12,947 research outputs found

    Protected gates for topological quantum field theories

    Get PDF
    We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators --- for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically-local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons; in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.Comment: 50 pages, many figures, v3: updated to match published versio

    Disordered locality in loop quantum gravity states

    Get PDF
    We show that loop quantum gravity suffers from a potential problem with non-locality, coming from a mismatch between micro-locality, as defined by the combinatorial structures of their microscopic states, and macro-locality, defined by the metric which emerges from the low energy limit. As a result, the low energy limit may suffer from a disordered locality characterized by identifications of far away points. We argue that if such defects in locality are rare enough they will be difficult to detect.Comment: 11 pages, 4 figures, revision with extended discussion of result

    Physics Without Physics: The Power of Information-theoretical Principles

    Get PDF
    David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D'Ariano et al., 2017) and of free quantum field theory (D'Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a refoundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the observed regime is that of small wavevectors ...Comment: 34 pages, 8 figures. Paper for in memoriam of David Finkelstei

    Order-Invariant First-Order Logic over Hollow Trees

    Get PDF
    We show that the expressive power of order-invariant first-order logic collapses to first-order logic over hollow trees. A hollow tree is an unranked ordered tree where every non leaf node has at most four adjacent nodes: two siblings (left and right) and its first and last children. In particular there is no predicate for the linear order among siblings nor for the descendant relation. Moreover only the first and last nodes of a siblinghood are linked to their parent node, and the parent-child relation cannot be completely reconstructed in first-order

    Local, Smooth, and Consistent Jacobi Set Simplification

    Full text link
    The relation between two Morse functions defined on a common domain can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces have shown to be useful in various applications. Unfortunately, in practice functions often contain noise and discretization artifacts causing their Jacobi set to become unmanageably large and complex. While there exist techniques to simplify Jacobi sets, these are unsuitable for most applications as they lack fine-grained control over the process and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi sets in two dimensions. We focus on simplifications that can be realized by smooth approximations of the corresponding functions and show how this implies simultaneously simplifying contiguous subsets of the Jacobi set. These extended cancellations form the atomic operations in our framework, and we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications according to some user-defined metric. We prove that the algorithm is correct and terminates only once no more local, smooth and consistent simplifications are possible. We disprove a previous claim on the minimal Jacobi set for manifolds with arbitrary genus and show that for simply connected domains, our algorithm reduces a given Jacobi set to its simplest configuration.Comment: 24 pages, 19 figure

    Group field theories for all loop quantum gravity

    Full text link
    Group field theories represent a 2nd quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the GFT formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.Comment: version published in New Journal of Physic

    From euclidean field theory to quantum field theory

    Full text link
    In order to construct examples for interacting quantum field theory models, the methods of euclidean field theory turned out to be powerful tools since they make use of the techniques of classical statistical mechanics. Starting from an appropriate set of euclidean n-point functions (Schwinger distributions), a Wightman theory can be reconstructed by an application of the famous Osterwalder-Schrader reconstruction theorem. This procedure (Wick rotation), which relates classical statistical mechanics and quantum field theory, is, however, somewhat subtle. It relies on the analytic properties of the euclidean n-point functions. We shall present here a C*-algebraic version of the Osterwalder-Scharader reconstruction theorem. We shall see that, via our reconstruction scheme, a Haag-Kastler net of bounded operators can directly be reconstructed. Our considerations also include objects, like Wilson loop variables, which are not point-like localized objects like distributions. This point of view may also be helpful for constructing gauge theories.Comment: 35 page
    • …
    corecore