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ABSTRACT 

In our preuious work we deueloped a method for extracting fuzzy rules directly from 
numerical data for pattern classification. The performance of  the fuzzy classifier 
det ,eloped using this methodology was comparable to the auerage per~brmance of neural 
networks. In this paper, we further deuelop two methods, a least squares method and an 
iteratit'e method, for tuning the sensitiuity parameters of  fuzzy membership functions by 
which the generalization ability of the classifier is improued. We eualuate our methods 
using the Fisher iris data and data for numeral recognition of uehicle license plates. The 
results show that when the tuned sensitiuity parameters are applied, the recognition rates 
are" improued to the extent that performance is comparable to or better than the 
maximum perJbrmance obtained by neural networks, but with shorter computational 
time. 

KEYWORDS:  fuzzy classifiers, rule extraction, tuning, membership function, 
neural networks, license plate recognition 

I. INTRODUCTION 

Multilayercd neural networks can learn complex relationships based on 
numerical input-output data, but analysis of the trained networks is 
difficult. On the other hand, knowledge acquisition for fuzzy systems is 
difficult, but once done, analysis or modification of the system is relatively 
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easy. Fuzzy systems with a learning capability have been proposed  to fill 
the gap between these two technologies [1-4]. In [3] we discussed a 
classifier which used fuzzy rules extracted by the following procedures:  

1. Define an activation hyperbox for each class i, by finding the mini- 
mum and maximum values of  the input data of  each class under  
consideration. 

2. If  overlapping between the activation hyperboxes of  two different 
classes i and j exists, it is resolved by first defining the overlapping 
region as an inhibition hyperbox. 

3. Then,  for the class, i or  j, which has data in the inhibition hyperbox, 
an activation hyperbox is defined in the inhibition hyperbox. If  two 
activation hyperboxes are defined, a similar procedure  to procedure  2 
is repeated.  Procedures  2 and 3 are carried out recursively until the 
overlapping is resolved. 

In [3] we showed that the general izat ion ability of  the fuzzy classifier 
described was comparable  to the average general izat ion ability of  neural 
networks in terms of  successful classification rate. 

In Section II of  this paper,  we describe the fuzzy rule extraction method 
and the inference mechanism for pat tern classification. In Section III ,  we 
describe two methods,  a least squares method  and an iterative method,  for 
tuning the sensitivity parameters  of  fuzzy membersh ip  functions by which 
the generalization ability of  the classifiers is improved. In Section IV, we 
present  the per formance  evaluation of  the proposed  approaches  with 
applications to the Fisher iris data and numeral  recognit ion of  vehicle 
license plates, and we also compare  the fuzzy classifier with neural net-  
works. 

II. FUZZY RULE EXTRACTION AND INFERENCE FOR PATTERN 
C L A S S I F I C A T I O N  

A. Rule Extraction Method 

In the following, we discuss the extraction process for generat ing fuzzy 
rules for classifying data with an m-dimensional  input vector x into one of  
n classes [3]. First assume we have a training data set of  input data X i for 
class i, where i = 1 . . . . .  n. Using Xi, an activation hyperbox of  level 1, 
denoted  as Aii(1), is defined, which is the maximum region of  class i data: 

Aii(1) = {xl/3i,k(1) _<x h < ~ik(1),  k = 1 . . . . .  m}, (1) 

where x k = k th  element  of  input vector  x; 
lJiik(1) = minimum value of  x k of  x ~ Xi; 
~i , (1)  - maximum value of  x k of  x ~ X i. 
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If the activation hyperboxes Ai i (1)  and A j j ( 1 )  ( j  ~ i, j = 1 . . . . .  n )  do 
not overlap, we obtain a fuzzy rule of level 1 for class i as follows: 

if x is Ai i (1 )  then x is class i. (2) 

If the activation hyperboxes Aii (1)  and Ajj(1) overlap, we resolve the 
overlap recursively by defining the overlapping region as the inhibition 
hyperbox of  level 1 denoted  as Iii(1): 

w h e r e  Uiik(l) <_ Wijk(l) <_ W//jk(1) ~ Viik(1). T h e  m i n i m u m  and  m a x i m u m  
values of  inhibition hyperbox lij(1) are as follows (cf. Figure 1): 

1. For  vjjk(1) _< viik(1) < ~jk(1) < ~ik(1), 

wij,(1) 

2. For  Uiik(l) < Ujjk(1) ~< 

Wijk(1) 

3. For  z'jjk(1) <_ Uiik(1) <_ 

Wij k ( 1 ) 

= viik(1), W/ijk(1) = ~jk(1) .  

V,.ik(D -< Vjjk(D, 

= vjjk(l),  Wijk(1) = Viik(1). 

v~i~(1) _< vjj~(1), 

= Uiik( l ) ,  l/Vijk(1) = ~ik(1) .  

(4) 

{5) 

(6) 

4. For  viik(1) < t'jjk(1) < ~jk(1) < ~ik(1), 

wijk(l) = l'jj~(1), W/jk(l) = V#k(1). (7) 

However ,  the inhibition hyperbox defined in this way has a drawback, 
namely, data that exist on the surface of  the inhibition hyperbox may not  
be classified as ei ther  of  the two classes as discussed in [3]. To overcome 
this problem, we expand the originally defined inhibition hyperbox lij(1), 
associated with Aii(1)  and Ajj(1), in the way shown in Figure 2.We denote  
the expanded inhibition hyperbox as Jij(1) = {XIUijk(1) < X k < ~jk(1), k 

1 . . . . .  m}. The  expanded inhibition hyperboxes for Ai j ( l )  and Aji(1) are 
Jij(1) and Jji(1), respectively, which are different.  The  expanded inhibition 
hyperbox Jij(1) is defined as follows (cf. Figure 1): 

1. For  vjjk(1) _< uiik(1) <_ l/jjk(1) < Viik(1) , 

ttijk(1) = Uiik(1) , 
(8) 

where  c~ (1 > a > 0) is an expansion parameter .  
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l,j(l) ~ • l 

A),,(/) 

Aji,(l) 

Vji,k(I) vij,k(l) Vji,k (1) Vii,k([) v~],k(1) ~'ji,k(I) Vij,k(l) Vji,k(l) 
= Wijk(l) :Wijk(I) = Wijk(1) =Wijk(I) 

Input x k Input x k 
(a) (b) 

r ii( t) Iij(l) ~ ] Aji'(l) 

A(/, (/) 

vji,k(t) vO,k(I) Vij,k(l) Vyrk(I) v~j,k(l) vyi,k(l) Vjek(t) Vi/,k(~ 
= Wijk(l) = Wijk(l) : Wi/k(1) :Wijk(I) 

Input x k Input xj 

(c) (d) 
Figure 1. Definition of activation and inhibition hyperboxes ( j '  = i and i '  = j for 
1 = 1; j '  = j  and i '  = i for l >_ 2). Taken from [3, Figure 3]; © 1995, 1EEE. 

