the form (1) with λ = 2α and G0 = L0.

(c) If q(t) = 1 + t and h is bounded and satisfies

∫

K

h(k.x) dν(k) = 0

then c([x],α) = 1. If α is near enough to 0 then Γ(x; α) is non-
negative. For X = S1, K = C2 acting by reflection in the diameter
through 0 and π, d = 1 and h(x) = sin x, the functions Γ(·;α) are those
arising in the asymmetrical circular distributions of [23].
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Suppose given a parametric model f0(·; θ) of symmetric densities, where
θ runs through Θ. Modulating f0(·; θ) by the conditional densities (28) pro-
duces the parametric model with densities

f(x; θ,α) = f0(x; θ)c([x],α)−1q{α>h(x)}. (29)

In (29), θ parameterises the symmetric part of the distribution, whereas α
parameterises the departure from symmetry. In the language of cuts [13, p.
38], [x] is a cut, being S-sufficient for θ and S-ancillary for α. Thus inference
can be carried out separately on the parameters θ and α. In particular, θ
and α are orthogonal. Examples of densities (29) with X a shape space and
h and q satisfying (b) or (c) above are given in [16, Sections 10.3.1, 10.3.2].

4. Transformations and symmetry

One of the main techniques for generating new families of distributions
from old ones is transformation of the sample space. This section investi-
gates the effect that such transformations have on symmetry of distributions
and the decomposition (8) of general probability density functions into their
symmetric and modulating parts.

Given a probability measure P on X and a measurable function t : X →
Y , we define t∗P by

t∗P (A) = P{t−1(A)} (30)

for all measurable subsets A of Y . (The definition (6) of π∗µ is a special case
of (30).) Let K act on X and Y . The transformation t is K-equivariant if

t(k.x) = k.t(x), k ∈ K. (31)

If X = Y = Rd and C2 acts by central symmetry then t is C2-equivariant if
and only if it is an odd function.

Proposition 4. Let t : X → Y be a measurable function and suppose that
K acts on X and Y.

(i) If t is K-equivariant then it induces a transformation
t̃ : X/K → Y/K, given by t̃([x]) = [t(x)];

(ii) if t is K-equivariant and P is K-invariant then t∗P is K-invariant;

(iii) if Y has probability distribution t∗P then k.Y has probability distribut-
ion (k ∗ t)∗P , where k ∗ t : X → Y is defined by (k ∗ t)(x) = k.t(x);
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(iv) let µ and λ be K-invariant measures on X and Y, respectively, such
that t∗µ is absolutely continuous with respect to λ. Let X be a random
variable on X having density (with respect to µ) f expressed as

f(x) = f0(x)Γ(x), (32)

as in (8). Suppose that t is equivariant and one-to-one. Then the
density, t∗f , of t(X) with respect to λ can be expressed analogously to
(32) as

(t∗f)(y) = f0{t−1(y)} dt∗µ
dλ

(y) Γ{t−1(y)} (33)

with f0{t−1(y)} (dt∗µ/dλ)(y) as the K-symmetric part and Γ{t−1(y)}
as the modulating factor. If X = Y = Rd and µ = λ is Lebesgue
measure then dt∗µ/dµ(y) = |t′{t−1(y)}|−1 (the inverse Jacobian deter-
minant), whereas if X is discrete and µ = λ is counting measure then
dt∗µ/dλ(y) = 1.

Proof. These follow from straightforward calculations. �

Note:
In the case in which X = Y = Rd, K = C2 acts by central symmetry, and

µ and λ are Lebesgue measure, Proposition 4 yields Theorem 2.2 of [19].

Example 9. (inversion in the unit circle)
Let X be the punctured plane, R2\{0}. The restriction to X of the action

of the cyclic group C3 by rotation of R2 (as in Example 4 with s = 3) gives an
action of C3 on X . The geometrical operation of inversion of the punctured
plane in the unit circle can be expressed algebraically as the transformation
t : X → X given by x 7→ ‖x‖−2x. Let X be a random variable on X having
density (with respect to Lebesgue measure) f expressed as

f(x) = f0(x)Γ(x),

where f0 is the standard bivariate normal density (restricted to X ) and Γ(x) =
3G(x) with given G given by restriction of (22). Put Y = t(X). It follows
from (33) (and the fact that here Γ(‖y‖−2y) = Γ(y)) that the density, f̌ , of
Y (with respect to Lebesgue measure) is given by

f̌(y) = f0(‖y‖−2y)‖y‖−2Γ(y),

the symmetric part being f0(‖y‖−2y))‖y‖−2 and the modulating factor being
Γ(y).
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Example 10. (Multivariate skew Birnbaum–Saunders distributions)
Let X = Rd, Y = (R+)d and K = C2 Then K acts on X by cen-

tral symmetry, i.e., (−1).x = −x for x in X , as in Example 2, and on
Y by (−1).(y1, . . . , yd) = (1/y1, . . . , 1/yd) for (y1, . . . , yd) in Y. For α =
(α1, . . . , αd) with αi, β > 0, the multivariate Birnbaum–Saunders transform-
ation tα,β : Rd → (R+)d is defined by tα,β(x1, . . . ,xd) = (t1(x1), . . . , td(xd)),
where

ti(xi) = β

{
αi
2
xi +

√(αi
2
xi

)2

+ 1

}2

.

