715 research outputs found

    Optimized Contract-based Model for Resource Allocation in Federated Geo-distributed Clouds

    Get PDF
    In the era of Big Data, with data growing massively in scale and velocity, cloud computing and its pay-as-you-go modelcontinues to provide significant cost benefits and a seamless service delivery model for cloud consumers. The evolution of small-scaleand large-scale geo-distributed datacenters operated and managed by individual Cloud Service Providers (CSPs) raises newchallenges in terms of effective global resource sharing and management of autonomously-controlled individual datacenter resourcestowards a globally efficient resource allocation model. Earlier solutions for geo-distributed clouds have focused primarily on achievingglobal efficiency in resource sharing, that although tries to maximize the global resource allocation, results in significant inefficiencies inlocal resource allocation for individual datacenters and individual cloud provi ders leading to unfairness in their revenue and profitearned. In this paper, we propose a new contracts-based resource sharing model for federated geo-distributed clouds that allows CSPsto establish resource sharing contracts with individual datacentersapriorifor defined time intervals during a 24 hour time period. Based on the established contracts, individual CSPs employ a contracts cost and duration aware job scheduling and provisioning algorithm that enables jobs to complete and meet their response time requirements while achieving both global resource allocation efficiency and local fairness in the profit earned. The proposed techniques are evaluated through extensive experiments using realistic workloads generated using the SHARCNET cluster trace. The experiments demonstrate the effectiveness, scalability and resource sharing fairness of the proposed model

    Resource Management In Cloud And Big Data Systems

    Get PDF
    Cloud computing is a paradigm shift in computing, where services are offered and acquired on demand in a cost-effective way. These services are often virtualized, and they can handle the computing needs of big data analytics. The ever-growing demand for cloud services arises in many areas including healthcare, transportation, energy systems, and manufacturing. However, cloud resources such as computing power, storage, energy, dollars for infrastructure, and dollars for operations, are limited. Effective use of the existing resources raises several fundamental challenges that place the cloud resource management at the heart of the cloud providers\u27 decision-making process. One of these challenges faced by the cloud providers is to provision, allocate, and price the resources such that their profit is maximized and the resources are utilized efficiently. In addition, executing large-scale applications in clouds may require resources from several cloud providers. Another challenge when processing data intensive applications is minimizing their energy costs. Electricity used in US data centers in 2010 accounted for about 2% of total electricity used nationwide. In addition, the energy consumed by the data centers is growing at over 15% annually, and the energy costs make up about 42% of the data centers\u27 operating costs. Therefore, it is critical for the data centers to minimize their energy consumption when offering services to customers. In this Ph.D. dissertation, we address these challenges by designing, developing, and analyzing mechanisms for resource management in cloud computing systems and data centers. The goal is to allocate resources efficiently while optimizing a global performance objective of the system (e.g., maximizing revenue, maximizing social welfare, or minimizing energy). We improve the state-of-the-art in both methodologies and applications. As for methodologies, we introduce novel resource management mechanisms based on mechanism design, approximation algorithms, cooperative game theory, and hedonic games. These mechanisms can be applied in cloud virtual machine (VM) allocation and pricing, cloud federation formation, and energy-efficient computing. In this dissertation, we outline our contributions and possible directions for future research in this field

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Resource Management In Cloud And Big Data Systems

    Get PDF
    Cloud computing is a paradigm shift in computing, where services are offered and acquired on demand in a cost-effective way. These services are often virtualized, and they can handle the computing needs of big data analytics. The ever-growing demand for cloud services arises in many areas including healthcare, transportation, energy systems, and manufacturing. However, cloud resources such as computing power, storage, energy, dollars for infrastructure, and dollars for operations, are limited. Effective use of the existing resources raises several fundamental challenges that place the cloud resource management at the heart of the cloud providers\u27 decision-making process. One of these challenges faced by the cloud providers is to provision, allocate, and price the resources such that their profit is maximized and the resources are utilized efficiently. In addition, executing large-scale applications in clouds may require resources from several cloud providers. Another challenge when processing data intensive applications is minimizing their energy costs. Electricity used in US data centers in 2010 accounted for about 2% of total electricity used nationwide. In addition, the energy consumed by the data centers is growing at over 15% annually, and the energy costs make up about 42% of the data centers\u27 operating costs. Therefore, it is critical for the data centers to minimize their energy consumption when offering services to customers. In this Ph.D. dissertation, we address these challenges by designing, developing, and analyzing mechanisms for resource management in cloud computing systems and data centers. The goal is to allocate resources efficiently while optimizing a global performance objective of the system (e.g., maximizing revenue, maximizing social welfare, or minimizing energy). We improve the state-of-the-art in both methodologies and applications. As for methodologies, we introduce novel resource management mechanisms based on mechanism design, approximation algorithms, cooperative game theory, and hedonic games. These mechanisms can be applied in cloud virtual machine (VM) allocation and pricing, cloud federation formation, and energy-efficient computing. In this dissertation, we outline our contributions and possible directions for future research in this field

    A Survey of Resource Management Challenges in Multi-cloud Environment: Taxonomy and Empirical Analysis

    Get PDF
    Cloud computing has seen a great deal of interest by researchers and industrial firms since its first coined. Different perspectives and research problems, such as energy efficiency, security and threats, to name but a few, have been dealt with and addressed from cloud computing perspective. However, cloud computing environment still encounters a major challenge of how to allocate and manage computational resources efficiently. Furthermore, due to the different architectures and cloud computing networks and models used (i.e., federated clouds, VM migrations, cloud brokerage), the complexity of resource management in the cloud has been increased dramatically. Cloud providers and service consumers have the cloud brokers working as the intermediaries between them, and the confusion among the cloud computing parties (consumers, brokers, data centres and service providers) on who is responsible for managing the request of cloud resources is a key issue. In a traditional scenario, upon renting the various cloud resources from the providers, the cloud brokers engage in subletting and managing these resources to the service consumers. However, providers’ usually deal with many brokers, and vice versa, and any dispute of any kind between the providers and the brokers will lead to service unavailability, in which the consumer is the only victim. Therefore, managing cloud resources and services still needs a lot of attention and effort. This paper expresses the survey on the systems of the cloud brokerage resource management issues in multi-cloud environments

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research
    • …
    corecore