2. Fo r  viik(1) < Cjgk(1) < ~i~.(1) < Vjyk(1), 

u , jk ( l )  = t!ijk(1) -- o~[c/yk(l) t ' i ik(1)],  

Uijk(1 ) = ~ ik ( l ) "  (9) 

3. Fo r  t'Dk(1) _< t;iik(1) _< Viik(1) < ~yk(1), we do not  expand  the inhibi- 
t ion h y p e r b o x  for  class i, since we need  no t  ca lcula te  the deg ree  o f  
m e m b e r s h i p  for  the  x k axis. In fact,  

Uiik(1)  - - t ! i i k ( l ) '  (10) 
~ j k ( 1 )  = V/ik(1). 
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Jo{l) • • . . . .  
• % . l  "Ji"'l • 

~ - -  lji(D • 

o :  \Ai j  (1 • , + 1 ) ,  
• • 

Itij,k(g) Uijk(D Wijk(l) Oijk(~) = Wijk(I) Vji,k(g) 
= vji,k(t) = vij,k(t) 

Figure 2. Expansion of the inhibition hyperbox ( j '  = i and i '  = j for l = 1; j '  = j 
and i '  = i for l > 2). Taken from [3, Figure 14]; © 1995, IEEE. 

4. For  viik(1) < l)jk(1) < Vayk(l) < V, ik(l), 

u/jk(1) = vj/k(1) - c~[lSjk(1) -- v / ik( l ) ] ,  
(11) 

Uijk(1) - Vjjk(1) + a [V/ ik(1)  - ~ j k ( 1 ) ] .  

T h e n  we def ine a fuzzy rule o f  level 1 with inhibi t ion as follows: 

i f x i s  A i i ( 1 )  a n d x i s n o t J i j ( 1 ) t h e n x i s c l a s s i .  (12) 

If  Aii(1)  is inc luded  in A j j ( 1 ) ,  i.e., (6) holds  for  all k ,  k = 1 . . . . .  m ,  then  
A i i ( 1 )  coincides  with lij(1). In this case (12) is a void  rule (i.e., it is no t  
c rea ted) ,  since no x can satisfy (12). 

I f  s o m e  da ta  be long ing  to X i exist in J0(1),  we def ine the  act ivat ion 
hype rbox  of  level 2, d e n o t e d  as A i j ( 2 ) ,  within the  e x p a n d e d  inhibi t ion 
hype rbox  Jij(1) by ca lcula t ing the  m i n i m u m  and  m a x i m u m  values  o f  x k 
based  on the  da ta  in J i j ( l ) :  

A i , (2 )  = { x l v 0 k ( 2 ) < x  k < Vqk(2), k = 1 . . . . .  rn} (13) 

whe re  x ~ X i and  x ~ Jo(1),  and  w h e r e  

vijk(2) = m i n i m u m  value  of  x k w h e r e  x ~ X i and  x is in Jij(1), 
V/,yk(2) = m a x i m u m  value  o f  x k whe re  x ~ X i and  x is in Ji j (1) ,  

Uijk(1 ) < L'ijk(2 ) < X k < Vijk(2 ) N Uijk(1 ). (14) 
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If  there  is only one activation hyperbox of level 2 or there  are two 
activation hyperboxes  but  they do not overlap,  we define a fuzzy rule of  
level 2 for class i as follows: 

if x is Ai j (2)  then x is class i. (15) 

If  Aij(2) and Aji(2) overlap,  the over lapping region of  level 2 is denoted  as 
lii(2): 

1ii(2) {,,[w,,k(2) -<xk -< W/jk(2), i  = 1 . . . . .  m} ,  (16) 

where t:ijk(2) <_ w0k(2) _< W/0k(2) < ~jk(2). 
Similarly to what  has been  described for level 1, we define the expanded  

inhibition hyperbox J~j(2): 

J, i(2) = {xluijk(2) _<x k < < , a ( 2 ) , k  = 1 . . . . .  m )  (17) 

where  uiik(2) _< wijk(2) _< Wijk(2) _< U0k(2). 
Then  we define a fuzzy rule of  level 2 with inhibition: 

if x is Ai j (2)  and x is not Jii(2) then x is class i. (18) 

Fuzzy rules of  levels higher than 2 can be defined in a similar m a n n e r  if 
an over lap  can be defined. In a general  form, the fuzzy rule rii.(l) of level l 
(>_ 1) without  inhibition can be expressed as follows: 

i f x  is Ai1,(l) then x is class i, (19) 

where  j '  = i for 1 = 1 and j '  = j for  1 > 2. Likewise, the fuzzy rule rij,(l) 
of  level l with inhibition can be expressed as follows: 

i f x  is Ai#(l) and x is not Jo(l) then x is class i. (20) 

The  recursion process  for  defining fuzzy rules te rmina tes  when Ai/(l) 
and A#(1) do not over lap  or when Aii,(l)= A#(I)= I,i(l- 1) holds, 
where  j '  - i  and i '  - j  for  l -  1 and j '  = j  and i '  = i  for  I>_ 2. In the 
lat ter  case, since the over lap  cannot  be resolved by the recursive process,  
instead of defining Aij,(l) and A#(I), for  each da tum of class i a n d / o r  j 
in l i i( l-  1) we define an activation hyperbox which includes only that  
datum.  We do not fur ther  define inhibition and activation hyperboxes  of  
levels higher than 1, because  as long as no identical data  exist in both 
classes i and j, no over lap  exists be tween the activation hyperboxes  of  
level l. 
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B. Fuzzy Inference Mechanism 

