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AbSTrAcT

Terrorism is a global issue that prevails throughout the world on all scales. As the distribution of terrorist 
activities does not follow a random pattern in space and time, its spatiotemporal analysis has drawn considerable 
attention in recent years. Further, timely identification of Spatio-temporal terrorist activity hotspots is vital to prioritize 
the security efforts put by a country’s security enforcement agencies. The state-of-the-art methods for Spatio-
temporal hotspot detection are based on scan statistics, which enumerates many Spatio-temporal cylinders, making 
it a computationally expensive approach. Therefore, this paper presents a time-efficient Particle Swarm Optimizer 
(PSO) based algorithm to detect the most significant Spatio-temporal hotspots. We formulated an optimization 
model for the problem and applied three variants of PSO viz. conventional PSO, HCL-PSO, and Ensemble PSO. 
Finally, these schemes have been used to detect spatio-temporal hotspots of different terrorist attacks in India. The 
results obtained by PSO-based methods have been compared with SaTScan over two parameters: the time required 
to detect the hotspot and its quality. All the PSO-based schemes significantly outperformed SaTScan in the timely 
identification of the hotspots. In addition, the quality of hotspots detected by HCL-PSO is at par with SaTScan, 
whereas the quality of hotspots detected by the other two approaches is slightly lesser than SaTScan. However, 
the quality of hotspots detected by the other two variants of PSO is slightly lesser than SaTScan. The results are 
statistically validated using Friedman’s statistical test.
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1.  InTrOducTIOn
Terrorism is a global concern, and recently a remarkable 

surge in the number of terrorist activities has been witnessed 
worldwide. Indian sub-continent is no exception. As reported 
in the Global Terrorism Database (GTD), India’s number 
of terrorist attacks has increased from 1 in 1972 to 966 
in 20171. Also, the number of terrorism-related fatalities 
(including civilians and security personnel) in India was 
465, 940, and 621 in 2017, 2018, and 2019 respectively1.  
      Understanding the geographical aspects (like spatial and 
temporal patterns) of terrorist incidents is vital to counter  
them2. Timely identification of spatial and temporal patterns 
(like hotspots) of terrorist incidents is indispensable to reduce 
the loss of life and property. As defined in 3, the spatial hotspot 
is a region where the number of incidents inside the region 
is considerably higher than those outside it. Identifying the 
terrorist hotspots may play a vital role in countering terrorist 
activities. In case of scarce resources identifying the most 
significant hotspots of terrorist incidents offers an effective 
way to prioritize the security efforts. As discussed in4, early 
detection of emerging hotspots might help the defense 
forces and governments prioritize “where and when should 
they allocate their resources and efforts in their fight against 
terrorism.” 

In monitoring (or countering) the terrorist activities, 
security forces are more concerned in those hotspots (Spatio-
temporal) which are active till date (the end of the study 
period), often called emerging hotspots. Unlike spatial hotspots, 
incorporating time as a third dimension (i.e., Spatio-temporal 
hotspots) helps in the identification of active, emerging, 
diminishing, or persistent hotspots 5. An example of the Spatio-
temporal hotspots is shown in Figure 1, where hotspot A (blue 
hotspot) is active/alive till the end of the study period. Hence, 
it is an emerging hotspot. 

Figure 1. Example of emerging hotspot, i.e., the hotspot 
which is active till the end of the study period  
(blue cylinder).

In literature, one of the most popular methods to detect 
alive or emerging hotspots is based on space-time scan 
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statistics, proposed by kulldorff 6 and is popularly known 
as SaTScan. Spatio Temporal SaTScan (ST-SaTScan) uses a 
cylindrical window with a circular base representing the space 
(region) and height representing the time. This cylindrical 
window moves in spatial and temporal domains to enumerate 
candidate cylindrical hotspots. Spatially, many cylinder bases 
with different geographical centers and radius are generated. 
Each activity point is considered as center and distance to every 
other activity point as radii 6. Temporally, consideration of 
different starting dates for each cylinder base results in different 
cylinder heights. Hence, many candidate cylindrical hotspots 
with varying bases and heights are generated. A statistical 
measure called Log-Likelihood Ratio 7, which indicates 
a hotspot’s strength, is then calculated for each cylinder. 
The significance of a hotspot is confirmed by relying on 
randomization tests to determine whether the observed pattern 
is significant or has occurred by chance. As ST-SaTScan is a 
brute force algorithm, the hotspots detected by ST-SaTScan are 
considered actual hotspots (i.e., 100% accurate) in the given 
search space. However, the generation of too many cylinders, 
followed by a randomization test, makes ST-SaTScan a high 
computational cost method 3. Therefore, in applications where 
timely identification of hotspots matters like terrorist activities, 
evacuation planning, natural disasters, etc., the usage of ST-
SaTScan is inefficient. 