The transformation tα,1 is K-equivariant for the above actions of K on X
and Y.

For λ in Rd, the corresponding standard skew d-variate normal distribut-
ion [9] is obtained from the standard d-variate normal distribution by modulat-
ing it by the function x 7→ 2Φ(λ>x), where Φ denotes the standard normal
cumulative distribution function. The resulting density on Rd is 2φd(x) Φ(λ>x),
where φd denotes the density of the standard d-variate normal distribution.
Transformation by tα,β sends the skew d-variate normal distribution to the
generalised Birnbaum–Saunders distribution of [17], which has density

φd(x)

{
d∏

1

y
−3/2
i (yi + 1)

2αi

}
2Φ(λ>x)

at y, where x = (x1, . . . , xd) with xi = [
√
y
i
− 1/
√
y
i
]/αi.

More generally, multivariate Birnbaum–Saunders transformations can be
used to generate a new class of multivariate distributions as follows. Let f0

be any centrally symmetric density with respect to Lebesgue measure on Rd

and let Γ be any non-negative function on Rd satisfying Γ(x) + Γ(−x) = 2.
Let Z be a random variable on Rd having density f(x) = f0(x)Γ(x). Then
the density of tα,1(Z) at y is

f0(x)

{
d∏

1

y
−3/2
i (yi + 1)

2αi

}
Γ(x),

where x = (x1, . . . , xd) with xi = [
√
y
i
− 1/
√
y
i
]/αi. It is worth underlining

that in this case, although all other conclusions of Proposition 4 hold, the
factor

f0 (x)

{
d∏

i=1

y
−3/2
i (yi + 1)

2αi

}
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fails to be K-symmetric, because Lebesgue measure is not K-invariant
under the action of K on Y.

5. Symmetry in directional statistics

This section illustrates the above general theory with some examples in
the areas of directional statistics and shape statistics.

Example 11. (central symmetry on spheres) For a point n in the (p − 1)-
sphere Sp−1, central symmetry about n is invariance under the C2-action
given by restriction of the linear transformation 2nn> − Ip of Rp. This
transformation reverses each great circle through n. (Technical note: this
can be generalised to symmetric spaces with maximal tori of dimension 1.)
Here X = Sp−1 and K = C2. Distributions on Sp−1 with central symmetry
about n include the Watson distributions [22, Section 9.4.2] with log density
proportional to (x>n)2. Suitable densities Γ of conditional distributions for
use in (8) can be obtained by applying the functions (27) of [23] to each great
circle through n. To do this, we exploit the tangent-normal decomposition

x = (t, (1− t2)1/2z), t ∈ (−1, 1), z ∈ Sp−2 (34)

(see [22, (9.1.2)]) and define the colatitude θ by cos θ = t. Then

Γ(x) = Γ±z{w±z(θ)},

where, for each {−z, z}, w±z : S1 → S1 is Z2-equivariant and

Γ±z(x) =

∫ x

−π
g±z(u) du

for some density g±z on S1 which is symmetric about 0.

Example 12. (rotational symmetry about an axis on Sp−1) For an axis ±n
of Sp−1, consider the SO(p−1)-action of rotations about ±n. Here X = Sp−1,
K = SO(p− 1) and t in the tangent-normal decomposition (34) is invariant.
Distributions on Sp−1 with rotational symmetry about ±n include the von
Mises–Fisher distributions [22, Section 9.3.2] with log density proportional
to x>n.

Choose (a) a family of density functions g(·;λ) on Sp−2 indexed by a
parameter λ such that g(·; 0) is constant, (b) a function t 7→ Ut from [−1, 1]
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to the rotation group SO(p− 1) with U−1 = U1 = Ip−1. Then functions Γ of
the form

Γ(x) = g(Utz;λ),

where x = tn+(1−t2)1/2z is the tangent-normal decomposition of z, are non-
negative and satisfy (9), and so can be used as conditional densities in (7).
Some other functions Γ that are suitable in this context are those introduced
by Ley & Verdebout [20]. These have the form

Γ(x) = 2Π{m(t)δ>(Ip − nn>)x},

where m : [0, 1]→ R is continuous a.e., Π : R→ [0, 1] satisfies Π(y) + Π(1−
y) = 1 for all y in R and δ ∈ Rp with δ>n = 0.