MEMBERSHIP FUNCTION FOR ACTIVATION HYPERBOXES For pattern 
classification, it is reasonable to assume that the degree of membership of 
x for a fuzzy rule given by (19) is 1 if x is in the activation hyperbox Ai/(l), 
and that the degree of membership decreases as x moves away from the 
activation hyperbox. Namely, if all the input variables are normalized to 
the same scale, e.g., between 0 and 1, then the contour surface on which 
every location has the same degree of membership is parallel to, and lies at 
an equal distance from, the surface of the activation hyperbox, as illus- 
trated in Figure 3. To realize a membership function with this characteris- 
tic we use the following function, which is similar to that proposed in [1]: 

min m A , i ( l ) ( X  , k),  (21) m A ' J ( l ) ( x )  = k = l  . . . . .  m 

mA,j<,)(x,k) = {1 - max(0, min(1, ~i[Pijk(l) --Xk])) ) 
× {1 - max(0, min(1, Yi[xk - Vijk(l)]))} (22) 

where yi is the sensitivity parameter for class i. Figure 4 is the one-dimen- 
sional membership function given by (22). In [3] we used the same 
sensitivity parameter  for all the rules, but in fact, different values can be 
used for different classes. Therefore,  in this paper, we allow different 

X2 

d.o.m. = degree of membership 

~ Contour Line 

Xl 

Figure 3. The contour line of the membership function for the activation hyperbox 
(two-dimensional case). Taken from [3, Figure 4]; © 1995, IEEE. 
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e~ 

vijk(l ) . 1/7 vqk(l) Viyk(l) Vot~(l) + 1/y 

x k 

Figure 4. One-dimensional membership function of the activation hyperbox Ai j ( l ) .  
Taken from [3, Figure 5]; © 1995, IEEE. 

values for  the sensitivity p a r a m e t e r s  of  different  classes, and tuning meth-  
ods are deve loped  to tune the sensitivity paramete rs .  

Thus,  the degree  of  m e m b e r s h i p  of  x for  a fuzzy rule r,y(l) given by (19) 
is 

dr,y~(x) = mA~y)(x). (23) 

MEMBERSHIP FUNCTION FOR INHIBITION HYPERBOXES The  degree  
of  m e m b e r s h i p  of  x for a fuzzy rule given by (20) is 1 when x is in the 
activation hyperbox  but not  within the expanded  inhibition hyperbox,  i.e., x 
is in A i / ( 1 )  - Jiy(I), where  S denotes  the closure of  the set S, and where  
j '  = i for  l = 1 and j '  = j  for l > 2. I f  x moves  away f rom this region, the 
degree  of  m e m b e r s h i p  decreases.  Namely,  in this case it is also favorable  
for  the contour  surface to be parallel  to, and lie at an equal  distance from, 
the surface o f A i j , ( l )  - Jij( l) ,  as shown in Figure 5. [If Ai j , ( 1 )  = l i i ( l ) ,  i.e., 
if the rule is void, we do not  calculate the degree  of m e m b e r s h i p  for  this 
rule.] To  realize this m e m b e r s h i p  function we first define a region Hiy(l) 
associated with Aij , ( l )  and l i j( l)  as follows (cf. Figure 1): 

Hij( l )  = {x]x k < U~jk(l) for u s k ( l )  < t ' i /k(I)  < Vj~,k(l) < U~/k(1), 

X k > Uijk(l) for  l~iy,k(1) < z~i,k(l)  <_ l / i j ,k( l )  <~ ~ i , k ( l ) ,  

< x k < ~ for  l,li,k(l) < ~ij,k(l) <_ Vi /k( l )  <_ Vji,k(l), 

u i j , ( l )  <_ x k < U~jk(l)for t,ij,k(l) 

< ~ji,k(l) -< ~ , k ( l )  < V,j,k(l), 

k = 1 , . . . , m } ,  (24) 
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)2 2 

Xl 
Figure 5. The contour line of the membership function for the activation and 
inhibition hyperboxcs (Two-dimensional case.) Taken from [3, Figure 6]; © 1995, 
1EEE. 

where  j '  = i and i '  = j for  I = 1, j '  = j and i '  = i for  1 > 2, and Hij(l) 
and Hji(l) are in general  different.  According  to the definition, 

Hij(l) D Jii(l). (25) 

The  region Hsj(1) const i tutes  an input region where  the expanded  inhibi- 
t ion hyperbox  affects the degree  of m e m b e r s h i p  of the rule given by (20). 
If  x ~ Hij(l), the degree  of  m e m b e r s h i p  for  a fuzzy rule rij(l) given by (20) 
is the same as (23). Thus,  for  x e Jij(l) the degree  of  m e m b e r s h i p  mjil(l)(X) 
is given by 

m a x  mjij(i)(x, k), (26) mJ,~t)(x) = k=l ..... m 

w h e r e  mj, M)(x, k) is the degree  of  m e m b e r s h i p  of x k and is calculated as 
follows: 

1. For  t~j~,k(l) < t~i/k(l) < Vji,k(l) < V/i/k(l) [cf. Figure l(a)], 

= 1  - m a x ( 0 ,  - ( 2 7 )  

2. For  t,ii,k(l) < t~ji,k(l) < Vs/k(1) <_ Vji,k(l) [cf. Figure l(b)], 

mj~(,)(x,k) = 1 - max(O, min(1 ,  Yi[x, - uij ,( l)])  ). (28) 
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For r;,.,(l) I l,,;,,(l) I t~$,.~(l) 5 C;,,,(f), since x,_ = L,~,.,(I) and X~ = 

F,,,(l) do not constitute the surface of A,,.(f) -J,,(f), it is not 
necessary to define a membership function in the xk, axis. Thus we set 

rnJ,,(,)(X, k) = 0. (29) 

Equation (29) holds for all k, where k = 1,. . . , m, only when Aj,,(l) 1 
A;,.(/) = I,~(/), in other words, when the rule is a void rule. Thus, the xk 
axis is ignored when calculating the degree of membership using (29) and 

(26). 
4. For I’ ,,.,(I) < r;,.,(l) 5 I$,(/> < rJ;,,k(l) [cf. Figure l(d)1 

11 - max(O,min(l, r,[CJ,,(l) - xk])j 

for 
Ll;Jl) + r/l,JI) 

m,,,o,(x, k) = 
2 

5x, < q,,(l), 

1 - maxjO, min( 1, r,[ XX - u,,k (14 ,I 
(30) 

I for Llllk(l) Ix, I 
ulj/((l) + U,,(l) 

2 . 

