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This paper describes an enhancement of fuzzy lattice reasoning (FLR) classifier for pattern classification based on a positive
valuation function. Fuzzy lattice reasoning (FLR) was described lately as a lattice data domain extension of fuzzy ARTMAP neural
classifier based on a lattice inclusion measure function. In this work, we improve the performance of FLR classifier by defining
a new nonlinear positive valuation function. As a consequence, the modified algorithm achieves better classification results. The
effectiveness of the modified FLR is demonstrated by examples on several well-known pattern recognition benchmarks.

1. Introduction

Much attention has been paid lately to applications of lattice
theory [1] in different fields including neural networks
[2]. Artificial neural networks whose computation is based
on lattice algebra have become known as morphological
neural networks [3, 4]. Lattices are popular in mathematical
morphology including image processing applications [5, 6].
Moreover, algebraic lattices have been used for modeling
associative memories [7]. In [8], the problem of capacity
storage limitation in associative memories [9, 10] has
been eliminated by proposing one-way and bidirectional
lattice associative memories. Furthermore, lattices are used
implicitly in some neural networks such as fuzzy ART
and min-max [11, 12] as explained in [2, 13]. A practical
advantage of lattice theory is the ability to model both
uncertain information and disparate types of lattice-ordered
data [14]. The term of a fuzzy lattice was proposed by
Nanda in 1989 on the basis of the concept of a fuzzy
partial-order relation [15]. Several authors have employed
the notion “fuzzy lattice” in mathematics emphasizing alge-
braic properties of lattice ideals [16, 17]. Furthermore, the
notion of fuzzy concept lattice has been studied in [18–20].
Sussner and Esmi [21] have introduced the morphological
perceptron with a fusion of fuzzy lattices for competitive

learning. Fuzzy lattices have also been used in clustering and
classification algorithms. More specifically, independently
from the development of morphological neural networks,
Petridis and Kaburlasos [13] have found inspiration in lattice
theory and versions of the ART model and have devised
another successful approach to lattice-based computational
intelligence. Hence, they proposed a fundamentally new
and inherently hierarchical approach in neuron computing
named fuzzy lattice neurocomputing (FLN) [14]. Moreover,
fuzzy lattice reasoning (FLR) classifier was announced for
inducing descriptive, decision-making knowledge (rules) in
a mathematical data domain including space RN , and it
has been successfully applied to a variety of problems such
as ambient ozone estimation [22] as well as air quality
assessment [23]. Decision making in FLR is based on an
inclusion measure function; moreover, the definition of an
inclusion measure is based on a positive valuation function.

The original FLR model employs a linear positive
valuation function to define an inclusion measure. Liu et al.
[24] proposed a nonlinear valuation function (arctan) for
computing the inclusion measure function and successfully
applied it to several data set benchmarks.

In this work, we apply FLR algorithm to solve pat-
tern classification problems without feature extraction and
improve its performance based on a new nonlinear positive
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valuation function. As a consequence, the modified algo-
rithm achieves better classification results. The effectiveness
of the modified FLR is demonstrated by examples on several
well-known benchmarks.

The layout of this paper is as follows. In Section 2,
the mathematical background of fuzzy lattices is reviewed.
Section 3 explains modified fuzzy lattice reasoning classifier
model. Section 4 provides experimental results that demon-
strate the performance of modified FLR. Finally, Section 5
summarizes the results of this work.

2. Mathematical Background

A lattice (L,≤) is a partially ordered set (or, simply, poset)
such that any two of its elements a, b ∈ L have a greatest
lower bound a ∧ b = inf{a, b} and a least upper bound
a ∨ b = sup{a, b}. The lattice operations ∧ and ∨ are also
called meet and join, respectively. A lattice (L,≤) is called
complete when each of its subsets has a least upper bound
and a greatest lower bound in L [1]. A nonvoid complete
lattice has a least element and a greatest element denoted by
O and I , respectively. The inverse ≥ of an order relation ≤ is
itself an order relation. The order≥ is called the dual order of
≤ symbolically ≤∂. A lattice (L,≤) can be Cartesian product
ofN constituent lattices L1, . . . ,LN , that is, L = L1×· · ·×LN .
The lattice operations meet and join of product lattice are
defined as follows:

a∧ b = (a1, . . . , aN )∧ (b1, . . . , bN ) = (a1 ∧ b1, . . . , aN ∧ bN ),

a∨ b = (a1, . . . , aN )∨ (b1, . . . , bN ) = (a1 ∨ b1, . . . , aN ∨ bN ).
(1)