Even though terrorist activities are major security threats 
at national/international levels, limited contributions have 
been reported in the literature to detect the emerging terrorism 
hotspots. In one study, Siebeneck et al. used autocorrelation, 
cluster detection, and hotspot identification to understand the 
terrorism patterns in space and time 8. Also, Braithwaite and 
Li presented an autocorrelation method to detect transnational 
terrorism hotspots 4. Autocorrelation is a local spatial statistics 
method. The authors identified a few countries (terrorism 
hotspots) which may encounter more attacks in the future. 
However, their analysis’s spatial and temporal data were 
not tightly coupled. In another study, Guo et al. 9 applied a 
prospective statistical scanning algorithm (ST-SaTScan) to 
identify terrorist incident hotspots. Few other studies have 
used ST-SaTScan as well to detect terrorist hotspots 10,11. To 
find an efficient solution to hotspot detection problem, some 
studies have used Nature-Inspired Algorithms like Genetic 
Algorithms and Particle Swarm Optimizer 12,13. However, these 
studies do not address terrorist hotspots and are more focused 
on optimizing the shape of hotspots. 

Considering the inefficiency of ST-SaTScan and 
limitations of other approaches, in this paper, we present 
a time-efficient Particle Swarm Optimizer (PSO) based 
algorithm to detect the most significant emerging terrorist 
hotspots. We formulate an optimization model for the problem 
and apply three variants of PSO viz. constriction coefficient 
PSO, HCL-PSO, and Ensemble PSO to the proposed model. 
These approaches have been compared with ST-SaTScan for 
different types of terrorist attacks in India from 2016 to 2021. The 
comparison is made in terms of the time taken to detect the 
hotspots and their quality (in terms of Log-Likelihood Ratio).  
     The rest of the paper is organized as follows: Section 2 
presents the proposed optimization model and PSO-based 

schemes for detecting emerging hotspots. In Section 3, first, 
we detail the terrorist activity dataset used in this paper. Also, 
a comparative analysis of ST-SaTScan with proposed PSO-
based schemes is presented. Finally, conclusions and future 
scope of the work are discussed in Section 4.

2.  PrOPOSEd WOrK
This section briefly describes PSO and its variants, the 

proposed optimization model, and the PSO-based schemes to 
detect emerging terrorist hotspots. 

2.1 Particle Swarm Optimizer
In the PSO algorithm 14, every particle owns a position 

iX  (representing a possible solution) and a velocity, iV , 
which are d  dimensional vectors where d  is the dimension 
of the search space. The quality (or fitness) of each particle 

is evaluated with a fitness function ()f . The algorithm begins 

with the initialization of the position iX and the velocity iV
. In subsequent steps, each particle iteratively moves to better 
positions in the search space by updating its velocity Eqn (1) 
and position Eqn. (2)15. Each particle’s movement is guided by 

its own local best position (called ipbest ) as well as the best 

position obtained by the entire group of particles (called gbest ). 

       
( ) ( ) ( )( )

( )( )
1

2

1i i i i

i

v t v t rand pbest x t

rand gbest x t

+ = ω× + α × × − +
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Where, ω  represents the inertia weight of the particle, 1rand

and 2rand  are random numbers in the range [0,1], α and
β  represent the swarm’s cognitive and social components, 
respectively. 

