322 research outputs found

    A PSO Optimized Model for Identifying Spatio Temporal Hotspots of Terrorist Incidents in India

    Get PDF
    Terrorism is a global issue that prevails throughout the world on all scales. As the distribution of terrorist activities does not follow a random pattern in space and time, its spatiotemporal analysis has drawn considerable attention in recent years. Further, timely identification of Spatio-temporal terrorist activity hotspots is vital to prioritize the security efforts put by a country’s security enforcement agencies. The state-of-the-art methods for Spatiotemporal hotspot detection are based on scan statistics, which enumerates many Spatio-temporal cylinders, making it a computationally expensive approach. Therefore, this paper presents a time-efficient Particle Swarm Optimizer (PSO) based algorithm to detect the most significant Spatio-temporal hotspots. We formulated an optimization model for the problem and applied three variants of PSO viz. conventional PSO, HCL-PSO, and Ensemble PSO. Finally, these schemes have been used to detect spatio-temporal hotspots of different terrorist attacks in India. The results obtained by PSO-based methods have been compared with SaTScan over two parameters: the time required to detect the hotspot and its quality. All the PSO-based schemes significantly outperformed SaTScan in the timely identification of the hotspots. In addition, the quality of hotspots detected by HCL-PSO is at par with SaTScan, whereas the quality of hotspots detected by the other two approaches is slightly lesser than SaTScan. However, the quality of hotspots detected by the other two variants of PSO is slightly lesser than SaTScan. The results are statistically validated using Friedman’s statistical test

    Optimization of Mobility Parameters using Fuzzy Logic and Reinforcement Learning in Self-Organizing Networks

    Get PDF
    In this thesis, several optimization techniques for next-generation wireless networks are proposed to solve different problems in the field of Self-Organizing Networks and heterogeneous networks. The common basis of these problems is that network parameters are automatically tuned to deal with the specific problem. As the set of network parameters is extremely large, this work mainly focuses on parameters involved in mobility management. In addition, the proposed self-tuning schemes are based on Fuzzy Logic Controllers (FLC), whose potential lies in the capability to express the knowledge in a similar way to the human perception and reasoning. In addition, in those cases in which a mathematical approach has been required to optimize the behavior of the FLC, the selected solution has been Reinforcement Learning, since this methodology is especially appropriate for learning from interaction, which becomes essential in complex systems such as wireless networks. Taking this into account, firstly, a new Mobility Load Balancing (MLB) scheme is proposed to solve persistent congestion problems in next-generation wireless networks, in particular, due to an uneven spatial traffic distribution, which typically leads to an inefficient usage of resources. A key feature of the proposed algorithm is that not only the parameters are optimized, but also the parameter tuning strategy. Secondly, a novel MLB algorithm for enterprise femtocells scenarios is proposed. Such scenarios are characterized by the lack of a thorough deployment of these low-cost nodes, meaning that a more efficient use of radio resources can be achieved by applying effective MLB schemes. As in the previous problem, the optimization of the self-tuning process is also studied in this case. Thirdly, a new self-tuning algorithm for Mobility Robustness Optimization (MRO) is proposed. This study includes the impact of context factors such as the system load and user speed, as well as a proposal for coordination between the designed MLB and MRO functions. Fourthly, a novel self-tuning algorithm for Traffic Steering (TS) in heterogeneous networks is proposed. The main features of the proposed algorithm are the flexibility to support different operator policies and the adaptation capability to network variations. Finally, with the aim of validating the proposed techniques, a dynamic system-level simulator for Long-Term Evolution (LTE) networks has been designed

    Commitee "International Conference onElectrical Engineering and Computer Science (ICECOS), 2017"

    Get PDF

    Integrating geospatial, remote sensing, and machine learning for climate-induced forest fire susceptibility mapping in Similipal Tiger Reserve, India

    Get PDF
    Accurately assessing forest fire susceptibility (FFS) in the Similipal Tiger Reserve (STR) is essential for biodiversity conservation, climate change mitigation, and community safety. Most existing studies have primarily focused on climatic and topographical factors, while this research expands the scope by employing a synergistic approach that integrates geographical information systems (GIS), remote sensing (RS), and machine learning (ML) methodologies for identifying and assessing forest fire-prone areas in the STR and their vulnerability to climate change. To achieve this, the study employed a comprehensive dataset of forty-four influencing factors, including topographic, climate-hydrologic, forest health, vegetation indices, radar features, and anthropogenic interference, into ten ML models: neural net (nnet), AdaBag, Extreme Gradient Boosting (XGBTree), Gradient Boosting Machine (GBM), Random Forest (RF), and its hybrid variants with differential evolution algorithm (RF-DEA), Gravitational Based Search (RF-GBS), Grey Wolf Optimization (RF-GWO), Particle Swarm Optimization (RF-PSO), and genetic algorithm (RF-GA). The study revealed high FFS in both the northern and southern portions of the study area, with the nnet and RF-PSO models demonstrating susceptibility percentages of 12.44% and 12.89%, respectively. Conversely, very low FFS zones consistently displayed susceptibility scores of approximately 23.41% and 18.57% for the nnet and RF-PSO models. The robust mapping methodology was validated by impressive AUROC (>0.88) and kappa coefficient (>0.62) scores across all ML validation metrics. Future climate models (ssp245 and ssp585, 2022–2100) indicated high FFS zones along the northern and southern edges of the STR, with the central zone categorized from low to very low susceptibility. Boruta analysis identified actual evapotranspiration (AET) and relative humidity as key factors influencing forest fire ignition. SHAP evaluation reinforced the influence of these factors on FFS, while also highlighting the significant role of distance to road, distance to settlement, dNBR, slope, and humidity in prediction accuracy. These results emphasize the critical importance of the proposed approach for forest fire mapping and provide invaluable insights for firefighting teams, forest management, planning, and qualification strategies to address future fire sustainability