Then the degree of membership for x t H,,(I) and x sf J,,(I) is obtained 
by calculating both mA,,oj(x) and 
min(m 

m,,,tl,(x), and taking the minimum, i.e., 

A,,(,,(x>, m,,,c,,(x>). Thus d,,I,,,(x) for (20) is given by 

m,,,c/w for x @ Hjj(l), 

d,.,,,,,(x) = m,,,/,(x) for x E Jlj(l>, 

min(m,,,o,(x), m,,,i,i(x)) for x E H,,(1) and x G J,,(I) 

(31) 

Since m 

lows: 
A,,(I)(X) = 1 for x E J,,(I), Equation (31) can be rewritten as fol- 

4,,,,,(x) = 

i 

m,,,&) for x @ H,,(f), 

min(m,,,(,,(x), m,,,,o,(x)) for x E Hi,(f). 
(32) 

RULE INFERENCE The final degree of membership of x for a set of fuzzy 
rules {r,,(l) 11 = 1,. . . 1, denoted as d,,l(x), is given by 

$,(x) = [-max. +Jx). (33) 
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We take the maximum because the activation hyperbox Aij(l  + 1), if it 
exists, is included in the expanded inhibition hyperbox Jij(l), and thus each 
fuzzy rule in {rij(l) I l = 1 . . . .  } is exclusive of the others. 

Now the degree of membership  of x for class i, denoted as di(x), is given 
by 

rain d~(x).  (34) d i ( x )  = j e : i , j = l  . . . . .  n ,  

A i i ( 1 ) N A j j ( 1 ) 4 -  (,~ 

When the activation hyperbox of class i overlaps with those of classes j 
and k, we resolve the conflict, independently, first between classes i and j, 
then between classes i and k. This process is reflected by taking the 
minimum in (34). For example, if d~ (x) = I and d r (x) = 0, this means 

• , . l j  , i k  

that x is in the region inhibited by the inhibition hyperbox between classes 
i and k and thus x should not be classified as class i. 

The input x is finally classified as class i if di(x) is the maximum among 
dy(x), where j = 1 . . . . .  n. 

Now we consider how the values of sensitivity parameters  affect classifi- 
cation. First consider the case when the sensitivity parameters  % are large, 
in other words, the generalization region for each class is small. In this 
case, a region exists in which data cannot be classified because the degrees 
of membership  for all the classes are zero• By using small sensitivity 
parameters  Yi, thus increasing the generalization region of each class, all 
the data in the input space can be classified. If we make the sensitivity 
parameters  y~ small enough so that the degree of membership for any 
given point in the input space is greater than 0, then the class boundary 
does not change even if we make the sensitivity parameter  yi smaller. This 
means that as the sensitivity parameters  % are decreased from large 
values to small ones, the recognition rate of test data increases and 
reaches a plateau. If each input variable is normalized as [0, 1], it is 
sufficient to set the sensitivity parameter  smaller than 1 to obtain the 
maximum recognition rate. Or  if we want to know whether the input data 
are used for training or not, we may set the sensitivity parameters  large. If 
a datum is not classified because the degree of membership is zero, we 
know that data which are near to this datum are not used for training. 

III .  TUNING OF S E N S I T M T Y  PARAMETERS 

A. Basic  Idea 

The fuzzy classifier described in Section II  has a 100% recognition rate 
for the training data set so long as no identical data are presented in 
different classes. As to the numeral  recognition system described in [3], the 
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generalization ability of  the classifier was comparable to, but not better  
than, the average generalization ability of neural networks when the 
characteristics of the training data differed significantly from those of the 
test data set. Furthermore,  the reason why the generalization ability of the 
fuzzy classifier was inferior to the maximum ability of neural networks was 
that the sensitivity parameters  of membership functions used before were 
not optimized and the same value was used for different classes. The 
generalization ability of the fuzzy classifier can be improved by tuning the 
sensitivity parameters;  in the following, we discuss why this is possible and 
present two tuning methods. 

Assume that a test datum of class i is misclassified as class j; if its 
degree of membership with respect to class j is 1, this means that this class 
i test datum resides in an activation hyperbox of class j. In this case, if we 
want to make sure that this test datum is to be correctly classified as class 
i, the existing fuzzy rules need to be modified. However, if the degree of 
membership with respect to class j is less than 1, the test datum can be 
correctly classified as class i by decreasing the sensitivity parameter  7i (i.e., 
increasing the generalization region of class i) or increasing the sensitivity 
parameter  7]. (i.e., decreasing the generalization region of class j). Changes 
should be made so that the data which were correctly classified before the 
change remain correctly classified. 

Therefore,  if we can develop a method for tuning the sensitivity parame- 
ters, the fuzzy classifier will be more favorable than neural networks 
because of its low development effort and operational maintenance. That 
is, suppose we have a set of input-output data available for developing a 
classifier. If  we are going to develop a neural network classifier, usually we 
first divide the data set into two: the training data set and the test data set. 
Using the training data set, we train a neural network classifier, and then, 
using the test data set, we test its performance.  If the classification 
performance is not satisfactory, its improvement  is not straightforward, 
because no good method for further tuning the trained classifier exists. 
Thus, we need to retrain the network with different initial connection 
weights (because the convergence of a neural network depends on its 
initial connection weights), or change the network structure, or repartition 
the original data set until satisfactory performance is achieved, or train the 
network using all the available input-output data. The development pro- 
cess described above, then, is very time-consuming, especially when the 
data set is large, because the process may involve training a neural 
network with different initial conditions or trying many neural network 
structures. 

On the other hand, a much shorter time is needed to develop a fuzzy 
classifier, since the process to extract fuzzy rules is very fast; moreover,  the 
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fuzzy classifier can be easily f ine- tuned by tuning the sensitivity pa r ame-  
ters. To  develop a fuzzy classifier, we also first divide the available data  set 
into a training data  set and a test data  set. Then,  the training data set is 
divided into an extract ion data  set and a tuning da ta  set. Fuzzy rules are 
extracted using the extract ion data  set. If  the classification p e r f o r m a n c e  of  
the fuzzy classifier for  the test data  set is not satisfactory, we can apply one 
of  the tuning methods ,  which will be discussed later, to tune the sensitivity 
p a r a m e t e r s  using the tuning data  set. If  the p e r f o r m a n c e  is still not 
satisfactory, we can add those tuning data  that  are not correct ly classified 
to the extract ion data  set and regenera te  fuzzy rules, and then use the 
remaining  tuning data  for  tuning the sensitivity pa ramete r s .  In addit ion to 
tuning during the deve lopment ,  af ter  the fuzzy classifier is deployed for 
actual  applications,  its p e r f o r m a n c e  may  be fur ther  improved  by tuning the 
sensitivity p a r a m e t e r s  on the fly with new misclassification data. 

In the following we discuss two tuning approaches :  a batch processing 
approach  based on a least squares  method ,  and an i terative approach  
suitable for  on-l ine application.  