The iterative process continues until some convergence 
criteria, which can be a maximum number of iterations or the 
same fitness obtained for a fixed number of iterations. Often, 
PSO stagnates in local optima due to its sensitivity to cognitive 
and social parameters15-16. This issue has been handled differently 
by various authors. In16, the authors introduced a constriction 
coefficient for the careful setting of PSO parameters which 
helped in the increased ability of PSO to reach global optima. In 
another contribution, the authors introduced a Heterogeneous 
Comprehensive Learning PSO (HCL-PSO)17, dividing 
particles into two groups (subpopulations), each focusing on 
exploration and exploitation. In 2017, Lynn et al.18 proposed an 
Ensemble approach by hybridizing five variants of PSO. The 
variants are self-adaptive, and the best-performing algorithm 
is identified for each generation and is used next. Inspired by 
the No Free Lunch (NFL) theorem19, we applied the discussed 
three variants of PSO viz. Constriction Coefficient based PSO 
(CC-PSO), HCL-PSO, and Ensemble PSO to detect the most 
significant emerging hotspots.

(1)

(2)
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2.2 Proposed Optimization Model for Emerging 
Hotspot detection
For a given set of terrorist attack locations A  (latitude, 

longitude, time of event) and a search space R , it is desired 
to find such cylinders in R that have the highest log-likelihood 
ratio ( LLR ). The obtained cylinder with the highest LLR  is the 
most significant hotspot in our model. Therefore, our proposed 
model aims to maximize the LLR . The decision variables of our 

optimization model are ( , ),c cx y r and T (presented in Table I).  

decision Variable description

( , )c cx y Center of the base of cylinder (a latitude-longitude pair representing a location in search space)

r The radius of the cylinder
T Height of cylinder from the end of the study period 

(representing time window ( 1)th thT t toT− + day/month/year). 
This allows only emerging hotspots.

Table 1. decision Variables in the optimization model for detecting emerging hotspots

These variables represent a candidate emerging cylindrical 
hotspot Z  in our model. Subsequently, we formulate the 
proposed optimization model. 

 Maximize  ( )( ), , ,c cLLR Z x y r t  
where,     

( ) ( )
( )

( ) ( )
( )

( )

( ) ( )( ) ( ) ( )
log , ,

( )

a ac Z A c Z

a a
a e e

e e

c Z A c Z A vol Z t
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c Z A c Z vol R T
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− × ×
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            (3)     

 Subject to
 

         
( ),c cx y A∈

                                                        
 (4)                                                                     

        min_ max_rad r rad≤ ≤
                                  

  (5)                                                                    

                        2 / 2t T≤ ≤                                        (6)                                                                                    

The objective function presented in Eqn. (3) represents 
the Log-Likelihood Ratio20 of the candidate cylinder Z . It is 
defined using the center, radius, and height which are decision 
variables for the model. In Eqn. (3), A  is the total number of 

terrorist activity count in the set, ( )ac Z is the actual number of 

terrorist activities within cylinder Z  and ( )ec Z  is the expected 

number of terrorist activities within Z . Futher, ( )vol Z is the 

volume of cylinder Z , ( )vol R  is the total volume of search 
space R , T is the number of days/months under consideration 

for analysis and ( ( ), ( ))a eI c Z c Z is a binary function having 

value as 1 if, ( ) ( )a ec Z c Z> otherwise, it is 0. The constraints 
in the proposed model are presented in Eqn (4-6). Constraint 

(4) is used to keep the center ( , )c cx y of the cylinder as an 
activity point in set A. Constraint (5) represents the bounding 
condition for the radius of the cylinder. The lower bound and 
upper bound on height representing the temporal dimension 

is presented in (6). These bounds are kept the same for all the 
compared schemes for fair analysis.

2.3 Proposed PSO-based Schemes for Emerging 
Terrorist Hotspot detection
This section presents an overall scheme for emerging 

hotspot detection by applying PSO to the proposed optimization 
model. The presented scheme is now onwards referred to as 
EHD-PSO (Emerging hotspot detection using PSO). Figure 2 
illustrates the major steps of the proposed scheme as a block 

diagram. It indicates that EHD-PSO has three main steps: (1) 
Generating the distribution of Log-Likelihood ratio under 
null hypothesis H0, (2) Finding the cylindrical hotspot with 
maximum likelihood ratio in the search space R, and (3) 
Statistical significance using hypothesis test.