A valuation on a crisp lattice L is a real-valued function
v : L → R which satisfies v(a) + v(b) = v(a ∨ b)−v(a ∧
b), a, b ∈ L. A valuation is called monotone if and only
if a ≤ b in L implies v(a) ≤ v(b) and positive if and
only if a < b implies v(a) < v(b). We remark that
the goal of positive valuation function v is to deal with
lattice elements. Choosing a suitable valuation function is
problem dependent. Decision making by the FLR is based
on an inclusion measure function; therefore,a proper positive
valuation function might improve performance.

Definition 1. An inclusion measure σ with least element O
and great element I in a complete lattice L is a mapping σ :
L× L → [0, 1] such that it satisfies the following conditions
[2]:

(i) σ(a,O) = 0, a /= 0,

(ii) σ(a, a) = 1, for all a ∈ L,

(iii) a ≤ b ⇒ σ(c, a) ≤ σ(c, b), for all a, b, c ∈ L
(consistency property).

It reveals that an inclusion measure indicates the degree
to which one fuzzy set is contained in another one.

Theorem 2. A positive valuation function v : L → R in a
lattice (L,≤) with v(O) = 0 is a sufficient condition for two
inclusion measures [2]:

k(x,u) = v(u)
v(x ∨ u)

, (x ∨ u /=O),

s(x,u) = v(x ∧ u)
v(x)

, (x /=O).

(2)

In our experiments, the data have been normalized
in lattice L = [0, 1]N , that is, the unit N-dimensional
hypercube, where N is the dimension of the input data.
Furthermore, we propose the following nonlinear positive
valuation function:

∀x ∈
(

[0, 1]N ,≤
)

, v(x) =
N∑

i=1

xi ln
(
xi + γ

)
, γ ∈ [1, +∞),

(3)

where γ is called location parameter. Without loss of
generality, let a = (a1, . . . , aN ) ≥ b = (b1, . . . , bN ), that is,
ai ≥ bi, i = 1, . . . ,N :

v(a∨ b) + v(a∧ b)

=
N∑

i=1

vi(ai ∨ bi) +
N∑

i=1

vi(ai ∧ bi)

=
N∑

i=1

(ai ∨ bi) ln
(
ai ∨ bi + γ

)

+
N∑

i=1

(ai ∧ bi) ln
(
ai ∧ bi + γ

)

=
N∑

i=1

ai ln
(
ai + γ

)
+

N∑

i=1

bi ln
(
bi + γ

)

=
N∑

i=1

vi(ai) +
N∑

i=1

vi(bi) = v(a) + v(b).

(4)

Furthermore, the proposed valuation function is a strictly
increasing function, thus for any a, b ∈ ([0, 1]N ,≤), a < b ⇒
v(a) < v(b). Finally, the aforementioned function (3) maps
the least element of lattice ([0, 1]N ,≤) to zero. On the other
hand, v(O) =∑N

i=1 0× ln(0 + γ) = 0.
The aforementioned valuation function operates in a

more flexible manner compared with other valuations
proposed in the literature. First, the performance of FLR
can be optimized by selecting different values of the location
parameter. Second, if the first variable x is assumed to be
constant, then it will be converted to v(x) = ln(x + γ), in
the space R, and in some special applications, it might be
a proper valuation function. One may say that it does not
satisfy the condition v(O) = 0, in this case, it can be defined
as follows [14]:

v′(x) = v(x)− v(O), ∀x ∈ L. (5)
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Figure 1: The positive valuation functions: (a) ln(x + 1) and (b) x ln(x + 1).

Figure 1(a) plots the positive valuation function v(x) =
ln(x + γ), whereas Figure 1(b) plots v(x) = x ln(x + γ) for
γ = 1.

A lattice (L,≤) is totally ordered if and only if for any
a, b ∈ L, either a ≥ b or a < b. The lattice ([0, 1]N ,≤) under
inequality relation is not a totally ordered lattice.