Example 13. (Stiefel manifolds and Grassmann manifolds) The Stiefel man-
ifold Vr(Rp) of orthonormal r-frames in Rp can be written as

Vr(Rp) =
{

(u1, . . . ,ur) : u>i uj = δij
}
,

where δij denotes the Kronecker δ. The Grassmann manifold Gr(Rp) is the
space of r-dimensional subspaces of Rp. The rotation group SO(r) acts on
Vr(Rp) by (V, (u1, . . . ,ur)) 7→ (Vu1, . . . ,Vur). Then X = Vr(Rp), K =
SO(p−2) and X/K = Gr(Rp). Distributions on Vr(Rp) with SO(r)-symmetry
include the matrix Bingham distributions [22, Section 13.3.3] with log density
proportional to trace(X>BX), where X = (u1, . . . ,ur) and B is a symmetric
p× p matrix. Functions Γ : Vr(Rp)→ R of the form

Γ(U) = 1 + trace(A>U),

where trace{(A>A)1/2} < 1, are suitable for use as conditional densities in
(7). These functions are of the form (28) with q as in special case (c) in
Section 3.

Example 14. (orthogonal axial frames) The group C2
r = {(ε1, . . . , εr)|εj = ±1}

acts on Vr(Rp) by changing the signs of the vectors u1, . . . ,ur, i.e., (ε1, . . . , εr)
acts by (u1, . . . ,ur) 7→ (ε1u1, . . . , εrur). Then X = Vr(Rp), K = C2

r and
X/K = Vr(Rp)/C2

r is the space of orthogonal axial frames considered in [2].
One of the simplest families of distributions on Vr(Rp) consists of the matrix
Fisher distributions. These have densities

f(U; A) =
{

0F1

(
p/2; 1/4 A>A

)}−1
exp{trace(A>U)},
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where U ∈ Vr(Rp) and A is a p× r matrix. (See, e.g., [22, Section 13.2.3].)
Then (8) becomes

f(U; A) = f0([U]; [A])Γ(U),

where

f0([U]; [A]) =
{

0F1

(
p/2; 1/4 A>A

)}−1
r∏

j=1

cosh(a>j uj) (35)

Γ(U) =
r∏

j=1

exp(a>j uj)

cosh(a>j uj)
,

with U = (u1, . . . ,ur) and A = (a1, . . . , ar). The densities (35) are those
of the symmetrised matrix Fisher distributions, which were introduced in the
case r = p = 3 in [24].

Example 15. (shape versus reflection shape) Two configurations of k non-
identical (labelled) landmarks in Rm have the same (similarity) shape if one
can be transformed into the other by translation, rotation and change of scale;
they have the same reflection shape if the transformation may include reflec-
tions also. The sets of (similarity) shapes and of reflection shapes are the
shape space Σk

m and the reflection shape space RΣk
m, respectively. The group

C2 acts on Σk
m by reflections in Rm and Σk

m/C2 = RΣk
m. The space Σk

m is
the quotient space Skm/SO(m), where Skm is the space of m × (k − 1) real
matrices Z with trace(ZZ>) = 1 and the rotation group SO(m) of Rm acts
on Skm by left multiplication. For Z in Skm, [Z] denotes the corresponding
shape. Various distributions on Σk

m are considered in [16], including those
with densities of the form

f([Z]; A, κ, [M]) = c(A) exp{trace(AZ>Z)}
{

1 + κ|MZ>|
}
, (36)

where Z and M are in Skm, A is a symmetric real (k − 1)× (k − 1) matrix,

c(A) = 1F1 {1/2;m(k − 1)/2; A⊗ Im}−1, 0 ≤ κm−m/2
∣∣MM>∣∣1/2 ≤ 1 and

| · | denotes a determinant. The density (36) can be written in the form of
(8) as

f([Z]; A, κ, [M]) = f0([Z]; A)Γ([Z];κ, [M]),

where

f0([Z]; A) = c(A) exp{trace(AZ>Z)} (37)

Γ([Z];κ, [M]) = 1 + κ|MZ>|.
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The densities (37) are those of the shape Bingham distributions introduced
in [15]. The functions Γ are of the form (28) with q as in special case (c) in
Section 3.

6. Discussion

The broad aim of the present contribution is to embed the ‘standard’
modulation of symmetry, represented by density (2) with corresponding
stochastic representation (4), into a wider framework in which the mech-
anism of sign reversal, together with the identity, underlying the standard
formulation is replaced by a more general group of transformations. One ben-
efit of this construction is the inclusion of distributions not generated in the
standard formulation recalled above, hence providing a more comprehensive
view of a broad set of constructions. Another benefit is the generation of new
distributions. For instance, some cases discussed in Examples 4 and 7 are
of this form, as is evident from the normalising factor which differs from the
ubiquitous value 2 in the density of the standard formulation. Another case
in point is Example 6, the aim of which is to show that there exist selection
mechanisms capable of producing distributions with tails thicker than those
of the original distribution prior to selection. Examples 9 and 10 also appear
to be new, at least at this level of generality.

As already stated, the aim of the above-mentioned examples is to
illustrate some novel features of the present general formulation, not to put
forward models for practical work. Progress in this sense would, of course,
be valuable. Examples 7 and 10 take a step in this direction but we hope
that future work can lead to further practical constructions.
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