A prerequisite of Step 1 is defining a hypothesis test to 
check candidate cylinders for statistical significance. The 
following question needs to be addressed for each cylinder: “Is 
there any difference in the concentration of activities inside vs 
outside the cylinder?”. The hypothesis test is constructed with 
two outcomes, null hypothesis (H0) and alternate hypothesis 
(H1). The null hypothesis states that “The number of terrorist 
activities follows complete spatial randomness in the study 
area R”. In contrast, the alternate hypothesis states that “the 
frequency of occurrence of terrorist activities is higher within 
the cylinder as compared to outside”. Once the hypothesis is 
defined, it is then used in Step 1 to find the distribution of LLR 
value under the null hypothesis H0. This distribution indicates 
what to expect when there are no hotspots in the study area R. 
Randomization test is carried out to obtain this distribution as 
follows: Monte Carlo Simulations (MCS) are used to perform 
the randomization test and get the distribution of LLR under H0. 
In total, ‘m’ random datasets in the study area R are generated 
using complete spatial randomness. All possible cylinders are 
enumerated for each of the ‘m’ random datasets. The maximum 
LLR value is stored in a list maxLLRs in descending order to 
obtain the required distribution.

In the second step, the proposed scheme uses PSO to 
find the cylindrical hotspot with maximum likelihood ratio in 
the search space R using terrorist activity set A. The decision 
variables, fitness function, and constraints used by PSO 
are presented in Section 2.4. Initially, each of the k particles 
is randomly placed in the search space where each particle has 

four dimensions representing the center ( , )c cx y , radius ( r ), and 
height ( t ) of the cylindrical window. To ensure the detection 
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of emerging hotspots only, the height ( t ) of the cylindrical 
window is considered from the end date of the study period. 
The fitness value ( LLR ) of each particle is calculated using 

Eqn (3) to identify the global best ( )gbest and personal best

( )ipbest position of each particle. 
While calculating LLR  for a cylindrical zone, all those 

activities whose coordinates lie within the circular spatial 
base of the cylinder are considered inside the zone Z . The 

sum of activity count of cases from ( 1)th thT t toT− + month 

inside z is used as ( )ac Z . Particles then update their velocities 

and positions based on ipbest and gbest using Eqn(1-2). All 
the particles keep wandering in the search space to reach the 
optimum value of LLR until a convergence criterion is met. The 
EHD-PSO scheme converges if the best solution in the swarm 
does not improve continuously for a fixed number of iterations 
or a maximum number of iterations iter has been reached. 

The global best value gbest after convergence represents the 
cylindrical hotspot CH with maximum LLR value.

The third step of the proposed scheme checks the 
statistical significance of hotspot CH using a hypothesis test. 

The p value− of CH is required to check CH for statistical 

significance. The relative position of ( )LLR Z in maxLLRs list 

is determined first to calculate the p value− of the cylindrical 

zone CH. The p value− is then calculated by taking the ratio 

between ipos and 1m + where m  is the number of Monte Carlo 

Simulations. If the p value− of CH  is less than pα , then we 
print CH  as the most significant emerging hotspot.

The time complexity of the proposed PSO-based scheme 

for hotspot detection is ( )O m iter K A× × × .Whereas the 

total time complexity of ST-SaTScan is 3( )O m A iter× × . 
It is evident that the proposed scheme is more efficient than 
the conventional ST-SaTScan method for emerging hotspot 
detection. 

3.  ExPErIMEnTS And rESulTS 
In this section, we present the experimental details and 

results obtained for ST-SaTScan and EHD-PSO schemes on 
the terrorist activities datasets of India. We first describe the 
terrorist activity datasets used in our experiments, followed 
by the performance analysis of ST-SaTScan and three EHD-
PSO schemes viz. EHD-CCPSO, EHD-HCLPSO, and EHD-
EPSO. The experiments are conducted on an Intel CORE 
i7 processor with 8 GB RAM using MATLAB R2018a. 