A fuzzy lattice is a pair (L,μ) where (L,≤) is a crisp lattice
and (L × L,μ) is a fuzzy set with membership function μ :
L×L → [0, 1] such that μ(a, b) = 1 ⇔ a ≤ b. Note that given
a lattice L, for which a positive valuation function v : L → R
can be defined with v(O) = 0, then both (L, k) and (L, s) are
fuzzy lattices [2].

Consider the set R of real numbers. It turns out that (R =
R ∪ {−∞, +∞},≤) under the inequality relation ≤ between
a, b ∈ R is a complete lattice with the least element −∞ and
the greatest element +∞ [25].

For lattice (L,≤), we define the set of (closed) intervals
as τ(L) = {[a, b] | a, b ∈ L and a ≤ b}. We remark that
(τ(L),≤) is a lattice with the ordering relation, lattice join
and meet defined as follows [25]:

[a, b] ≤ [c,d] ≡ c ≤ a, b ≤ d,

[a, b]∨ [c,d] = [a∧ c, b∨ d],

[a, b]∧ [c,d] = [a∨ c, b∧ d].

(6)

Including a least (the empty) interval, denoted by [I ,O],
to (τ(L),≤) leads to a complete lattice (τO(L),≤) = (τ(L) ∪
{[I ,O]},≤). Note that in case of L = R, the lattice (τO(L),≤)
is equal to conventional intervals (sets) in R. Our particular
interest here is in the complete lattice (τO([0, 1]),≤) with
greatest element [0, 1] and least element [1, 0].

An isomorphic function ϕ from poset P to poset Q is a
map if both “x ≤ y in P ⇔ ϕ(x) ≤ ϕ(y) inQ” and “ϕ is
onto Q.” Based on the positive valuation function v of lattice

(L,≤) and an isomorphic function θ : (L,≤∂) → (L,≤), a
valuation function vτO in (τO(R),≤) is defined as

vτO([a, b]) = v(θ(a)) + v(b). (7)

As a consequence, the degree of inclusion of an interval
in another one in lattice (τO(L),≤) is computed as follows
[25]:

kτO([a, b], [c,d]) = vτO([c,d])
vτO([a, b]∨ [c,d])

,

sτO([a, b], [c,d]) = vτO([a, b]∧ [c,d])
vτO([a, b])

.

(8)

For two N-dimensional hypercubes A = [a1, b1]× · · · ×
[aN , bN ] and B = [c1,d1] × · · · × [cN ,dN ], the following
inclusion measure between two intervals A and B is defined:

kτO(A,B) = vτO(B)
vτO(A∨ B)

=
∑N

i=1[vθ(ci) + v(di)]∑N
i=1[vθ(ai ∧ ci) + v(bi ∨ di)]

.

(9)

3. FLR Model

This section presents a classifier for extracting rules from the
input data based on fuzzy lattices. One of FLR important
properties is the ability of dealing with disparate type of data,
including real vectors, fuzzy sets, symbols, graphs, images,
waves, and even any combination of the aforementioned
data and this shows the ability of FLR in combining
different types of data. Furthermore, FLR can handle both
complete and noncomplete lattices, and it can cope with
both points and intervals. Moreover, stable learning is
carried out both incrementally and fast in a single pass
through the training data. In some applications, we might
face with “missing” or “do not care” data. In this case,
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FLR can manage “missing” and “do not care” data by
replacing them with least element O and great element I ,
respectively. For example, if the constituent lattice is ([0, 1],≤
), then we can replace “missing” and “do not care” data
by intervals of O = [1, 0] and I = [0.1], respectively
[13, 14, 22].

It should be mentioned that an input datum to the
FLR classifier (model) is represented as (ai,CK ) where
CK is the class label of the datum ai, and it can be
interpreted as a rule “if ai then Ck.” We remark that a
single real number a ∈ R corresponds to the trivial
interval [a, a]. Learning and generalization in FLR is based
on the computation of hyperboxes in space RN , that is,
a rule induced by FLR corresponds to an N-dimensional
hypercube.

