10,357 research outputs found

    Representing Concepts by Weighted Formulas

    Get PDF
    A concept is traditionally defined via the necessary and sufficient conditions that clearly determine its extension. By contrast, cognitive views of concepts intend to account for empirical data that show that categorisation under a concept presents typicality effects and a certain degree of indeterminacy. We propose a formal language to compactly represent concepts by leveraging on weighted logical formulas. In this way, we can model the possible synergies among the qualities that are relevant for categorising an object under a concept. We show that our proposal can account for a number of views of concepts such as the prototype theory and the exemplar theory. Moreover, we show how the proposed model can overcome some limitations of cognitive views

    Measuring Relations Between Concepts In Conceptual Spaces

    Full text link
    The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a high-dimensional space and concepts are represented by regions in this space. Our recent mathematical formalization of this framework is capable of representing correlations between different domains in a geometric way. In this paper, we extend our formalization by providing quantitative mathematical definitions for the notions of concept size, subsethood, implication, similarity, and betweenness. This considerably increases the representational power of our formalization by introducing measurable ways of describing relations between concepts.Comment: Accepted at SGAI 2017 (http://www.bcs-sgai.org/ai2017/). The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71078-5_7. arXiv admin note: substantial text overlap with arXiv:1707.05165, arXiv:1706.0636

    Social Sustainability: A design research approach to sustainable development

    Get PDF
    While issues such as clean production and energy efficiency are still central in sustainable development discourse, attention is increasingly on patterns of consumption at multiple levels in society. This opens new opportunities and responsibilities for design research, as we shift from a focus on product lifecycles to people’s lifestyles. It also requires further understanding the ‘social sustainability’ aspects of the environment and development, including the complexity of problematics characterized by uncertainties, contradictions and controversies. In response, we propose a programmatic approach, in which a tentative assemblage of theoretical and experimental strategies frame a common ground for a collaborative and practice-led inquiry. We present a design research program based on two propositions: socio-cultural practices are the basic unit for design, and; transitions, and transition management, are the basic points of design intervention. Rather than affirming the status quo or the prevailing discourse, we argue for design research as a ‘critical practice’, in which cultural diversity, non-humans and multiple futures are considered

    Can geocomputation save urban simulation? Throw some agents into the mixture, simmer and wait ...

    Get PDF
    There are indications that the current generation of simulation models in practical, operational uses has reached the limits of its usefulness under existing specifications. The relative stasis in operational urban modeling contrasts with simulation efforts in other disciplines, where techniques, theories, and ideas drawn from computation and complexity studies are revitalizing the ways in which we conceptualize, understand, and model real-world phenomena. Many of these concepts and methodologies are applicable to operational urban systems simulation. Indeed, in many cases, ideas from computation and complexity studies—often clustered under the collective term of geocomputation, as they apply to geography—are ideally suited to the simulation of urban dynamics. However, there exist several obstructions to their successful use in operational urban geographic simulation, particularly as regards the capacity of these methodologies to handle top-down dynamics in urban systems. This paper presents a framework for developing a hybrid model for urban geographic simulation and discusses some of the imposing barriers against innovation in this field. The framework infuses approaches derived from geocomputation and complexity with standard techniques that have been tried and tested in operational land-use and transport simulation. Macro-scale dynamics that operate from the topdown are handled by traditional land-use and transport models, while micro-scale dynamics that work from the bottom-up are delegated to agent-based models and cellular automata. The two methodologies are fused in a modular fashion using a system of feedback mechanisms. As a proof-of-concept exercise, a micro-model of residential location has been developed with a view to hybridization. The model mixes cellular automata and multi-agent approaches and is formulated so as to interface with meso-models at a higher scale

    Understanding Predication in Conceptual Spaces

    Get PDF
    We argue that a cognitive semantics has to take into account the possibly partial information that a cognitive agent has of the world. After discussing Gärdenfors's view of objects in conceptual spaces, we offer a number of viable treatments of partiality of information and we formalize them by means of alternative predicative logics. Our analysis shows that understanding the nature of simple predicative sentences is crucial for a cognitive semantics
    • …
    corecore