3.1 dataset
In our experiments, we have used the terrorist activities 

that occurred in India. This dataset is obtained from The 
Armed Conflict Location & Event Data Project (ACLED)21, 
which is openly available for research and analysis. For 
our experiments, we extracted previous 5-year data (2016-
2021) of different types of terrorist activities in India. The 
extracted data includes the date of the event, event type, 
actor, latitude, and longitude, etc. We segregated the data 
into 4 case studies based on the type of terrorist event. 
These events include grenade explosions (GE), remote 
explosion or landmine (RE), violence against civilians 
(VAC), and attacks in North-East states of India (NEA). 
These datasets include 358, 732, 251, and 442 activity points.  

3.2 comparative Analysis
Performance of the various hotspot detection schemes 

presented in the paper have been analyzed over the following 
parameters: LLR, Relative error (computed using Eqn. (7)), 
and the required execution time (excluding the time for Monte 
Carlo simulations). 

       100%SaTScan EHD PSO

SaTScan

MaxLLR MaxLLR
RE

MaxLLR
−−

= ×         
   (7)

As discussed earlier, the analysis has been done 
independently for the following four events i.e., GE, RE, VAC, 
and NEA. All the PSO-based parameters (listed in Table II) are 
kept the same for impartial comparison among the presented 

Figure 2. block diagram of the proposed scheme EHd-PSO, where A is the Activity set, r is the search space, rmin is the minimum 
desired radius of the hotspot.
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schemes. Table 2 presents the values of these parameters widely 
used in the literature 16,22 and hence used in our experiments. 
Each experiment is conducted for 10 independent runs, and the 
maximum LLR value (bestLLR), the average of LLR values ( 
avgLLR),  their standard deviation, and average relative error 
(avgRE) are reported in Table III. Table III presents the obtained 
bestLLR, avgLLR, stdev, and avgRE of the emerging hotspots 
detected by ST-SaTScan, EHD-CCPSO, EHD-HCLPSO, and 
EHD-EPSO schemes over the following datasets: GE, RE, 
VAC, and NEA. 

The execution time taken by all the schemes on different 
datasets is presented in Fig. 3. It is observed that the time 
taken by EHD-CCPSO, EHD-HCLPSO, and EHD-EPSO is 
significantly less than the execution time of the ST-SaTScan 
approach. Among the three PSO-based schemes, EHD-
CCPSO takes minimum time which may be attributed to its 
pre convergence on local optima, which is also evident from 
its high average relative error (43.9%). The extremely high 
difference in execution time of PSO based schemes and ST-
SaTScan is attributed to their O(m × iter × k × |A|) and O (m × 
|A|3 × iter) time complexities, respectively.

Parameter Value
Population Size 50
α (cognitive component) 2.05  
β (social component) 2.05
Ω (inertia weight) Linearly decreased from 0.9 

to 0.2 
Maximum number of iterations 500
Number of iterations for 
convergence

                    100

m (Number of Monte Carlo 
Simulations)

99

αp (p-value threshold) 0.01

Table 2. Parameter setting in EHd schemes

As observed from Table 3, out of the three PSO-based 
schemes, performance (in terms of the bestLLR) of EHD-
HCLPSO and EHD-EPSO seems to be more promising than 
EHD-CCPSO. The maximum relative error for EHD-HCLPSO 
and EHD-EPSO is 0.202% and 4.552%, respectively. In 
contrast, the maximum relative error for EHD-CCPSO is 
43.9%. The results indicate that EHD-CCPSO gets trapped in 
local optima and hence is a non-promising approach. 