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning

    Committee "A hybrid cuckoo search and K-means for clustering problem"

    Get PDF

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Hybrid dragonfly algorithm with neighbourhood component analysis and gradient tree boosting for crime rates modelling

    Get PDF
    In crime studies, crime rates time series prediction helps in strategic crime prevention formulation and decision making. Statistical models are commonly applied in predicting time series crime rates. However, the time series crime rates data are limited and mostly nonlinear. One limitation in the statistical models is that they are mainly linear and are only able to model linear relationships. Thus, this study proposed a time series crime prediction model that can handle nonlinear components as well as limited historical crime rates data. Recently, Artificial Intelligence (AI) models have been favoured as they are able to handle nonlinear and robust to small sample data components in crime rates. Hence, the proposed crime model implemented an artificial intelligence model namely Gradient Tree Boosting (GTB) in modelling the crime rates. The crime rates are modelled using the United States (US) annual crime rates of eight crime types with nine factors that influence the crime rates. Since GTB has no feature selection, this study proposed hybridisation of Neighbourhood Component Analysis (NCA) and GTB (NCA-GTB) in identifying significant factors that influence the crime rates. Also, it was found that both NCA and GTB are sensitive to input parameter. Thus, DA2-NCA-eGTB model was proposed to improve the NCA-GTB model. The DA2-NCA-eGTB model hybridised a metaheuristic optimisation algorithm namely Dragonfly Algorithm (DA) with NCA-GTB model to optimise NCA and GTB parameters. In addition, DA2-NCA-eGTB model also improved the accuracy of the NCA-GTB model by using Least Absolute Deviation (LAD) as the GTB loss function. The experimental result showed that DA2-NCA-eGTB model outperformed existing AI models in all eight modelled crime types. This was proven by the smaller values of Mean Absolute Percentage Error (MAPE), which was between 2.9195 and 18.7471. As a conclusion, the study showed that DA2-NCA-eGTB model is statistically significant in representing all crime types and it is able to handle the nonlinear component in limited crime rate data well

    Applications of Computational Intelligence to Power Systems

    Get PDF
    In power system operation and control, the basic goal is to provide users with quality electricity power in an economically rational degree for power systems, and to ensure their stability and reliability. However, the increased interconnection and loading of the power system along with deregulation and environmental concerns has brought new challenges for electric power system operation, control, and automation. In the liberalised electricity market, the operation and control of a power system has become a complex process because of the complexity in modelling and uncertainties. Computational intelligence (CI) is a family of modern tools for solving complex problems that are difficult to solve using conventional techniques, as these methods are based on several requirements that may not be true all of the time. Developing solutions with these “learning-based” tools offers the following two major advantages: the development time is much shorter than when using more traditional approaches, and the systems are very robust, being relatively insensitive to noisy and/or missing data/information, known as uncertainty

    A pilot study on discriminative power of features of superficial venous pattern in the hand

    Get PDF
    The goal of the project is to develop an automatic way to identify, represent the superficial vasculature of the back hand and investigate its discriminative power as biometric feature. A prototype of a system that extracts the superficial venous pattern of infrared images of back hands will be described. Enhancement algorithms are used to solve the lack of contrast of the infrared images. To trace the veins, a vessel tracking technique is applied, obtaining binary masks of the superficial venous tree. Successively, a method to estimate the blood vessels calibre, length, the location and angles of vessel junctions, will be presented. The discriminative power of these features will be studied, independently and simultaneously, considering two features vector. Pattern matching of two vasculature maps will be performed, to investigate the uniqueness of the vessel network / L’obiettivo del progetto è di sviluppare un metodo automatico per identificare e rappresentare la rete vascolare superficiale presente nel dorso della mano ed investigare sul suo potere discriminativo come caratteristica biometrica. Un prototipo di sistema che estrae l’albero superficiale delle vene da immagini infrarosse del dorso della mano sarà descritto. Algoritmi per il miglioramento del contrasto delle immagini infrarosse saranno applicati. Per tracciare le vene, una tecnica di tracking verrà utilizzata per ottenere una maschera binaria della rete vascolare. Successivamente, un metodo per stimare il calibro e la lunghezza dei vasi sanguigni, la posizione e gli angoli delle giunzioni sarà trattato. Il potere discriminativo delle precedenti caratteristiche verrà studiato ed una tecnica di pattern matching di due modelli vascolari sarà presentata per verificare l’unicità di quest
    • …
    corecore