B. Tuning Using a Least Squares Method 

Assume  that  a fuzzy classifier is c rea ted  using a set of  training data. For  
a given input x, if the degree  of  m e m b e r s h i p  with respect  to class i is less 
than 1- - i .e . ,  1 > d i ( x ) - - t h e n  ei ther  the input x is outside the activation 
hyperboxes  of  class i, A i / ( l ) ,  or it is inside the expanded  inhibition 
hyperboxes  of  class i, Jij(l). In this case, the degree  of  membersh ip ,  
d r (/)(x), of  a fuzzy rule rij(l) is de te rmined  by the m a x i m u m  or min imum 
distance be tween  x and the hyperp lane  that  includes the surface of A i ; ( l )  
or A i j , ( l ) -  J~j(/); the hyperp lane  is o r thogona l  to one  of the input 
variable axes. This hyperp lane  by which dr,,0)(x) is de te rmined  remains  the 
same even if y~ is changed,  because  the same % is used for  all input  
variables by class i rules. Let  the hyperp lane  which de te rmines  dr,j~/)(x) be 
or thogona l  to the k th  input axis and intersect  it at b k. Then  the degree  of  
m e m b e r s h i p  dr~,(t)(x) is given by min(O, 1 - Yilxk - bk[). Also, since we use 
the same yi value for  all the input variables  in the rules of  class i, the 
hyperp lane  that  de te rmines  di(x) remains  the same even if we vary the 
value of  the sensitivity p a r a m e t e r  y~. 

Based on the above discussion, a very simple least squares  me thod  for  
de te rmin ing  sensitivity p a r a m e t e r s  is developed.  For  a given input x 
s a t i s f y i n g  di(x) < 1 for  all i - 1 . . . .  , n, we define a distance vector  t = 
( t  I . . . . .  tn), where  t k = Ix t - b t[ and the hyperp lane  that  de te rmines  dk(x) 
is o r thogona l  to the / th axis and intersects it at b t. Let  the dis tance vector  
of  the j t h  da tum of  class i be t~j = (t~j. ~ . . . . .  tij,,,), where  1 < j < N,; N/ is 
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the number  o f  data of  class i for tuning. If  

tii,~ < t~j,k for all k ~ i (35) 

holds, the input datum xij can be correctly classified if the same value is 
used for all %. Now for a given datum x~j, i f  d k ( x i j )  = 1 for k 4= i, the 
fuzzy classifier is not  able to correctly classify the datum, while i f  d i ( x i j )  = 
1, the classifier is able to correctly classify the datum, irrespective of  the 
values of  the sensitivity parameters .  Thus the data which satisfy either of  
the two condit ions are not included in xii, where i = 1 . . . . .  n and j = 
1 . . . . .  N~, and hence their associated membersh ip  vectors are not included 
in to  , where i = 1 . . . . .  n and j = 1 . . . . .  N i. 

Since the target value of  da(x~j) is 1 if k = i and 0 otherwise, the 
op t imum sensitivity parameter  for each class can be de termined  by mini- 
mizing the following error  function. 

E = ~ E (~/i[ij,i)2 -~- E (1 -- T k t i j ,  k )  2 . ( 3 6 )  
i=1 j = l  k = l  i=1 j = l  

iv~ k 

Equat ion  (36) is minimized when the following equat ion holds: 

of  y, (tk~,~)2 
- Yi - Y'~ tkj, i = 0, (37) 

"0Ti k = l  j = l  k = l  j = l  
k¢i  

Therefore  the op t imum value for % can be obtained as 

Nk 

~ tkj, 
k-) i - t  
k ~ i (38) 

~ / i =  N/, 

E %,)2 
k - I  j - I  

C. Iterative Tuning  

In this section we discuss a one-pa th  tuning method  in which the tuning 
sequence is de te rmined  by using a graph for data xij, where i = 1 , . . . , n  
and j - 1 . . . . .  N i. Here,  iterative tuning of  the membersh ip  funct ion is 
based on the idea that if some class i data are misclassified as class j but 
no class j data are misclassified as class i, the misclassification may be 
resolved by expanding the existence region of  class i, i.e., decreasing the 
slope of  the membersh ip  function for class i. And  we assume that for any 
given xij outside of  all the activation hyperboxes, its degree of  membersh ip  
with respect to any class is less than 1. 
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Before describing the iterative tuning method, we first present a graphi- 
cal representat ion used to describe the state of misclassification for a given 
fuzzy classifier and a given set of  data. A graph is composed of nodes and 
directional links, each with an associated number.  A node represents a 
class, a directional link between two nodes indicates that some data of the 
emanating node are misclassified as the class represented by the ending 
node, and the number  associated with a link represents the number  of 
misclassified data. Figure 6(a) illustrates a graph for a recognition system 
of vehicle license plates and a test data set. Nodes 0, 2, 3, 5, and 7 are not 
present; that means that no data are misclassified as class 0, 2, 3, 5, or 7, 
and no data of  classes 0, 2, 3, 5, and 7 are misclassified. A node in a graph 
may be one of the following three types: (1) a sink node at which links end 
only, (2) a source node from which links emanate  only, and (3) a dual node 
where links emanate  and end. In Figure 6(a), nodes 8 and 9 are source 
nodes, node 1 is a sink node, and the rest of the nodes are dual nodes. 

In this section, we first discuss the range of Yi that can be changed 
without causing misclassification to occur for those data that are correctly 
classified before tuning %. Suppose that a given datum x~/ is correctly 
classified for a given sensitivity parameter  value Yi. We can increase Yi to 
yy(x~)  according to (39), as illustrated in Figure 7, which will not result in 
misclassifying x/j: 

T ? ( X i j )  = min ti/'k "Yi" (39) 
k=l  . . . . .  n t i j ,  i 

kv~i  

We can also decrease Yk to ykL(xi/) according to (40), which will not result 
in misclassifying x / /  

T ~ ( x i j  ) t i j ' i  = Yk"  (40) 
t i j ,  k 

(a) Before tuning (b) After iterative tuning 

Figure 6. A directional graph for misclassification of data for numeral recognition 
on vehicle license plates (200 training data, 1430 test data, 12 inputs, a = 0.001). 
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" ~ " = ~ l / ~ ' V ~ x o f  - ' ' t  1 / ~ ~  

(a) 1 -  Tk tij,k > O 

1 

1/~. \ 

(b) 1 - 7~ti j ,k<O 

Figure 7. Calculation of the upper limit of the sensitivity parameter (tij, J t i j , ,  is 
the minimum). 