dataset and number 
of points  ST-SaTScan EHd-ccPSO EHd-HclPSO EHd-EPSO

GE bestLLR 1367.247 1347.763 1367.247 1366.775
(358) avgLLR 1186.829 1367.247 1361.542
 stdev 125.656 0 4.171

 avg RE 13.196 0 0.417
RE bestLLR 740.847 505.855 740.847 740.847
(732) avgLLR 415.594 740.847 740.847
 stdev 99.799 0 0

 avg RE 43.903 0 0
VAC bestLLR 111.233 95.204 111.233 107.105
(251) avgLLR 77.649 111.009 106.17
 stdev 24.236 0.309 1.08

 avg RE 30.193 0.202 4.552
NEA bestLLR 213.478 138.766 213.478 213.478
(442) avgLLR 135.316 213.436 203.989
 stdev 2.654 0.028 23.522

 avg RE  36.614 0.02 4.445

Table 3. bestllr, avgllr, Standard deviation (stdev), and average relative error (avg rE) obtained in 10 independent runs of 
ST-SaTScan, EHd-ccPSO, EHd-HclPSO, and EHd-EPSO on four case studies viz. GE, rE, VAc, and nEA.

Figure 3. Execution time taken by ST-SaTScan, EHd-ccPSO, 
EHd-HclPSO, and EHd-EPSO for detecting emerging 
hotspots on four datasets, viz., GE, rE, VAc, and 
nEA.
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 (a) 

 (c)  (b) 

Figure 4. (a) Terrorist activity dataset GE (Grenade Explosions) and GE hotspots identified by: (b) ST-SaTScan (c) EHD-CCPSO 
(d) EHd-HclPSO and (e) EHd-EPSO. 
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 (a) 

Figure 4. (a) Terrorist activity dataset GE (Grenade Explosions) and GE hotspots identified by: (b) ST-SaTScan, (c) EHD-CCPSO, 
(d) EHd-HclPSO, and (e) EHd-EPSO. 

Figure 5.  (a) Terrorist activity dataset VAC (Violence against Civilians) and VAC hotspots identified by: (b) ST-SaTScan (c) EHD-
ccPSO (d) EHd-HclPSO and (e) EHd-EPSO. 
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 (b) 

 (d)  (e) 

 (c) 

Figure 5.  (a) Terrorist activity dataset VAC (Violence against Civilians) and VAC hotspots identified by: (b) ST-SaTScan (c) EHD-
ccPSO (d) EHd-HclPSO and (e) EHd-EPSO. 

Finally, the hotspots identified by different schemes 
on two (GE and VAC) of the four case studies are shown in 
Figure 4 (GE) and Figure 5 (VAC). The detected hotspots have 
been presented on maps created using the Google MyMaps 
application. In both Figure 4(a) and Figure 5(a), the various 
terrorist activity points have been presented on the map of India, 
whereas (b) to (e) in Figure 4 and Figure 5 represents hotspots 
detected by ST-SaTScan, EHD-CCPSO, EHD-HCLPSO, and 
EHD-EPSO respectively. These hotspots have been presented 
in the zoomed map of India.  

For the terrorist activity type GE, all the four schemes have 
detected the center of the emerging hotspot around Srinagar in 

Jammu and kashmir and cover the localities like Pulwama, 
Barsoo, Pinglena, Tral, etc. The hotspot radius detected by ST-
SaTScan, EHD-HCLPSO, and EHD-EPSO is 46.9 km. The 
timespan of the emerging hotspot is from 2016 to the end of 
the study period. However, the radius of the hotspot detected 
by EHD-CCPSO is slightly less, i.e., 43 km, and the timespan 
of the emerging hotspot is from 2017 to the end of the study 
period.

For the terrorist activity type VAC, all the four schemes 
have detected the center of the emerging hotspot around Hawal 
in Jammu and kashmir and cover the localities like Shopian, 
Ramnagri, Bara Pora, etc. The period of the emerging hotspot 
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is from 2016 to the end of the study period. The hotspot radius 
detected by ST-SaTScan, EHD-HCLPSO, and EHD-EPSO is 
around 22.24 km. However, the radius of the hotspot detected 
by EHD-CCPSO is a little more, i.e., 59.5 km, and the timespan 
of the emerging hotspot is from 2018 to 2021.