Suppose a knowledge base KB = {(a1,C1), . . . , (ac,Cc)}
is given. KB can be empty at first. Decision making in FLR is
based on an inclusion measure. During learning phase, when
an input datum (a0,C0) is presented to the network, the
degree of inclusion between input and each stored rules in
KB will be calculated as k(a0, a1), . . . , k(a0, ac), respectively.
The fuzzy lattice reasoning classifier will choose the rule with
arg maxi∈{1,...,c}{k(a0, ai)} as the winner. If the winner rule
aJ and input datum a0 have the same class label and the
size of (a0 ∨ aJ), denoted by Z, is less than a user defined
threshold, then the winner rule will be updated. Note that the
size of an interval [a, b] is computed as Z[a b] = v(b)−v(a).
Otherwise, this process is repeated; if no more rules are left,
then the input datum (a0,C0) will be a new member of KB.
Algorithm for training is described in Algorithm 1.

Note that ρ is the threshold size which is used to
specify the maximum size of a hyperbox to be learned. The
decision boundaries which can be formed by FLR endowed
with logarithmic valuation function are illustrated in the
following example.

Example 3. The Simpson benchmark is a two-dimensional
data set consisting of 24 points which is used for testing
the performance of a clustering algorithm [26]. This is a
perceptual grouping problem in vision, which deals with the
detection of the right partition of an image into subsets [27].
We have divided the data into three classes.

Figure 2 shows the decision surfaces of the FLR endowed
with proposed logarithmic valuation function without any
misclassified data. Here, due to lack of space, we have
classified the data four times for location parameter (γ) equal
to γ = 1 and with four different vigilance parameter ρ values.
Note that the size of a hyperbox is tuned by the vigilance
parameter ρ; more specifically, larger values of ρ result in
more hyperboxes.

As it was said in the previous section, one of the FLR
properties is the ability of knowledge representation. Indeed,
FLR is capable of extracting implicit features beyond the data
and represents them as rules. Each rule is represented as
if (a1 AND · · ·AND aM) then Ci where aj , j = 1, . . . ,M
are attributes, each one corresponding to an interval, and
Ci, i = 1, . . . , c are class labels. Table 1 shows three induced
rules corresponding to Figure 2(d).

4. Experimental Results and Discussions

4.1. Benchmark Dataset Description. In this section, we
evaluate the classification performance of the optimized FLR
in a series of experiments on six well-known benchmarks.

4.1.1. Object Recognition. We evaluate the classification
performance of the FLR model using images of the Columbia
Image database [28]. Columbia object image library (COIL-
100) is a database of color images of 100 objects. We selected
the 10 objects from the dataset shown in Figure 3. The
objects were placed on a motorized turntable against a black
background. The turntable was rotated through 360◦ to vary
object pose with respect to a fixed color camera. Images of the
objects were taken at pose intervals of 5◦. This corresponds to
72 poses per object. The images were size normalized. There
are 720 128 × 128-dimensional instances divided into 10
separate classes; 72 for each class; only six randomly selected
instances per each object were sufficient for whole training
set, and the remaining patterns were used for testing set. The
aim is the correct classification of the testing data to their
corresponding classes.

4.1.2. Image Segmentation. The image segmentation data
set was donated by the Vision Group, University of
Massachusetts, and is included in the Machine Learning
Repository of the University of the California, Irvine [29].
The Image Segmentation data set consisted of data relating
numerous analyses of the colors in subdivided images to
the type of surface in the image. Each image was divided
up into small subsections, each of which comprised one
point of data. Each data point was composed of 18 different
attributes, including one that determined what the image was
of: brick face, foliage, grass, sky, window, concrete, and dirt.
This data set consists of 210 samples for training and 2100
samples for testing. The goal is to distinguish between seven
different classes.

4.1.3. Pen-Based Recognition of Handwritten Digits. The Pen-
based recognition of handwritten digits dataset was taken
from the UCI repository of machine learning databases [29].
It was created by collecting 250 digit samples from 44 writers.
The data have 16 continuous attributes distributed in 10
separated classes. A training set is given explicitly. For a
faster simulation, we have resized the training set by selecting
randomly six instances per each class. Distribution of digits
between 0 and 9 in the dataset is shown in Figure 4.