Thus  if we vary Yi within 

y i L ( x i j  ) < ~/i < "yiU(xij ) ,  

the given input  xij remains  correctly classified as class i. 
Now let 

(41) 

and 

yi  u = min y i U ( x i j )  = Yi X min 
XtlC(-" t Xrl~ Ci 

min tij ,  k 
k = I . . . . .  n t i j  ' i k ~ i  

= Yi × pU (42) 

3/i t. = m a x  Yi l~(xk j  ~ = ")/i X m a x  
xkj  ~ c k xkj  ~ C k 

k =  1 . . . . .  n ,  
k ~ i  

tki ,  k 
m a x  

k =  l ,~ . i . ,n ,  l k j  ,i 
Yi  X pi  l" , (43) 
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where C i is a set of data belonging to class i which are correctly classified, 
y y  is the upper  limit of the sensitivity parameter  for class i, T L is the 
lower limit of the sensitivity parameter  for class i, py is the upper  limit 
ratio for class i, and p L is the lower limit ratio for class i. Thus when 
varying Yi within 

]/i L < ~i < ~ U ,  (44) 

all the initially correctly classified data remain correctly classified. 
Let node i be a sink node, and a given xkj be classified as class i. Then 

misclassification can be resolved if % is changed to a value larger than 
Yi, kj which satisfies 

t i j ,  k 
"Yi, kj  = "Yi" (45) 

t i j ,  i 

If 7i, kj given by (45) is within the range given by (44), we can resolve 
misclassification without causing any data which are correctly classified 
before the sensitivity paramete r  is changed to become misclassified. We 
calculate (45) for all the data xkj which are misclassified as class i. Let the 
maximum value among Yi. kj which satisfy (44) be y~, and then change Yi 
to that value, which is within the range (44) and larger than y[. By this 
operation we can reduce the number  of misclassifications. Then we can 
update the upper  and lower limits of the sensitivity parameters  by updating 
the upper  and lower limit ratios according to their current values and the 
newly correctly classified data. Namely, 

new pff = min pff, min 
xkj ~ C~ 

[ 
new p/C = max [ pi L, m a x  

xkj ~ C~, 

min tkj'i)) , (46) 
i = 1  . . . . .  n tkj ,  k 

i4-k 

max , (47) 
k = l , . . . , n ,  k4~i t k j ' i  

where C~ is a set of  data newly classified as class i. 
Based on a similar discussion to the above, for a source node i, we can 

decrease the number  of misclassifications by decreasing the sensitivity 
parameter  Yi- After  tuning the sensitivity parameters  for source and sink 
nodes, we then tune the sensitivity parameters  for dual nodes. When 
tuning the sensitivity parameters  of a dual node, whether  its value should 
be decreased or increased depends on the number  of previously misclassi- 
fled data which are now correctly classified without making previously 
correctly classified data miselassified. 
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The range of Ys given by (44) is a range that ensures that the originally 
correctly classified data remain correctly classified when 3', is varied. But if 
the number  of increments of correct classifications exceeds that of incre- 
ments of misclassifications due to the change of Ys, a decrease in the total 
number  of misclassifications results. This may happen in particular for 
dual nodes. If it does, we set the values which violate (44) to Ys. 

Since many local minima may exist in the minimization process, the final 
outcome may depend on the tuning order. For simplicity, we tune source 
and sink nodes first and then tune dual nodes. Thus for the case shown in 
Figure 6(a), the order of tuning is as follows: 

{1,8,9} < {4,6}, (48) 

where nodes in the same set are to be processed together in an arbitrary 
order, and A < B denotes that nodes in set A need to be processed prior 
to those in set B. 

This iterative tuning approach is well suited for on-the-fly tuning. 
Namely, when a datum is provided to the classifier, if it is correctly 
classified, we then update the upper  and lower ratios. If it is not correctly 
classified, we check whether correct classification is possible by changing 
the sensitivity parameters  without causing misclassification of data which 
were previously classified correctly. If  the latter case occurs, we change the 
sensitivity parameter  and update the corresponding upper  and lower limit 
ratios. The major  advantage of this method is that past input-output data 
are not required for tuning: tuning is done by using only the current 
sensitivity parameter ,  the upper  and lower limit ratios, and the current 
input-output data. 

D. Comparison of  the Two Tuning Methods 

The least squares method can determine the sensitivity parameters  using 
both correctly classified data and misclassified data, but the iterative 
method is applicable only when there are misclassified data. Thus the least 
squares method is suited for use in the development stage of classifiers, 
while the iterative tuning method is suited for on-line use. 

The least squares method can be used in the following way. Suppose we 
have extraction data for fuzzy rule extraction, and tuning data for tuning 
the sensitivity parameters.  The extraction and tuning data may respectively 
be the training data and the test data, or we may split the training data 
into extraction data and tuning data. First we extract fuzzy rules from the 
extraction data. Then, using tuning data, we tune the sensitivity parame-  
ters. The least squares method works better  if there are only correctly 
classified data, because if there are misclassified data, they may act to 
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suppress the effect of correctly classified data. Thus if there are misclassi- 
fled tuning data, we add them to the extraction data. We repeat the 
extraction and tuning process until there are no misclassified data among 
the tuning data. 

IV. PERFORMANCE EVALUATION 

To show the improved performance of the fuzzy classifier by properly 
tuning sensitivity parameter, we used the same data used in [3]. Also, to 
allow performance comparison between fuzzy classifiers and neural net- 
works, we divided the training data into two: extraction data and tuning 
data. Using the extraction data, we extracted fuzzy rules and tuned the 
sensitivity parameters using the tuning data. If a 100% recognition rate for 
tuning data was not obtained by the least squares method, we added the 
misclassified data to the extraction data, and again we extracted the fuzzy 
rules from the extraction data. Usually by this addition, the recognition 
rate for the tuning data became 100%; but if not, after one more addition 
of misclassified data to the extraction data, the recognition rate became 
100%. 

To evaluate the performance of the iterative tuning method, we used the 
training data as the extraction data and the test data as the tuning data. 

A. Iris Data 

The Fisher iris data [5] consisted of 150 data with four input features 
and three classes. In our study, the training data set was composed of the 
first 25 data of each class, while the test data set was composed of the 
remaining 25 data of each class. 

To examine the performance of the least squares method we divided the 
training data set into the 38 extraction data and 37 tuning data. In Table 1, 
case 1 shows the results when all the training data were used for training, 
and case 2 shows the results when tuning by the least squares method was 
performed. Using the original extraction and tuning data, four data in the 
tuning data were misclassified; thus we added them to the extraction data. 
With this addition all the tuning data were correctly classified. Comparing 
cases 1 and 2, we saw the number of rules of case 2 was equal or smaller 
than that of case 1 for the same expansion parameter a. Also, the 
minimum number of misclassifications, i.e., 1 was achieved in case 2. 