3.3 dIScuSSIOnS
This section presents the analysis and discussions 

of the comparative results obtained in subsection 3.2. 
As discussed in previous sections, the time complexities 
of ST-SaTScan and EHD-PSO are O (m × |A|3) and O 
(m × iter × k × |A|), respectively. Unlike ST-SaTScan, 
PSO-based schemes do not require enumeration of all 
the cylinders in the search space. Instead, particles in 
PSO use social and cognitive intelligence to reach the 
approximate optimum cylinder depicting a hotspot. Thus, 
reducing the time complexity by two orders of magnitude. 
This considerable difference in the execution time of 
ST-SaTScan and PSO-based schemes is also evident in 
the experimental results shown in Fig. 3. However, it 
is observed that this reduction in running time is not at 
the cost of the accuracy of hotspot detection, which is 
evident from the relative errors reported by PSO-based 
schemes as presented in Table 3.

Further, among the three PSO-based schemes, it is 
observed that the time taken EHD-CCPSO is minimum, 
followed by EHD-EPSO and EHD-HCLPSO, respectively. 
The less time taken by EHD-CCPSO may be attributed 
to its pre convergence on local optima, which is also 
evident from its high average relative error (43.9%). 
The average relative error of 0.202%,4.552%, and 43.9% 
obtained by EHD-HCLPSO, EHD-EPSO, and EHD-CCPSO, 
respectively, indicate the superiority of HCL-PSO for 
hotspot detection. The superiority of EHD-HCLPSO 
can be attributed to the fact that HCLPSO maintains a 
balance between exploration and exploitation by dividing 
particles into two groups (subpopulations), each focusing 
on one aspect and bypassing the local optima to reach 
the global optima. 

A non-parametric statistical test called Friedman 
Test is used to validate the observations statistically. 
The null hypothesis assumes that all the three schemes 
are equivalent in their average relative error. In contrast, 
the alternatives hypothesis states that the three schemes 
differ in average relative error. Table 4 reports the ranks 
assigned to each scheme for each of the four datasets, and 
thus Friedman’s statistic is computed 23. The obtained 
p-value of 0.0028 suggests that the three approaches 
differ significantly, and the null hypothesis is rejected. 
The significant difference is the squared rum of ranks 
of the three schemes also supports the rejection of null 
hypothesis.

The superiority of EHD-HCLPSO can be pictorially 
validated by representation ranks using a radar chart, as 
shown in Figure 6.

Finally, as observed from the presented case studies, 
among the PSO-based schemes, the performance of 
EHD-HCLPSO is relatively better. Also, EHD-HCLPSO 

takes significantly lesser execution time than ST-SaTScan 
and seems a more promising approach among the four 
presented schemes.

dataset EHd-ccPSO EHd-HclPSO EHd-EPSO
GE 3 1 2
RE 3 1.5 1.5
VAC 3 1 2
NEA 3 1 2
Average Ranks 3 1.125 1.875
Squared sum of 
ranks 144 20.25 56.25

Table 4. comparison of EHd-ccPSO, EHd-HclPSO, and 
EHd-EPSO in terms of ranks

4.  cOncluSIOnS 
In this paper, we modeled the emerging hotspot detection 

problem as an optimization problem. We applied three variants 
of PSO viz. CCPSO, HCL-PSO, and EPSO to identify the 
emerging terrorist hotspots in India.  The experiments for 
emerging hotspot detection have been performed over four 
types of terrorist activities data viz. GE, RE, VAC, and NEA 
from the year 2016 to 2021 obtained from The Armed Conflict 
Location & Event Data Project. The performances of EHD-
HCLPSO and EHD-EPSO are at par with SaTScan in terms 
of the quality of detected hotspots. Among these two PSO 
based schemes, EHD-HCLPSO is comparatively better than 
EHD-EPSO in terms of average relative error. In contrast, they 
are significantly better than ST-SaTScan in terms of required 
computational time. The observed performances indicate 
the suitability of EHD-HCLPSO for rapid and effective 
surveillance of terrorist activities and hence their remedial 
planning by appropriate government agencies. 

Besides the strengths and applicability of this study, the 
addition of some relevant information in the context of terrorist 
activities, viz. time of the event, count of affected people, etc., 
may help strengthen the conclusions in future studies. 

Figure 6. radar plot for the ranks of EHd-ccPSO, EHd-
HclPSO and EHd-EPSO
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