4.1.4. Letter Recognition. The letter recognition benchmark
was employed from the UCI repository of machine learning
databases [29]. The data set consists of 20,000 unique letter
images generated by randomly distorting pixel images of
the 26 uppercase letters from 20 different commercial fonts.
The parent fonts represented a full range of character types
including script, italic, serif, and gothic. The features of each
of the 20,000 characters were summarized in terms of 16
primitive numerical attributes. A training set is not given
explicitly. We have divided all the data into a training set
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S0. The first input (a0, C0) is memorized. At an instant, there are c Known
Classes C1, . . . ,Cc memorized in the memory, initially c = 0.
S1. Present the next input (ai,Ck), i = 1, ...,m to the initially “set” family of rules.
S2. If no rules are “set” then
Store input (ai, CK ),
c = c + 1,

Go to S1.
Else

Compute k(a0, ai), i = 1, . . . , c of the “set” rules.
S3. Competition among the “set” rules:

Winner is rule (aJ ,CJ ) such that J = arg max {k(a0, ai)}, i = 1, . . . , c .
S4. The Assimilation Condition:

Both Z(ai ∨ aJ ) ≤ ρ and Ci = CJ .
S5. If the Assimilation Condition is satisfied then

Replace aJ by a0 ∨ aJ .
Else

“reset” the winner (aJ ,CJ ), Go to S2.

Algorithm 1: FLR training algorithm.
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Figure 2: Decision boundaries generated by the modified FLR with four different threshold parameters.

Table 1: Three induced rules generated by the modified FLR.

Rule no.
Attributes

Class label
a1 a2

1 IF [0.18, 0.27] AND [0.16, 0.3] THEN 1

2 IF [0.34, 0.34] AND [0.22, 0.22] THEN 2

3 IF [0.43, 0.49] AND [0.2, 0.28] THEN 3
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Table 2: Characteristics of 6 used data sets.

Data set No. of data set elements No. of training data No. of testing data No. of input
attributes

No. of classes

Columbia Image 720 60 620 16384 10

Image Segmentation 2310 210 2100 19 7

Pen-based recognition 3558 60 3498 16 10

Letter recognition 20000 2000 18000 16 26

Semion hand recognition 1593 162 1431 256 10

Optical recognition of handwritten digits 2182 385 1797 64 10

Table 3: Recognition results along with relative ranking by different methods over 6 benchmarks.

Data set\Algorithm SOM Fuzzy-ART GRNN FLRx FLRa FLRl

Columbia Image 43.87 (4) 40.81 (5) 90.16 (3) 94.03 (2) 94.36 (1) 94.36 (1)

Image Segmentation 79.86 (5) 88.71 (4) 92.43 (3) 93.00 (1) 92.71 (2) 93.00 (1)

Pen-based recognition 79.24 (6) 65.70 (5) 81.85 (2) 81.48 (3) 80.85 (4) 81.90 (1)

Letter recognition 68.65 (5) 65.22 (6) 82.33 (4) 84.26 (2) 83.42 (3) 84.48 (1)

Semion hand recognition 71.56 (4) 68.27 (5) 78.34 (3) 78.97 (2) 78.97 (2) 79.18 (1)

Optical recognition of handwritten digits 87.87 (5) 88.76 (4) 94.49 (1) 93.27 (3) 93.60 (2) 93.27 (3)
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Figure 3: Ten objects used to train the networks.
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Figure 4: Sample digits from handwritten digits datasets.

consisting of 10 percent of patterns which have been selected
randomly and a testing set consisting of the remaining
patterns. Examples of the character images are presented in
Figure 5.

4.1.5. Semion Hand Recognition. The semion hand recog-
nition benchmark was taken from the UCI repository
of machine learning databases [29]. This dataset consists
of 1593 handwritten digits from around 80 persons was
scanned and stretched in a rectangular box 16 × 16 in a
gray scale of 256 values. Then each pixel of each image was
scaled into a boolean value using a fixed threshold. Each
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Figure 5: Examples of the character images.

person wrote on a paper all the digits from 0 to 9, twice.
The commitment was to write the digit the first time in the
normal way and the second time in a fast way. We have used
10 percent of data for whole training set.

4.1.6. Optical Recognition of Handwritten Digits. The optical
recognition of handwritten digits benchmark was employed
from the UCI repository of machine learning databases [29].
In this data set, 32 × 32 bitmaps of handwritten digits from
a total of 43 people are divided into nonoverlapping blocks
of 4 × 4, and the numbers of on pixels are counted in each
block. This generates an input matrix of 8 × 8 where each
element is an integer in the range of 0 to 16. This reduces
dimensionality and gives invariance to small distortions.
Training and testing sets are given explicitly including 3823
and 1797 64-dimensional samples. For a faster simulation,
the way we have used the data set was to employ 10 percent
of the training set for actual training.
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Table 4: Average classification accuracy on the entire data sets.