To examine the effect of the iterative tuning method we used the 
training data as the extraction data and the test data as the tuning data. 
When a = 0.001, data of class 0 were all correctly classified, but two of the 
class 1 data were classified as class 2 and two of the class 2 data were 



20 S. Abe, M.-S. Lan, and R. Thawonmas 

Table 1. P e r f o r m a n c e  of  the  Fuzzy Classif ier  for  the  Iris Da ta  ~ 

Case 1 Case 2 

No. of No. of No. of .No. of 
Rules Wrongs Rule Wrong 

0.001 5 6 5 6 
0.1 7 5 7 6 
0.2 7 5 7 5 
0.3 9 5 7 5 
0.4 9 4 7 4 
0.5 9 4 8 4 
0.6 11 4 9 1 
0.7 11 3 9 3 
0.8 13 3 l(I 3 
0.9 17 2 11 1 
0.99 17 2 11 2 

~' In case 1 all the training data were used for fuzzy rule extraction. In case 2 the training data 
set was divided into two, one for fuzzy rule extraction and one for sensitivity parameter 
tuning. 

classified as class 1. This  m e a n t  bo th  nodes  1 and 2 were  dual  nodes.  
Meanwhi le ,  since the degrees  of  m e m b e r s h i p  with respec t  to the  misclassi-  
fled classes were  1, ne i the r  of  the  tuning me thods  desc r ibed  in Sect ion I I I  
could  be used to improve  the recogni t ion  rate.  W h e n  a - 0.9, nodes  1 and 
2 were  dual  nodes  with one  misclassif icat ion and the degrees  of  m e m b e r -  
ship were  less than 1. Using  the least  squares  me thod ,  we could  not  
improve  the recogni t ion  rate.  This  was a t t r i bu ted  to the  following: Since 
there  were  only dual  nodes ,  the  misclassif ied da ta  t r ied  to d e t e r m i n e  the 
sensit ivity p a r a m e t e r s  so that  they were  correc t ly  classified. But since the  
cor rec t ions  of  sensit ivity p a r a m e t e r s  were  in oppos i t e  d i rect ions ,  they 
con t rad ic t ed  each o the r  and  the re  was no improvemen t .  Using the i te ra-  
t i re  tuning me thod ,  we could  resolve misclassif icat ion for  class 2 by 
increas ing the sensit ivity p a r a m e t e r  "/i o r  by decreas ing  the sensit ivity 
p a r a m e t e r  "/2. Wi th  this change,  node  2 b e c a m e  the source  node  with one  
misclassif icat ion,  and  node  1 b e c a m e  the sink node.  

B. License Plate Recognition System 

The  da ta  used in this s tudy were  or iginal ly  col lec ted  to deve lop  a l icense 
p la te  recogni t ion  system [6, 7]. Numera l s  f rom 0 to 9 were  cons idered .  
Each  of  these  da ta  consis ted  of  12 input  fea tu res  ex t rac ted  f rom the  
images  of  runn ing  cars  as t aken  by a T V  camera .  T h e r e  were  1630 data ,  
which were  d iv ided  into t ra in ing and test  da t a  sets with d i f ferent  numbe r s  
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of input  features;  the details are summar ized  below: 
• Data  set 1 :200  t ra in ing data  and 1430 test data  with 12 input  features. 
• Data  set 2 :810  t ra in ing data and  820 test data  with 12 input  features. 
• Data  set 3 : 2 0 0  t ra in ing data  and 1430 test data with 4 input  features.  
• Data  set 4 : 8 1 0  t ra in ing data  and 820 test data with 6 input  features. 
Data  sets 3 and 4 were used to study the effect of tun ing  when 

classification was very difficult. The  expansion pa ramete r  c~ was set to 
0.001 for all the cases except for data set 3. For  data  set 3, the best 
pe r fo rmance  of the classifier was ob ta ined  when c~ was set to 0.6 without  
tun ing  [3]. We  compared  the pe r fo rmance  of the fuzzy classifier with the 
max imum per fo rmance  of a three- layered neura l  network composed of six 
h idden  units; the n u m b e r  of h idden  units  was de te rmined  using the 
statistical method  discussed in [8]. To obta in  the max imum per formance  of 
the neura l  network,  we t ra ined  the ne twork  100 t imes with initial connec-  
t ion weights randomly  assigned be tween  - 0 . 1  and 0.1. For  each of the 
four data sets, we considered  the following three cases. 

• Case 1: Use all the t ra ining data as the extraction data, and do no 
tuning.  

• Case 2: Divide the t ra in ing data into the same n u m b e r  of extraction 
data and tun ing  data. 

• Case 3: Exchange the extraction data  and the tun ing  data in case 2. 
Table  2 shows the results using the least squares method.  After  tuning,  

the pe r fo rmance  of fuzzy classifiers was comparable  to the maximum 
per fo rmance  of neura l  networks.  The  largest pe r formance  improvemen t  
was ob ta ined  for data set 1, while for data set 2 with c~ = 0.6 there was no 

Table  2. Per formance  Compar i son  of Neural  Networks and Fuzzy 
Classifiers for Numera l  Recogni t ion  a 

Fuzzy classifier 

Neural network Case 1 Case 2 Case 3 

Data set Max Min Avg Non Non Tuned Non Tuned 

1 98.25 95.17 96.54 97.06 97.34 98.32 97.06 97.83 
2 99.76 98.90 99 .41  99.63 99.63 99.63 99.51 99.51 
3 77.76 71.33 74.50 72.10 7 1 . 6 1  72.03 72.66 72.73 

75.52 b 77.06 b 75.80 b 75.87 b 75.45 b 
4 98.66 96.83 97.78 98.05 98.41 98.54 98.04 98.41 

;' In percent; a - (I.001 unless otherwise noted. In case 1 all the training data were used for 
fuzzy rule extraction. In cases 2 and 3, the training data set was divided into two, one for rule 
extraction and one for sensitivity parameter tuning. The least squares method was used for 
tuning. In cases 2 and 3 the data for fuzzy rule extraction and the data for fuzzy rule tuning 
were exchanged. 
b a = 0 . 6 .  
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p e r f o r m a n c e  improvemen t .  Since the  least  squares  m e t h o d  de t e rmine s  the  
sensit ivity p a r a m e t e r s  by using all the  tuning data ,  the  absence  of  improve-  
men t  m e a n t  that  the  charac ter i s t ics  of  the  t ra in ing da ta  set and test da ta  
set were  very different .  

