27,735 research outputs found

    Fuzzy Lattice Reasoning for Pattern Classification Using a New Positive Valuation Function

    Get PDF
    This paper describes an enhancement of fuzzy lattice reasoning (FLR) classifier for pattern classification based on a positive valuation function. Fuzzy lattice reasoning (FLR) was described lately as a lattice data domain extension of fuzzy ARTMAP neural classifier based on a lattice inclusion measure function. In this work, we improve the performance of FLR classifier by defining a new nonlinear positive valuation function. As a consequence, the modified algorithm achieves better classification results. The effectiveness of the modified FLR is demonstrated by examples on several well-known pattern recognition benchmarks

    Learning Hybrid Neuro-Fuzzy Classifier Models From Data: To Combine or Not to Combine?

    Get PDF
    To combine or not to combine? Though not a question of the same gravity as the Shakespeare’s to be or not to be, it is examined in this paper in the context of a hybrid neuro-fuzzy pattern classifier design process. A general fuzzy min-max neural network with its basic learning procedure is used within six different algorithm independent learning schemes. Various versions of cross-validation, resampling techniques and data editing approaches, leading to a generation of a single classifier or a multiple classifier system, are scrutinised and compared. The classification performance on unseen data, commonly used as a criterion for comparing different competing designs, is augmented by further four criteria attempting to capture various additional characteristics of classifier generation schemes. These include: the ability to estimate the true classification error rate, the classifier transparency, the computational complexity of the learning scheme and the potential for adaptation to changing environments and new classes of data. One of the main questions examined is whether and when to use a single classifier or a combination of a number of component classifiers within a multiple classifier system

    A comparative study of general fuzzy min-max neural networks for pattern classification problems

    Full text link
    © 2019 Elsevier B.V. General fuzzy min-max (GFMM) neural network is a generalization of fuzzy neural networks formed by hyperbox fuzzy sets for classification and clustering problems. Two principle algorithms are deployed to train this type of neural network, i.e., incremental learning and agglomerative learning. This paper presents a comprehensive empirical study of performance influencing factors, advantages, and drawbacks of the general fuzzy min-max neural network on pattern classification problems. The subjects of this study include (1) the impact of maximum hyperbox size, (2) the influence of the similarity threshold and measures on the agglomerative learning algorithm, (3) the effect of data presentation order, (4) comparative performance evaluation of the GFMM with other types of fuzzy min-max neural networks and prevalent machine learning algorithms. The experimental results on benchmark datasets widely used in machine learning showed overall strong and weak points of the GFMM classifier. These outcomes also informed potential research directions for this class of machine learning algorithms in the future

    Tuning of a fuzzy classifier derived from data

    Get PDF
    AbstractIn our previous work we developed a method for extracting fuzzy rules directly from numerical data for pattern classification. The performance of the fuzzy classifier developed using this methodology was comparable to the average performance of neural networks. In this paper, we further develop two methods, a least squares method and an iterative method, for tuning the sensitivity parameters of fuzzy membership functions by which the generalization ability of the classifier is improved. We evaluate our methods using the Fisher iris data and data for numeral recognition of vehicle license plates. The results show that when the tuned sensitivity parameters are applied, the recognition rates are improved to the extent that performance is comparable to or better than the maximum performance obtained by neural networks, but with shorter computational time

    Spectral Pattern Recognition and Fuzzy Artmap Classification: Design Features, System Dynamics and Real World Simulation

    Get PDF
    Classification of terrain cover from satellite radar imagery represents an area of considerable current interest and research. Most satellite sensors used for land applications are of the imaging type. They record data in a variety of spectral channels and at a variety of ground resolutions. Spectral pattern recognition refers to classification procedures utilizing pixel-by-pixel spectral information as the basis for automated land cover classification. A number of methods have been developed in the past to classify pixels [resolution cells] from multispectral imagery to a priori given land cover categories. Their ability to provide land cover information with high classification accuracies is significant for work where accurate and reliable thematic information is needed. The current trend towards the use of more spectral bands on satellite instruments, such as visible and infrared imaging spectrometers, and finer pixel and grey level resolutions will offer more precise possibilities for accurate identification. But as the complexity of the data grows, so too does the need for more powerful tools to analyse them. It is the major objective of this study to analyse the capabilities and applicability of the neural pattern recognition system, called fuzzy ARTMAP, to generate high quality classifications of urban land cover using remotely sensed images. Fuzzy ARTMAP synthesizes fuzzy logic and Adaptive Resonance Theory (ART) by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of category choice, search and learning. The paper describes design features, system dynamics and simulation algorithms of this learning system, which is trained and tested for classification (8 a priori given classes) of a multispectral image of a Landsat-5 Thematic Mapper scene (270 x 360 pixels) from the City of Vienna on a pixel-by-pixel basis. Fuzzy ARTMAP performance is compared with that of an error-based learning system based upon the multi-layer perceptron, and the Gaussian maximum likelihood classifier as conventional statistical benchmark on the same database. Both neural classifiers outperform the conventional classifier in terms of classification accuracy. Fuzzy ARTMAP leads to out-of-sample classification accuracies, very close to maximum performance, while the multi-layer perceptron--like the conventional classifier--shows difficulties to distinguish between some land use categories

    Combining Neuro-Fuzzy Classifiers for Improved Generalisation and Reliability

    Get PDF
    In this paper a combination of neuro-fuzzy classifiers for improved classification performance and reliability is considered. A general fuzzy min-max (GFMM) classifier with agglomerative learning algorithm is used as a main building block. An alternative approach to combining individual classifier decisions involving the combination at the classifier model level is proposed. The resulting classifier complexity and transparency is comparable with classifiers generated during a single crossvalidation procedure while the improved classification performance and reduced variance is comparable to the ensemble of classifiers with combined (averaged/voted) decisions. We also illustrate how combining at the model level can be used for speeding up the training of GFMM classifiers for large data sets

    Automated construction of a hierarchy of self-organized neural network classifiers

    Full text link
    This paper documents an effort to design and implement a neural network-based, automatic classification system which dynamically constructs and trains a decision tree. The system is a combination of neural network and decision tree technology. The decision tree is constructed to partition a large classification problem into smaller problems. The neural network modules then solve these smaller problems. We used a variant of the Fuzzy ARTMAP neural network which can be trained much more quickly than traditional neural networks. The research extends the concept of self-organization from within the neural network to the overall structure of the dynamically constructed decision hierarchy. The primary advantage is avoidance of manual tedium and subjective bias in constructing decision hierarchies. Additionally, removing the need for manual construction of the hierarchy opens up a large class of potential classification applications. When tested on data from real-world images, the automatically generated hierarchies performed slightly better than an intuitive (handbuilt) hierarchy. Because the neural networks at the nodes of the decision hierarchy are solving smaller problems, generalization performance can really be improved if the number of features used to solve these problems is reduced. Algorithms for automatically selecting which features to use for each individual classification module were also implemented. We were able to achieve the same level of performance as in previous manual efforts, but in an efficient, automatic manner. The technology developed has great potential in a number of commercial areas, including data mining, pattern recognition, and intelligent interfaces for personal computer applications. Sample applications include: fraud detection, bankruptcy prediction, data mining agent, scalable object recognition system, email agent, resource librarian agent, and a decision aid agent
    • …
    corecore