Algorithm SOM Fuzzy ART GRNN FLRx FLRa FLRl

Average 71.84 (5) 69.58 (6) 86.60 (4) 87.50 (2) 87.32 (3) 87.70 (1)

Table 5: Sum of ranking of Table 3, on each column.

Algorithm SOM Fuzzy-ART GRNN FLRx FLRa FLRl

Sum of ranks 29 (5) 29 (5) 16 (4) 13 (2) 14 (3) 8 (1)

Table 2 shows briefly the characteristic of the selected
benchmark data sets.

4.2. Experiments and Results. In order to provide a meaning-
ful comparison, all the algorithms have been implemented
in the same environment using the C++ object-oriented
programming language, the same partitioning of data sets
for training and testing, the same order of input patterns,
and a full range of parameters, and we have employed the
isomorphic function θ(x) = 1 − x. Furthermore, all the N-
dimensional data have been normalized into space [0, 1]N

by the function xnorm = (x − xmin)/(xmax − xmin), where
xmin and xmax stand for the least and the greatest attribute
values, respectively, in a data dimension. In this work,
the FLR algorithm endowed with linear valuation function
x, nonlinear valuation arctan, and nonlinear logarithmic
valuation function is denoted, respectively, by FLRx, FLRa,
and FLRl. To compare the learning capability, Table 3 shows
the comparison of the experimental results of FLRl with the
ones produced by the FLRx and FLRa, the SOM [30], fuzzy
ART [11], and GRNN [31].

In all our experiments in order to achieve the best
performance, we have considered GRNN for different values
of variance parameter between 0 and 0.5 in steps of 0.001.
For fuzzy ART, we have set the choice parameter to 0.01, and
the values of vigilance and learning parameters have been
adopted between 0 and 1 in steps of 0.01. Computational
experiments for the SOM algorithm have been carried out
using M ×M (M = 1, . . . , 10) grids of units and number of
100 epochs. Since the results produced by SOM depend on
the initialization of the weights, we have chosen the weights
that yielded best results on the testing set for 10 random
initializations. The only parameter for FLR algorithm that
should be tuned is the threshold size parameter ρ. In our
simulations, the size of ρ was set from 0.01 up to N, where N
is the dimension of the input data, in steps of 0.01 except for
object recognition data set, we have set ρ in steps of 50 due
to high-dimensional input data. Just for FLRl, the location
parameter γ should be tuned too. We have set γ between 1
and 50 in steps of 1.

Table 3 cites the classification accuracy and ranking of
different methods for each benchmark. In other words, each
table cell, which belongs to a specific learning algorithm and
the data set, contains the percentages of correct classification
of that model over the corresponding data set. The number in
brackets in each table cell shows the ranking of each method
after running on a specific data set. The best results have been
shown in bold face.

As can be seen in Table 3, FLRl has obtained acceptable
results in comparison with other methods, and in five cases,
it gets the first rank. In Table 4, the average classification
accuracy on all data sets for each of the different learning
algorithms along with the new relative obtained ranks has
been shown. In other words, first the average of each
column of the previous table has been calculated, then the
corresponding ranking is shown within brackets. As it can be
seen from among all the methods, FLRl has achieved the best
ranking among all other methods.

In Table 5, this comparison has been made according to
the sum of the ranks available in Table 3 per each column.
Although this quantity is of lower precision degree for
reporting results in some cases, it is common in nonpara-
metric statistics. As can be seen in this table, FLRl, FLRx,
and FLRa get first, second, and third rankings, respectively.
It should be pointed out that although there is no universal
learning algorithm that can get the best results on the all
benchmarks, the results obtained by FLRl confirm that our
proposed model is an efficient classifier compared with
established classifiers from the literature.

5. Conclusion

In this work, we introduced an improvement of fuzzy lattice
reasoning (FLR) classifier using a new nonlinear positive
valuation function. We have investigated the performance of
new FLR model in several well-known classification prob-
lems. Experimental results demonstrated that our proposed
methods outperformed established classification models in
terms of classification accuracy on the testing data.
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