Tab le  3 shows the n u m b e r  of  rules gene ra t ed  for  the cases shown in 
Tab le  2. Since the  ext rac t ion  da ta  for  cases 2 and 3 are  subsets  of  the 
ext rac t ion  da ta  for  case 1, case 1 gives the  max imum numbers  of  rules. F o r  
da ta  set 1 the  n u m b e r  of  rules is 10 for  all the  cases, i.e., one  rule pe r  class. 

The  rule ex t rac t ion  and tuning t ime for one  i te ra t ion  was less than one 
second  using a 16 MIPS  c o m p u t e r  for  all the  cases. Since the final fuzzy 
system was ob t a ined  by one  or  two i te ra t ions  of  rule ex t rac t ion  and tuning,  
the t ra ining t ime was very fast. The  average  t ra in ing t ime of  the neura l  
network,  using the 31 MIPS  compute r ,  was 11.7 seconds  for  da t a  set 1, 2.63 
minu tes  for  da t a  set 2, 4.49 minu tes  for  da t a  set 3, and  13.90 minutes  for 
da ta  set 4. 

To see the effect  of  the  i tera t ive  tuning me thod ,  we used the t ra ining 
da ta  as the  ext rac t ion  da ta  and the test  da ta  as the tuning data.  Table  4 
shows the results.  W e  saw that  the i tera t ive  tuning m e t h o d  was more  
effective than the least  squares  m e t h o d  because  we could  improve  the 
p e r f o r m a n c e  s tep by step. The  d i f fe rence  in p e r f o r m a n c e  was a t t r ibu ted  
mainly to dual  nodes.  Meanwhi le ,  the  fuzzy classifier tuned  by using the 
i tera t ive  m e t h o d  exceeded  the max imum p e r f o r m a n c e  of  the  neura l  net-  
work. F o r  da ta  set 3, when a = 0.001 was used,  the  p e r f o r m a n c e  of  the  
fuzzy classifier was infer ior  to the max imum p e r f o r m a n c e  of  the neura l  
network;  while when cY = 0.6 was used, the fuzzy classifier o u t p e r f o r m e d  
the neura l  network.  Since the misclassif icat ion graphs  for  a 0.001 and 
a = 0.6 were  similar ,  we could  ob ta in  a s imilar  recogni t ion  rate  (i.e., 
78.04%) for  a - 0.6 with the  sensit ivity p a r a m e t e r s  tuned  for a = 0.001. 

Table  3. N u m b e r s  of  Rules  G e n e r a t e d  for  Numera l  Recogn i t ion?  ' 

Case 1 Case 2 Casc 3 

Data set Non Non Tuned Non Tuned 

1 10 10 10 10 10 
2 11 10 11 11 11 
3 17 15 16 13 15 

30 t, 22 b 25 b 18 b 28 b 
4 17 14 17 15 16 

aCascs correspond to those in Table 2. a = 0.001 unless otherwise noted. 
b c~ = 0.6. 
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Tab le  4. I m p r o v e d  P e r f o r m a n c e  of  the  Fuzzy Classif ier  for  N u m e r a l  
Recogn i t i on  af ter  Tun ing  ~ 

23 

Neural network Fuzzy classifier 

Data set Max Min Avg Non LO Iterative 

1 98.25 95.17 96.54 97.06 98.46 98.74 
2 99.76 98.90 99.41 99.63 100 100 
3 77.76 71.33 74.50 72.10 72.73 75.80 

75.52 b 75.73 b 78.18 b 
4 98.66 96.83 97.78 98.05 98.29 98.66 

In percent; ~ = 0.001 unless otherwise noted. All the training data were used for fuzzy rule 
extraction, and test data were used for tuning. 
ba = 0.6. 

F o r  da ta  set 1, af ter  the  fuzzy classifier was tuned  by using the i tera t ive  
me thod ,  the  misclassif icat ion graph,  shown in F igure  6(a), was r e d u c e d  to 
the  graph  shown in F igure  6(b). The  n u m b e r  of  misclassif icat ions of  class 8 
da ta  to class 4 inc reased  f rom 10 to 11; the  new one  was one  of  the  class 8 
da ta  whose  degrees  of  m e m b e r s h i p  with respec t  to classes 8 and 4, be fo re  
tuning,  were  the  same,  so that  it could  not  be  classified as e i ther  class at 
all. Thus  none  of  the  or iginal ly  correc t ly  classified da ta  were  misclassif ied 
when the tuned  sensit ivity p a r a m e t e r s  were  used. 

Fo r  da ta  set 2, a 100% recogni t ion  ra te  was achieved by bo th  methods .  
This  was because  the re  were  no dual  nodes.  If  two classes a p p e a r  as dual  
nodes  in a misclassif icat ion graph,  the  misclassif ied da ta  be longing  to bo th  
classes cannot  be correc t ly  classified by varying the sensit ivity pa ramete r s .  

VI. C O N C L U S I O N S  

In this pape r ,  we have d e v e l o p e d  two methods ,  a least  squares  m e t h o d  
and an i tera t ive  me thod ,  for  tuning the sensit ivity p a r a m e t e r s  of  a fuzzy 
classifier whose  fuzzy rules  were  ex t rac ted  direct ly  f rom numer ica l  data .  
The  effect iveness  of  the tuning app roache s  was d e m o n s t r a t e d  using the 
F i sher  iris data ,  which are  commonly  used for eva lua t ing  the p e r f o r m a n c e  
of  a classifier,  as well as by using da ta  on nume ra l  recogni t ion  on vehicle  
l icense plates .  The  test  resul ts  showed that  bo th  tuning me thods  improved  
the recogni t ion  ra te  of  the  fuzzy classifier,  which was c o m p a r a b l e  to o r  
be t t e r  than  the max imum p e r f o r m a n c e  ob t a ined  by neura l  ne tworks  but  
with less c o m p u t a t i o n a l  t ime.  The  resul ts  also showed that  the  fuzzy 
classifier  tuned  using the i tera t ive  m e t h o d  had  slightly be t t e r  p e r f o r m a n c e  
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than that tuned using the least squares method. Therefore,  we concluded 
that the generalization ability of the fuzzy classifier could be improved by 
tuning the sensitivity parameters  of membership  functions, and iterative 
tuning has the advantage of being able to be done on the fly. 
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